
TRiLOGI

The TBASIC Reference

Part Two

Programmer’s Reference

Version 4.1

Copyright 1989 - 1999
 Triangle Research International Pte Ltd

All rights Reserved

Programming Language Support for MODBUS
and EMIT3.0 features of M+ series PLC.

Copyright NoticeCopyright Notice

TRiLOGI Version 1.x, 2.x, 3.x and 4.x are trademarks and
copyrights 1989 to 1999 of TRIANGLE RESEARCH
INTERNATIONAL PTE LTD, SINGAPORE (“TRi”).

All rights reserved. No parts of this manual may be
reproduced, transmitted, transcribed, stored in retrieval
system, or translated into any human or computer
language, in any form or by any means, without the
express written permission of TRIANGLE RESEARCH
INTERNATIONAL PTE LTD, SINGAPORE. Please refer all
inquiries to info@tri-plc.com

* MSDOS and Windows 95/98 are a trademarks of Microsoft Inc.
EMIT, emGateway, emMicro are a trademarks of emWare, Inc.
MODBUS is a trademark of Groupe Schneider.
OMRON is a trademark of OMRON Corp of Japan.
All other trademarks belongs to their respective owners.

DisclaimerDisclaimer

TRi makes no representations or warranties with respect to
the contents hereof. In addition, information contained
herein are subject to change without notice. Every
precaution has been taken in the preparation of this
manual. Nevertheless, TRi assumes no responsibilities for
errors or omissions or any consequential damages resulting
from the use of the information contained in this
publication.

Table of ContentsTable of Contents

Chapter 1 - Uprgrading From TRiLOGI Version 3.x to 4.1

1. File Menu II. 1-1
2. Edit Menu II. 1-2
3. Controller Menu II. 1-3
4. Simulate Menu II. 1-7
5. Print Menu II. 1-7
6. Special Bits Menu II. 1-8
7. Ladder Logic Comments II. 1-9
8. Changing the Set Value (S.V.) of Timers and Counters II. 1-9

Chapter 2 - Using TBASIC Editor & Simulator

1. Custom Functions - An Overview II. 2-1
2. Custom Function Editor II. 2-2

2.1 Text Copying with Custom Function Editor II. 2-3

3. Custom Function Execution
3.1 Triggered by Ladder Logic Special Function coil-[CusFn] II. 2-3
3.2 Interrupt Service CusFn II. 2-7

4. Simulation & Examination of TBASIC Variables
4.1 Simulation Run of CusFn II. 2-8
4.2 Viewing TBASIC Variables II. 2-8
4.3 Viewing TBASIC Variables When Editing CusFn II. 2-9
4.4 Changing the Contents of Variables II. 2-9
4.5 Showing the Content of Variables II. 2-10
4.6 Decimal and Hexadecimal Representation II. 2-10

5. On-line Monitoring of TBASIC Variables II. 2-10

6. Error Handling
6.1 Syntax Errors II. 2-11
6.2 Run-Time Errors II. 2-13

Chapter 3 - Statements, Functions, Data & Operators

1. Statements, Functions and Delimiter
1.1 STATEMENT II. 3-1
1.2 FUNCTION II. 3-1
1.3 DELIMITER II. 3-1

2. Integer Data
2.1 Integer Constants II. 3-2
2.2 Integer Variables II. 3-3
2.3 Integer Operators II. 3-4
2.4 Hierachy of Operators II. 3-5

3. String Data
3.1 String Constants II. 3-6
3.2 String Variables II. 3-6
3.3 String Operators II. 3-6

4. Link Variables for EMIT 3.0 (Internet Connectivity) II. 3-7

Chapter 4 - Programming Language Reference

1. ABS(x) II. 4-1
2. ADC(n) II. 4-1
3. ASC(x) II. 4-1
4. CALL n II. 4-1
5. CHR$(n) II. 4-2
6. CLRBIT v,n II. 4-2
7. CLRIO, SETIO, TOGGLEIO, TESTIO II. 4-3
8. DELAY II. 4-3
9. FOR ... NEXT II. 4-3
10. GetCtrSV (n); GetTimerSV (n) II. 4-4
11. GETHIGH16(v) II. 4-5
12. GOTO @n II. 4-5
13. HEX$(n), HEX$(n,d) II. 4-5
14. HEXVAL(x$) II. 4-6
15. HSTIMER n (High Speed Timers) II. 4-6
16. HSCDEF ch, fn_num, value II. 4-6
17. HSCOFF ch II. 4-7
18. IF..THEN..ELSE..ENDIF II. 4-7
19. INCOMM(ch) II. 4-8
20. INPUT$(n) II. 4-9
21. INTRDEF ch, fn_num, edge II. 4-9
22. INTROFF ch II. 4-9
23. LEN(x$) II. 4-9
24. LET II. 4-9
25. LOAD_EEP(addr) II. 4-10
26. LSHIFT i,n II. 4-10
27. MID$(x$,n,m) II. 4-11
28. NETCMD(ch, x$) II. 4-11
29. OUTCOMM n,x II. 4-12

30. PAUSE II. 4-12
31. PIDdef ch, lmt, P,I,D II. 4-12
32. PIDcompute(ch,E) II. 4-13
33. PRINT #n x$; y; z II. 4-15
34. PMON ch; PMOFF ch II. 4-15
35. PULSEFREQUENCY(ch); PULSEPERIOD(ch); PULSEWIDTH(ch) II. 4-16
36. READMODBUS (ch, DeviceID, address) II. 4-16
37. REFRESH II. 4-17
38. REM (or ') II. 4-17
39. RESET II. 4-17
40. RETURN II. 4-18
41. RSHIFT i,n II. 4-18
42. SAVE_EEP data, addr II. 4-18
43. SETBAUD ch, baud_no II. 4-19
44. SETBIT v,n II. 4-19
45. SetCtrSV n, value; SetTimerSV n, value II. 4-20
46. SETDAC n,x II. 4-20
47. SETHIGH16 v, data II. 4-20
48. SETLED n,m, value II. 4-21
49. SETLCD n,offset,x$ II. 4-21
50. SETPWM n,x,y II. 4-22
51. SETPASSWORD string II. 4-22
52. STATUS(n) II. 4-23
53. STEPCOUNT(ch) II. 4-23
54. STEPCOUNTABS(ch) II. 4-24
55. STEPHOME ch II. 4-24
56. STEPSPEED ch, pps, acc II. 4-24
57. STEPMOVE ch, count, r II. 4-25
58. STEPMOVEABS ch, position, r II. 4-26
59. STEPSTOP ch II. 4-27
60. STR$(n); STR$(n, d) II. 4-27
61. STRCMP(A$,B$) II. 4-27
62. STRUPR$(A$) II. 4-27
63. STRLWR$(A$) II. 4-28
64. TESTBIT (v,n) II. 4-28
65. WHILE ... ENDWHILE II. 4-28
66. WRITEMODBUS ch, DeviceID, address, data II. 4-29
67. VAL(x$) II. 4-30

Chapter 5 - Application Programming Examples

1. Important Notes to Programmers of TRiLOGI Version 4.1 II. 5-1
2. Display Alphanumeric Messages on built-in LCD II. 5-3
3. Display Alphanumeric Messages on MDS100 II. 5-4
4. Setting Timer/Counter Set Values (S.V.) Using LCD Display II. 5-5
5. Using a Potentiometer As An Analog Timer II. 5-7
6. Motion Control of Stepper Motor II. 5-8
7. Activate Events at Scheduled Date and Time II. 5-9
8. HVAC (Heating, Ventilation and Air-Conditioning) Control II. 5-10
9. Closed-Loop PID Control of Heating Process II. 5-12

Chapter 1 - Upgrading From TRiLOGI Version 3.x to 4.1

II. 1-1

TRiLOGI Version 4.1 is the editor, compiler and simulator software for
programming the new M-series M-series family of PLCs from Triangle Research
International Pte Ltd (TRi). Version 4.1 is specifically created for the M and M+ PLC
models only and hence it cannot be used to program the H- and the E-series.
(Use Version 3.x for the H & E-series PLCs, Please refers to the Programmer’s
Reference manual for TRiLOGI Version 3.x)

TRiLOGI Version 4.1 expands the ladder logic language of Version 3.x (which is
the standard editor for programming the H-series PLCs) and adds a whole new
suite of TBASIC commands for handling complex computational tasks that are
either impossible or awkward to write using traditional ladder logic language.

To seamlessly integrate TBASIC commands with the ladder diagram, we invented
the concept of a “Custom-Function” (abbreviated as CusFn) which can be
connected as a special function coil to the end of a ladder rung. TBASIC
commands are then entered via a built-in full screen text editor that enables you
to define what you want that particular CusFn to do.

Up to 256 CusFns can be defined. A CusFn may be connected as a normal coil
[CusFn] to the ladder rung, or as a “Differentiation Up” coil [δCusF] which means
that it will only be executed once when its ladder logic condition goes from OFF
to ON. A CusFn can also be called by any other CusFns and act like a
subroutine.

The next three chapters will describe in detail how you can create and define the
CusFn and various TBASIC commands. In this chapter, however, we will focus on
the modifications made to the Ladder Logic portion of the software found in
TRiLOGI Version 3.x

1. File menu.

a) In TRiLOGI Version 4.1, an “Import File” function has been added to allow
other TRiLOGI files to be imported to the current program. You can now
import the ladder logic, I/O definitions and Custom functions defined in
another TRiLOGI program into the current program. New ladder rungs will
be appended to the end of current ladder program. However, please
note that If the imported file and the current file contain I/O labels for I/Os
of the same location or same Custom Function number, the imported file
will take precedence and overwrite the I/O label or CusFn definition.
Other I/O or CusFn not used in the imported file will not be affected at all.

You can use this feature to create a library of useful custom functions or
ladder programs to be merged to your actual application when required.

TRiLOGI Version 4.1 PART TWO: Chapter1 - Upgrading From Version 3.x

II. 1-2

b) You can run a small DOS utility program without quitting TRiLOGI by
executing the “Run Utilities” command under the “File” menu. All files
within your current directory and with the “.EXE” extension will appear in a
pop up menu. You can move the highlight bar to the desired file and
press <Enter> key to run it.

2. Edit Menu

a) Three new commands: “Edit Custom Function”, “Browse All CusFn” and
“Search Text in CusF ^F” have been added to the “Edit” pull-down menu
which will activate the built-in text editor to enable you to enter or display
the TBASIC commands for the selected CusFn. Please refer to Chapter 2
for details on how to create/edit a CusFn.

“Browse All CusFn” or <Ctrl-F7> opens up the text editor in “Read-Only”
mode, which means that you may not change the content of the CusFn.
This command only opens up CusFns that have been defined but skips
those undefined functions. You can use the Up/Down cursor keys to scroll
from one CusFn to another quickly, which offers you a quick way to
examine all the CusFns that have been defined in your program. You can
also activate this command during “Simulation” by pressing the <Ctrl-F7>
keys.

This “Search Text in CusF ^F” command allows you to search for a
text string across all CusFn. You will be prompted for the text string to
find and when found, the corresponding custom function will be
opened with the cursor positioned at the location of the last found
text. Press <Enter> key to search for next occurrence of the text.
You can also use up/down cursor keys to search in the previous or
the next custom function. You may also press <Ctrl-F> hot key to
use it.

b) TRiLOGI Version 4.1 supports High Speed Timers. Any one or all of the 128
timers can be configured as high speed timers using the TBASIC
command “HSTIMER”. When a timer is activated as a high speed timer, its
set value (SV) in the “Timer” table represents how many 0.01s the timer
takes to completely count down. These give rise to a timer range of 0.01
to 99.99 seconds. If it is not defined as high speed, then the set value
represents 0.1 to 999.9 seconds as in Version 3.x.

c) In Version 4.1 all the inputs, outputs, relays, timers, counters and their
respective present values are accessible as 16-bit integer variables such
as INPUT[1], TIMERBIT[3], etc. We modify the CH:Bit column in the I/O tables

TRiLOGI Version 4.1 PART TWO: Chapter1 - Upgrading From Version 3.x

II. 1-3

so that the first number CH represents the index of the variable (1,2,...)
and second number “:Bit” represents the bit position (in hex digit
0,1....14,15) that I/O occupies within the 16-bit number.

3. Controller Menu
The following changes have been made to the “Controller” pull-down menu:

a)a) Modem Connect/DisconnectModem Connect/Disconnect

TRiLOGI Version 4.1 now supports modem dial-up to connect to a
T100MD+ or T100MX+ PLC located at remote location via telephone
lines. Please see the “Communication Setup” in the next subsection to
select or define your modem type. You use this command to instruct your
PC modem to dial the telephone number where the remote modem and
PLC are located. You will be prompted to enter the telephone number to
dial or accept the last dialed number which is automatically saved in the
configuration file when you quit TRiLOGI.

Once the connection has been established, you can perform on-line
monitoring/control or transfer program to the PLC just like when you
connect the PC to the PLC by hardwired cable. However, please note
that there will always be some time delay when the PC sends out a host
link command string until it receive a response string from the PLC. This is
due to the time it takes the modem to convert (modulate and
demodulate) the serial data to and from voice signals for transmission
along the public telephone system.

Hence when TRiLOGI is connected to the PLC via modem the overall
system will feel more “sluggish” when compared to direct cable
connection. This is quite normal and you should not be alarmed.

Password Protection

Notice that anybody with a TRiLOGI 4.1 software and a modem could dial
into your PLC+modem at a remote location and make unauthorized
modification to your program or remotely activate an I/O. Therefore this
will become a very serious security issue that you must be concerned
with. You should use the SETPASSWORD command in TBASIC to define a
password for the PLC program. Please refer to Chapter 4 for detailed
description of the “SETPASSWORD” command.

Disconnecting Modem

Once you have finished your work, you should disconnect the modem
from the remote link by using the “Disconnect” command in this menu.

TRiLOGI Version 4.1 PART TWO: Chapter1 - Upgrading From Version 3.x

II. 1-4

This command instructs the modem to hang up the telephone line. It will
also re-arm the password protection in the PLC so that the next caller
cannot have unauthorized access to the PLC.

b)b) Communication SetupCommunication Setup

An option for setting up the modem has been added in this command.
You can choose from a menu of some pre-defined standard modems
(Hayes, Motorola, USRobotics, etc.) or define a modem initialization string
for your own user-defined modem type.

Note that reliable connection via modem can only be established at
transmission baud rate of 9600bps or slower. This is because the M-series
PLCs do not utilize the RTS/CTS handshaking lines of the modem and
hence it is not possible to communicate via modem at faster
communication rate than 9600bps. Therefore, to allow remote monitoring
and control via modem, you must execute the TBASIC function:
“SETBAUD 1,3” once during the PLC initialization process to set the
Comm port #1 to 9600bps.

Modem SetupModem Setup

TRiLOGI automatically sets the serial port defined for modem
communication to 9600bps. Almost all modems on the market today
utilize the so called “AT command” set which was pioneered by the
company Hayes Inc. These involve sending ASCII command strings to the
modem beginning with the characters “AT” followed by a string of ASCII
characters. There are many commands published in the modem’s
manual or the manufacturer’s website that will allow you to configure the
modem to various operating modes. Specifically a modem must be
defined to the following operating modes to work properly with TL41.EXE
and the M-series PLCs:

Modem Operating Mode AT Commands
Hayes
Accura

US
Robotics

Motorola
lifestyle

a) No local echo E E E
b) Disable flow control &K &H \Q \G
c) Constant speed &Q6 &B1
d) Forced to communicate

only at 9600bps.
N0S37=9 &N6 %L5 %B5

e) Return result codes Q Q Q
 f) No Data compression &K %C

TRiLOGI Version 4.1 PART TWO: Chapter1 - Upgrading From Version 3.x

II. 1-5

The table above shows the corresponding AT commands for three popular
brands of PC modems. If you are defining your own modem, you need to
check your modem reference manual or the manufacturer support
website to find out the required ASCII strings to set the modem into the
operating modes as defined in the table. All the AT commands can be
combined together into a single string beginning with the characters AT.
For example, the required initialization string for a Hayes Accura modem
should be:

 ATE&K&Q6N0S37=9

Please note that a “Hayes compatible” modem really only means it uses
the “AT” commands and does not mean that it is 100% compatible with
the Haye’s Accura modem’s command set. In fact, US Robotics and
Motorola modems mentioned above are all “Hayes compatible” modems
but they each require very different initialization string from the others.

For modems which are pre-defined on the Modem Setup menu you
need not be bothered with the modem initialization string as TRiLOGI
Version 4.1 will take care of sending the correct string according to the
selected modem. However, if your brand of modem is different from what
is available on the menu then you need to select the user-defined
modem type. When you select the User-defined modem you will be
prompted to enter the modem initialization strings. The string you entered
will be saved in TRiLOGI configuration file.

Modem COM Port SelectionModem COM Port Selection

After you have defined the modem string, You will also be prompted to
select the COM port that your modem is connected to. TRiLOGI 4.1 allows
your computer to use both COM ports 1 and 2 for connection to the PLC.
You may use one COM port for direct cable connection and the other for
connection via a modem. The COM port defined in the “modem setup” is
independent of that defined for direct cable connection.

c) c) New command: Set PLC’s Clock/CalendarNew command: Set PLC’s Clock/Calendar

As mentioned in the last section, the Real-Time-Clock of the PLC can be
set by executing this command. TRiLOGI will retrieve the current date and
time setting from the PLC and display a data entry form for the Hour,
Minute, Second, Year, Month and Day. You can edit the data using the
 and <Backspace> keys to erase the original entry and enter the
new data. Items requiring no changes can be skipped by pressing the
<Enter> key.

TRiLOGI Version 4.1 PART TWO: Chapter1 - Upgrading From Version 3.x

II. 1-6

Once all the data has been entered, the “RTC.Err” flag in the PLC will be
cleared immediately.

d) New commands:d) New commands: 1: Host Timer/Ctr SV --> PLC1: Host Timer/Ctr SV --> PLC
 2: PLC’s Tim/Ctr SV --> Host2: PLC’s Tim/Ctr SV --> Host

In TRiLOGI Version 4.1 you can modify the Set Value (SV) of any timer and
counter on their respective tables (by pressing the <F5> and the <F6>
keys) and update their respective values stored within the PLC’s EEPROM
without transferring the entire program. This is much faster and opens the
possibility of modifying the Set Values of timers and counters without the
need for the original source program.

The command “1: Host Timer/Ctr SV --> PLC” transfers the Set Values
stored in the Timer/Counter tables of the currently loaded ladder program
file into the PLC. Alternatively, you can also capture the SVs of the
timers/counters within the PLC and update them on the host ladder
program’s Timer/Counter tables. Simply execute the command: “2: PLC’s
Tim/Ctr SV --> Host” to do the trick. Note that to update the SVs of a timer
or a counter, you must give it a unique label name.

e) e) Program Access Password protection schemeProgram Access Password protection scheme

In Version 4.1, once you set the program access password the protection
will be in place all the time, regardless of how many times you have
subsequently transferred the program. In addition, Once you have
entered a password, you will be prompted to enter it every time you
try to transfer a program to it. This protects the PLC program so that
unauthorized person cannot alter the program without your
knowledge.

The password can be deleted using a newly added command in the
“Target PLC Access” sub-menu named: “Delete Password & Clear
Program”. Note that the entire program will be erased when the password
is deleted and you need to re-transfer the working software. This provides
adequate protection against unauthorized deletion of password by
others.

Note: The password mentioned here refer to that defined by the “Target
Access -> Set Password” command which is independent of
SETPASSWORD command in TBASIC. The password here only
affects program downloading/uploading, but does not inhibit
normal host communication. The SETPASSWORD statement in
TBASIC however will lock out the PLC from any host link commands
until a correct password command has been received.

TRiLOGI Version 4.1 PART TWO: Chapter1 - Upgrading From Version 3.x

II. 1-7

4. Simulate menu.
In TRiLOGI Version 4.1, the user-program memories are expressed in terms of
16-bit “words” instead of “steps”. Every ladder logic element, including timer,
counter and special function coil occupy exactly one word. Every TBASIC
command occupies from 1 to multiple words, depending on the number of
operands and the type of operands (16-bit or 32-bit) involved. The number of
words occupied by the ladder logic and the CusFns are reported separately
when you execute the “Only Compile” command.

If a CusFn has been defined but is not used in the ladder diagram or called
by other CusFn at all, then the compiler will not compile it and it will not
report its program size to the user either.

Simulation of Momentary Inputs (e.g., PUSH BUTTON Switch)Simulation of Momentary Inputs (e.g., PUSH BUTTON Switch)

A new improvement in the Simulation process is the ability to simulate
momentary input by pressing <Ctrl-Enter> when the highlight bar is at the
“Input” column of the Simulation Screen. The corresponding input will change
state (OFF -> ON or ON->OFF) momentarily and it will then revert back to its
original logic state. The ladder program will execute for 1 ladder logic scan
during the change of state. This allows easy simulation of “Push Button” type
inputs which only be activated when you press the button and de-activated
when you release your finger.

New Command: Silent OperationNew Command: Silent Operation

Some TBASIC instructions such as PRINT, INPUT$, ADC, etc always pop up a
message window during simulation. These messages may appear
repeatedly and interfere with normal simulation. If you wish to suppress the
appearance of these windows, simply execute the “Silent Operation”
command and select either to “Suppress All Messages” or “Allow Only ADC
inputs”. This setting will not be saved in the configuration file.

The PRINT #, INPUT$ and ADC prompt windows can also be selectively turned
OFF during simulation session by pressing the <Ctrl-H> keys when the window
is opened. To re-enable these two pop-up windows, press <Ctrl-H> keys
again in Simulation screen. The screen will appear when the corresponding
commands are next called in the program.

5. Print Menu.
a) A new command “Custom Function” has been added to allow selective

printing of CusFn #1 to 256. CusFns that have not yet been defined will
not be printed.

TRiLOGI Version 4.1 PART TWO: Chapter1 - Upgrading From Version 3.x

II. 1-8

b) When you first select to print any item, you will be prompted to select
the destination of output. The default is “DOS File” and is useful because
the created text file can be read into any word-processor for formatting
before final print-out. If you are using a Windows-based word processor,
you have to select all the content of the file and change their font to:
“MS Linedraw” for proper display of the graphic characters.

If you accept the print destination as “DOS File”, you will be prompted to
enter the name of the text file you wish to save as a print file. This is an
improvement over Version 3.x which saves only to a system pre-defined
file name.

c) The rarely used print command: “CH:Bit logic” has been deleted from the
Print menu.

d) Laser printers which are compatible to HP LaserJet (use HP-PCL printer
commands) are directly supported under the “Printer Setup” menu for
quick configuration of the starting and ending codes.

6. Special Bits Menu
Two additional clock pulses with periods of 0.05s and 0.5 seconds are added
to the “Special Bits” menu, providing more choices and convenience to
programmers who need them.

RTC.Err flag - Every M-series PLC incorporates a “Real Timer Clock” (RTC) which
keeps track of the Year, Month, Day, Hour, Minute and Second of our “REAL”
world (hence the name: “REAL TIME”). However, unless the PLC is equipped
with a battery-backed RTC module, the clock will cease to operate when the
PLC is switched off. When the PLC is turned on again the CPU will reset the
RTC to some factory-preset date and time.

To inform users that the RTC has been reset due to power failure, a new flag:
“Real Time Clock Error” has been added to the “Special Bits” menu to alert
users that the real-time clock has been reset. You can use this flag to turn on
a warning light or an alarm so that the operator can set the clock to the
proper time. On some models of the M-series PLC a status LED will also light
up when RTC error occurs. This is important if your program utilizes the RTC to
turn ON or turn OFF a device at some pre-scheduled times (similar to the
preset timers commonly found in a VCR), in which case remedy action must
be taken if the clock has been upset due to power failure. You can also use
this flag to be the pre-requisite condition for executing preset schedule timer
functions. If you don’t use the RTC, then simply ignore this flag.

TRiLOGI Version 4.1 PART TWO: Chapter1 - Upgrading From Version 3.x

II. 1-9

The RTC can be set by the command: “Set PLC’s Clock/Calendar”
under the “Controller” menu described in the next section. Once you
have set the date and time of the RTC, the “RTC.Err” flag will be turned
OFF immediately.

RTC Module: MX-RTCRTC Module: MX-RTC

If the PLC is installed with the optional battery-backed RTC module: “MX-RTC”,
then the CPU will sense it automatically when powered up and the RTC.Err
flag will not be set.

7. Ladder Logic Comments

The “Put Comments” feature of Version 3.x has been improved to allow you to
enter up to 4 lines per comment circuit. You can also merge or break
comment lines within the comment circuit using the <backspace> and
<Enter> keys.

8. Changing the Set Value (S.V.) of Timers and Counters
In TRiLOGI Version 3.x, the S.V. of internal timers and counters are pre-defined
in their respective definition tables and cannot be changed by the program
during execution.

In Version 4.1 this limitation has been lifted by the introduction of two TBASIC
commands: SetTimerSV and SetCtrSV. During execution of the user program
the set value of any timer or counter can be changed any time by these
commands. If you simulate the program which changes the S.V., the change
will be reflected in their respective Timer/Counter definition tables.

During full-screen simulation or On-line monitoring, if you move the highlight
bar to the “Timer” or “Counter” window and press <Enter>, an “Edit Present
Value” window will be opened as in Version 3.x. However, you can also see
the defined S.V. of the timer or counter. If it is during On-Line Monitoring and
the PLC is executing SetTimerSV or SetCtrSV statement which affects the
timer/counter S.V. you can see the changes immediately in this window.

Although changes to the S.V. of timer/counter in the target PLC will be
captured on the “Edit Present Value” window in the On-Line Monitoring screen
as explained above, such changes however will not be captured into the
timer/counter definition tables. To capture and update the S.V. of the
timer/counter into their definition tables please use the command

“2: PLC’s Tim/Ctr SV -> Host”

TRiLOGI Version 4.1 PART TWO: Chapter1 - Upgrading From Version 3.x

II. 1-10

in the “Controller” menu as explained in section 3. This apparent
inconvenience is actually a deliberate design effort to avoid unintentional
modification of the parameters in the source program during On-Line
Monitoring.

Chapter 2 - Using TBASIC Editor & Simulator

II. 2-1

1. Custom-Functions - An Overview

TRiLOGI Version 4.1 supports user-created special functions, known as Custom
Functions (the symbol CusFn CusFn will be used throughout this manual to mean
Custom Functions). Up to 256 CusFns can be programmed using a special
language: TBASICTBASIC.

TBASICTBASIC is derived from the popular BASIC computer language widely used by
microcomputer programmers. Some enhancements as well as simplifications
have been made to the language to make it more suitable for use in PLC
applications.

There are two simple ways to create a new CusFn:

a) From the "Edit" pull-down menu, select the item "Custom Function" and
enter the function number which may range from 1 to 256. You may also
use the hotkey <F7>. A Custom Function Editor window will appear.

b) If you have already created a ladder circuit which connects to either a
[CusFn] or [δCusF] function (both appear as menu-item within the "Special
Function" pop-up menu), move the browse mode cursor to the circuit
which connects to that particular CusFn. You will notice a small window
pops up at the bottom of the screen as follow:

ESC

Edit Controller Simulate Print OptionFile
Circuit # 5 C:DEMO.PC4

[]

[]

Clk:0.1s Run Duration FwdRev
AVseq

RSseq

Seq1

Seq1Clk:0.1s Duration FwdRevRun

Hello, welcome to the comment feature of
You are allowed to enter up to 4 lines per comment to describe
any feature or purpose of the following circuits.

[]δCusFn
Fn_#10Clk:1min

→↑↓←-Scroll <Ctrl_PgUp/Dn>-First/Last

[]Latch
Out1Seq1:1

‘ Scheduled Light ON at 7:00pm (1900 hrs) and OFF at 6:00am
 IF TIME[1] = 19

CusFn #10 (<F7> to Edit)

The small window that pops up shows the first two lines of the definition of
CusFn #10. If you press the <F7> function key at this point, a full text
editor screen will be opened up showing the rest of the TBASIC statements
for this function. Up to 60 lines of TBASICTBASIC statements can be entered for

TRiLOGI Version 4.1 PART TWO: Chapter2 - Using TBASIC Editor and Simulator

II. 2-2

each CusFn. If more lines are required, a CALL CALL n statement may be
executed at the end of the first CusFn which will chain the execution to
another CusFn #n.

2. Custom Function Editor

The custom function editor window allows creation of up to 60 lines of TBASICTBASIC
program statements. Each line can contain a maximum of 70 characters.
The extreme left column of the editor window shows the line number from 1-
60. In one screen only 20 lines are visible. You can however easily scroll up
and down in pages using the <PgUp>, <PgDn> key and the up/down cursor
keys.

The custom function editor is very similar to any standard text editor. Simply key
in the text at the location of the cursor. You may use the following keys for
editing your program:

<Ctrl-Enter> -- Insert a new line before the current line.
<Ctrl-Backspace> -- Delete the current line.
<Cursor keys> -- navigate within the editor.
<PgUp><PgDn> -- scroll to the previous page or the next page.
<Backspace> -- delete text to the left of the cursor.
 -- delete text to the right of the cursor.
<Home> -- move cursor to the beginning of current line.
<End> -- move cursor to the end of current line.
<Enter> -- insert a line break at the current cursor position.
<Ctrl-Right arrow> -- Move cursor to the beginning of next word.
<Ctrl-Left arrow> -- Move cursor to the end of next word.
<Ctrl-C> -- Copy editor's text into clipboard.
<Ctrl-P> -- Paste clipboard's content into editor.
<Ctrl-N> -- Jump to the NEXT Custom Function.
<Ctrl-B> -- Jump to the CusFn BEFORE the current CusFn.

In TRiLOGI version 4.1 you can break a text line at any text position and push
the remaining text to the next line when you press <Enter> key. If you press
the <Backspace> key at the beginning of a line it will be merged to the
previous line. Similarly if you press the key at end of a line it will append
the next line to the current line.

Note that to insert a new line before the current line, you need to press the
<Ctrl> key together with the <Enter> key. To delete the current line, press
<Ctrl> key together with the <Backspace> key. If the current line is already
deleted, then all the following lines will move one line up towards the current
line.

TRiLOGI Version 4.1 PART TWO: Chapter2 - Using TBASIC Editor and Simulator

II. 2-3

CautionCaution: If 60 lines have already been entered into the editor and a <Ctrl-
Enter> or <Ctrl-P> key is pressed which causes a new line(s) to be
inserted into the cursor line, then the content of the last line(s) in the
editor will be lost.

2.12.1 Text Copying with Custom Function EditorText Copying with Custom Function Editor

TRiLOGI Custom Function Editor allows you to copy a block of program
statements to another destination, either within the same CusFn or into
another CusFn.

To copy a block of program lines, press <Ctrl> and <C> key
simultaneously. A message will be displayed along the bottom of the
screen stating:

 "Copying Text to Clipboard. Press <Enter> to complete...."

You may move the cursor using the up/down cursor keys or <PgUp> and
<PgDn> keys. The range of text selected for copying will be highlighted
within the editor window. When you have selected the range of text, press
<Enter> key to complete the copying. The selected text is then copied
into TRiLOGI's memory buffer known as the "Clipboard". The content of the
Clipboard will be not be lost unless it is overwritten by the next <Ctrl-C>
command or when the program terminates.

After copying the block of text into the Clipboard, move the cursor to the
destination where the block is to be "pasted" and press the <Ctrl-P> key.
The destination may be either in the same CusFn, in another CusFn or
even in another TRiLOGI program file. The content of the clipboard will be
inserted at the cursor position and the existing lines will be pushed
downward. You may make as many copies as necessary as the content
of the clipboard will not be changed by the "paste" command.

Note that this COPY function provides a convenient way for copying some
existing TBASICTBASIC program codes into a new program for execution. You
may also use it to organize your program to improve readability.

3. Custom Function Execution

It is important to understand when and how a TBASIC-based Custom Function
is executed with respect to the rest of the program. There are basically two
ways in which a CusFn will be executed:

TRiLOGI Version 4.1 PART TWO: Chapter2 - Using TBASIC Editor and Simulator

II. 2-4

3.1 3.1 Triggered by Ladder Logic Special function coil Triggered by Ladder Logic Special function coil ÄÄÄÄÄÄÄÄ[CusFn][CusFn]

A custom function may work the same way as any other special functions
in the TRiLOGI ladder diagram programming environment. When in ladder
circuit editing mode, press <Ins> key to open the "Ins Element"
menu.

Select the item [FUNC]9: or [FUNC]0: to create a special
function output. A pop-up "Select a Function" menu will appear.

Edit Controller Simulate PrintFile
Circuit #1 C:DEMO.PC3

()

[]

[]

()

start Emerstop

Run

Run
RLY

Duration
TIM

Clk:0.1s Run Duration FwdRev
AVseq

RSseq

Seq1

Seq1Clk:0.1s Duration FwdRevRun

Hello, welcome to the comment feature of
You are allowed to enter up to 3 lines per comment to describe
feature or purpose of the following circuits.

[]MaRST
MaRST

Duration

1:

Select an element to be connected

3:
4:
5:
6:

2:

7:
8:
9:
0:

Ins Element

()
()

[Func]
[Func]

E: Edit Label
/: Not (Invert)

Select either item:

" D :Custom created Function [CusFn]" or item
" E :Diff. Up Custom Functn [δCusF]"

to create a CusFn. You will be required to enter the selected custom
function number from 1 to 256. Note that CusFn created using

" E :Diff. Up Custom Functn[δCusF]"

is a "Differentiated Up" instruction. This means that the function will be
executed only once every time when its execution condition goes from
OFF to ON. Nothing will happen when its execution condition goes from
ON to OFF.

TRiLOGI Version 4.1 PART TWO: Chapter2 - Using TBASIC Editor and Simulator

II. 2-5

Step Auto

start stop

Run

Run Maxtime

Run
()RLY

()
Maxtime

TIM

File Edit Simulate PrintController Ins Element

1: Decrement Rev. Counter
2: Reset. Counter
3: Increment Rev. Counter

5: Reset Sequencer

7: Latching Relay
8: Clear Latching Relay
9: Interlock Begin
A: Interlock End
B: Differentiate Up
C: Differentiate Down
D: Custom created Function

4: Advance Sequencer

[DNctr]
[Upctr]
[RSctr]
[AVseq]

[StepN]
[Latch]
[Clear]
[ILock]
[ILoff]
[DIFU]
[DIFD]
[CusFn]

Select a Function

δ
δ

6: Set Sequencer to Step N
[RSseq]

E: Diff. Up Custom Functn
F: Master Reset

[CusF]
[MaRST]

δ

On the other hand, using "D: Custom created Function [CusFn]" will
means that the CusFn will be executed every scan as long as its
execution condition is ON. This is often not desirable and the coil created
using this menu item will be highlighted in RED color to serve as an alarm
to programmer. You will probably find you will use the differentiated
version [δCusF]far more frequently.

Periodic Execution of a Custom FunctionPeriodic Execution of a Custom Function

There are many situations when you need the PLC to periodically monitor
an event or perform an operation. For example, to monitor the
temperature reading from a probe or check the real time clock for the
scheduled time, and to continuously display changing variables on the
LCD display. It is not efficient to use the continuous [CusFn] function for
such purpose. It is far more better to use the built-in clock pulses to trigger
a differentiated Custom function [δCusF]. You can choose a suitable
period from 0.01s, 0.02s, 0.05s, 0.1s, 0.2s, 0.5s, 1.0s, & 1 minute for the
application. Other periods can also be constructed with a self-reset timer.
The custom function will only be executed once every period controlled
by the system clock pulse or the timer, as follow:

[]
Run Clk0.1s

Fn#2

δCusF

You don’t need to update the value of a variable displayed on the LCD
screen any faster than the human eye can read them. So using a 0.5s
clock pulse may be sufficient and this will not take up too much CPU time

TRiLOGI Version 4.1 PART TWO: Chapter2 - Using TBASIC Editor and Simulator

II. 2-6

for the display. For slow process such as heating, a 1.0s clock pulse to
monitor temperature change is more than sufficient.

IMPORTANT

1) When the CPU scans the ladder logic to a circuit which contains a
CusFn, and the execution condition of the circuit is TRUE, the
corresponding CusFn will be immediately executed. This means that
the CPU will not execute the remaining ladder circuits until it has
completed execution of the current CusFn. Hence if the CusFn
modifies a certain I/O or variable, it is possible to affect the running of
the remaining ladder program.

2) Note that the INPUT[n] variables contain data obtained at the
beginning of the ladder logic scan and not the actual state of the
physical input at the time of the CusFn execution. Thus it will be futile to
wait for the INPUT[n] variable to change inside a CusFn unless you
execute the REFRESH statement to refresh the physical I/O before
you examine the INPUT[n] variable again.

3) Likewise, any changes to the OUTPUT[n] variable using the SETBIT or
CLRBIT statement will not be transferred to the physical outputs until
the end of the current ladder logic scan. Hence do not wait for an
event to happen immediately after executing a SETBIT or CLRBIT
statement on an OUTPUT[n] because nothing will happen to the
physical output until the current ladder logic scan is completed.

If you want to force the output to change immediately you will need to
execute the REFRESHREFRESH statement. Consideration must be given to how
such an act may affect the other parts of the ladder program since
not the entire ladder program has been executed.

4) Like all ladder circuits, the relative position of the circuit which triggers
the CusFn may affect the way the program works. It is important to
consider this fact carefully when writing your ladder program and
TBASIC CusFns. Always remember that the CPU executes the ladder
logic and CusFn sequentially, even though the equivalent circuits in
hard-wired relay may seem to suggest that the different rungs of
ladder circuits were to work simultaneously.

5) In line with the typical Ladder Logic programming rules, a CusFn may
appear only once within the ladder diagram, regardless of whether it

TRiLOGI Version 4.1 PART TWO: Chapter2 - Using TBASIC Editor and Simulator

II. 2-7

appears in the normal or differentiated form. A compilation error will
occur if a CusFn appears in more than one circuit.

However, a CusFn may be “CALLed” as a subroutine by any other
CusFn and there is no restriction placed on the number of repeated
CALL of a CusFn by more than one CusFn. A CusFn may also modify
the logic states of an i/o element or the value of internal timers and
counters using its powerful TBASIC commands (such as SetBit, ClrBit).
The compiler however will not alarm the user that a CusFn may
inadvertently alter the logic state of an I/O already controlled by some
other ladder circuit.

This power and flexibility offered by the TBASIC-based custom functions
must therefore be handled with greater care by the programmer. It is
important to prevent conflicting output conditions due to an i/o being
controlled or modified at more than one place within a logic scan. The
net result is that the logic state of the i/o appears to be in different
states at different parts of the ladder circuit. This could lead to bizarre
outcomes that may be difficult to trace and debug.

3.23.2 Interrupt Service CusFnInterrupt Service CusFn

A CusFn may also serve as an “Interrupt Service Routine” which is
executed asynchronously from the normal ladder logic execution. An
interrupt-driven CusFn is run when the condition which causes the interrupt
occurs. The response time to execution is very short compared to the
scan time of the ladder program. There are several interrupt sources
which can trigger a CusFn:

a) Special Interrupt inputs

An M-series PLC contains some special “Interrupt” inputs which, when
enabled by the INTRDEFINTRDEF statement, will trigger a particular CusFn
defined in the INTRDEF statement when the logic level at the interrupt
pin changes state (either from OFF to ON or from ON to OFF).

b) High Speed Counter (HSC) Reach Target Count

An M-series PLC contains some “High Speed Counter” inputs which,
when enabled by the HSCDEFHSCDEF statement, will trigger a particular CusFn
defined in the HSCDEF statement when the counter reaches a preset
target count value. This enables the CPU to carry out some immediate
actions such as stopping a motor or performing some computation.

TRiLOGI Version 4.1 PART TWO: Chapter2 - Using TBASIC Editor and Simulator

II. 2-8

4. Simulation & Examination of TBASIC Variables

4.14.1 Simulation Run of CusFn.Simulation Run of CusFn.

TRiLOGI fully supports simulation of all TBASIC commands. After you
have completed coding a CusFn, test the effect of the function by
connecting it to an unused input. Run the simulator by pressing <F9> or
<Ctrl-F9> key. Execute the CusFn by turning ON its input. If your CusFn
executes a command that affects the logic state of any I/O the effect
can be viewed on the simulator screen immediately. However, if the
computation affects only the variables than you may need to examine
the internal variables.

4.24.2 Viewing TBASIC VariablesViewing TBASIC Variables

The values of the internal variables as a result of the simulation run by
pressing the <V> (which stand for "View") key while in the simulation
screen. A pop-up window will appear with the values of all the variables
as well as special peripheral devices supported by TBASIC. The variables
are organized into 3 screens. You can move from screen to screen using
the left/right cursor keys:

IN

Clearctr
Manual

#1

IN 2 TIM 1 CTR/SEQ 1 1RLY

Programmable Logic Simulator

*

*

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

*

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Start
Stop

Timer1
15sec
delay

69
3
0 Active

Fail

CR1
CR2

A=0
F=0
K=0
P=0

B=0
 G=0
L=0
Q=0

C=0
H=0
M=0
R=0

D=0
 I =0
N=0
S=0

E=0
J=0

O=0
T=0

LCD Display Module
L1:
L2:
L3:
L4:

<ESC>-Close <S>/<E>-Edit Var. Other Screens <D>-Decimal <H>-Hex

Time: 12:00:00

Date: 97/02/13

1 2 3 4 5 6 7 8CH#

0ADC 1-8
9-16

DAC 1-8
9-16

PWM1-8

LED

< >

0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

 View Special Variables

U=0 V=0 W=0 X=0 Y=0
Z=0 HSC:1=0 HSC:2=0 HSC:3=0

a) System variables Screen

The first screen comprises all 26 32-bit integer variables A-Z, the
system DATE and TIME, ADC, DAC, PWM and the resulting values of
setLED and setLCD commands. The DATE and TIME figure shown
during simulation are taken from the PC internal real-time clock
values. The present values of the first 3 high speed counters: HSC:1 to

TRiLOGI Version 4.1 PART TWO: Chapter2 - Using TBASIC Editor and Simulator

II. 2-9

HSC:3 are also shown on this page. Note that ADC data for any
particular A/D channel #n will only be shown if an ADC(n) function
has been executed. Otherwise the ADC value shown on screen will
not reflect the true current value of the ADC port.

b) Data Memory Screen

The second screen displays, in 25 pages, the values of the 16-bit DM
variables from DM[1] to DM[4000]. Each page displays 16 rows x 10
columns = 160 DM variables. You can scroll up and down the pages
using the <PgUp> and <PgDn> keys.

c) String Variable Screen

The third screen displays the value of the 26 string variables A$ to Z$
in one or more pages, depending on the length of each string.

If the execution condition is ON and the CusFn is not of the differentiated
type, then the CusFn will be continuously executed. The result of the
variable will be continuously updated on the viewing window.

4.3 4.3 Viewing TBASIC Variables When Editing CusFnViewing TBASIC Variables When Editing CusFn

You can also open up the “View Special Variables” window when you are
editing or browsing a CusFn by pressing <Ctrl-V> keys.

4.4 4.4 Changing the Contents of VariablesChanging the Contents of Variables

While the "View Special Variables" window is open, you may change the
contents of the following variables by pressing the <E> key (which stands
for EDIT):
A-Z, A$ to Z$, DM[n], DATE[n], TIME[n], INPUT[n],
OUTPUT[n], RELAY[n], TIMERBIT[n], CTRBIT[n],
TIMERPV[n], CTRPV[n] and HSCPV[n],
emINT[n], emLINT[n].

A text entry window will pop up and you will have to enter the values in
the form of assignment statements, such as follow:

e.g. A = 5000;
DM[99]=5678;
OUTPUT[2]=&H01AB
B$ = "Welcome to TBASIC"

The variable will take up the new value as soon as it is entered, and if the
execution condition for any CusFn is ON, the simulator will process the
newly entered data immediately and produce the new outcomes. This
gives you greater flexibility in controlling the simulation process.

TRiLOGI Version 4.1 PART TWO: Chapter2 - Using TBASIC Editor and Simulator

II. 2-10

4.5 4.5 Showing the Variables' ContentShowing the Variables' Content

If you press the <S> key when the “View Special Variables” window is
opened, you will be prompted to enter the variable name and the value
of this variable will be displayed immediately. The variable name is the
same as that shown in the last paragraph. This is useful for checking the
value of the system variables such as “INPUT[n]”, “OUTPUT[n]”, etc., which
are not shown on the “Special Variables” window. For the EMIT link
variables emINT[n] and emLINT[n] these are the only way to show their
values.

4.64.6 Decimal and Hexadecimal RepresentationDecimal and Hexadecimal Representation

All the numeric data shown in the “Special Variables” window are by
default displayed in decimal notation. You can display the number in
hexadecimal format by pressing the <H> key. Press the <D> key if you
wish to switch back to the decimal format. This feature is very useful for
programmer who are familiar with hexadecimal representation of a
binary number.

5. On-line Monitoring of TBASIC Variables
If you execute the “On-Line Monitoring/Control” command from the
“Controller” pull-down menu, TRiLOGI Version 4.1 will continuously query the
PLC for the values of all their internal variables. These variables’ values will be
updated in real time in the “View Special Variables” window, the “Edit
Variable” and the “Show Variable” windows described in the previous section.
You may also alter the value of any variables in the PLC using the “Edit
Variable” window (by pressing the <E> key when at the “View Special
Variables” window.

This ability of TRiLOGI to provide instant and full visibility of the all the PLC’s
internal variables greatly facilitates the programmers’ debugging process. The
ease of programming offered by the TRiLOGI programming environment is
really what really sets the M-series PLC far ahead of many other PLCs where
both programming and debugging are really painstaking tasks. (This is
assuming they have been fully equipped with all the expensive “options” to
match the M-series built-in capability!)

PAUSE and RESET of Target PLCPAUSE and RESET of Target PLC

During On-Line Monitoring, if the “View Special Variables” window is opened,
you can still reset the PLC’s internal data by pressing the <Ctrl-R> key. The
PLC can also be halted by pressing the <P> key. A halted PLC can be
subsequently released from the halted mode by pressing the <P> key again.

TRiLOGI Version 4.1 PART TWO: Chapter2 - Using TBASIC Editor and Simulator

II. 2-11

Using LCD Display for DebuggingUsing LCD Display for Debugging

You should take advantage of the built-in LCD display port of the T100MD
to display internal data at location where you want to track their values.
Especially for EMIT link variables emINT[n] and emLINT[n], it is much easier
to see their values continuously on the LCD then using the “Show variable”
command on TRiLOGI.

6. Error Handling

Since the CusFn text editor does not restrict the type of text that may be
entered into its editor, the TRiLOGI compiler will have to check the syntax of
user’s TBASIC program to look out for miss-spelling, missing parameters,
invalid commands, etc. Such errors which can be tracked down during
compilation process are know as “Syntax Errors”.

6.16.1 Syntax ErrorSyntax Error

TRiLOGI employs a sophisticated yet extremely user-friendly syntax error
tracking system: When a syntax error is encountered, the compilation
will be aborted immediately and the CusFn which contains the error is
automatically opened in the text editor. The location of the offending
word is also highlighted and a pop-up message window reports to you
the cause of the error. You can then immediately fix the error and re-
compile until all the errors have been corrected.

Error Message Cause / Action
1. Undefined symbol found Only TBASIC commands and legal

variable names are allowed. See
Chapter 3.

2. Compiler internal error Serious trouble, please email to
manufacturer support@tri-plc.com

3. ") " found without matching " (
"

-

4. Integer expected Expect to see either an integer variable
or integer constant.

5. Value is out-of-range Check the language reference for
allowable range of value for the
command.

6. Duplicate line label number Label for goto must be unique within
the same CusFn.

7. Undefined GOTO destination: Put a matching label at the place
where the GOTO statement suppose to
go.

8. Invalid GOTO label @# must be in the range 0-255

TRiLOGI Version 4.1 PART TWO: Chapter2 - Using TBASIC Editor and Simulator

II. 2-12

9. Type mismatch (numeric and
string types may not mix)

In an expression, string and integers
may not be mixed unless converted
using the conversion function. e.g.
STR$, VAL, etc.

10. String is too long A string is limited to 70 characters
11. Too many line label There should not be more than 20

GOTO label within the same CusFn.
12. Unknown Keyword Most likely wrong spelling for TBASIC

statement or function.
13. WHILE without ENDWHILE Every WHILE statement must be ended

with a matching ENDWHILE statement.
Nested WHILE loop must have proper
matching ENDWHILE for each WHILE.

14. IF without ENDIF Every IF statement must be ended with
a matching ENDIF statement to define
the boundaries for the block controlled
by the IF statement. For multiple IF
THEN statement, each IF must be
matched by a corresponding ENDIF.

15. FOR without NEXT Every FOR statement must be ended
with a matching NEXT statement to
define the boundaries for the block
controlled by the FOR statement. For
nested FOR loops, each FOR must be
matched by a corresponding NEXT.

16. Expect keyword "TO" Required by FOR statement.
17. Must be an integer String variable or constant not allowed.
18. Must be an integer variable

only
Integer constant not allowed.

19. Must be an integer constant
only

Integer variable not allowed.

20. Must be a string Integer constant or variable not
allowed.

21. Must be a string variable only String constant not allowed.
22. Must be a string constant only String variable not allowed.
23. Incomplete Expression Expression not ended properly.
24. String constant missing closing

"
String constants must be enclosed
between a pair of opening and
closing "

25. Must be Integer A to Z only index for FOR..NEXT loop must be A-Z.

TRiLOGI Version 4.1 PART TWO: Chapter2 - Using TBASIC Editor and Simulator

II. 2-13

6.26.2 Run-Time ErrorsRun-Time Errors

Certain errors only become apparent during the execution of the program,
e.g. A = B/C . This expression is perfectly OK except when C = 0, then
you would have attempted to divide a number by zero, which does not
yield any meaningful result, in this case a “run-time error” is said to have
occurred. Since run-time errors cannot be identified during compilation,
TRiLOGI also checks the validity of a command during simulation run and if
a run-time error is encountered, a pop-up message window will report to
the programmer the cause and the CusFn where the run-time error took
place. This helps programmer locate the cause of the run-time errors to
enable debugging. The possible run-time errors are listed in the following
table and they are generally self-explanatory.

Run-Time Error Message

Divide by zero

Call stack overflow! Circular CALL suspected!

FOR-NEXT loop with STEP = 0!

SET_BIT position out-of-range!

CLR_BIT position out-of-range!

TEST_BIT position out-of-range!

STEPSPEED channel out-of-range!

Illegal Pulse Rate for STEPMOVE!

Illegal acceleration for STEPMOVE!

STEPMOVE channel out-of-range!

STEPSTOP channel out-of-range!

ADC channel out-of-range

DAC channel out-of-range

LED Digit # within (1-12) Only!

PWM Channel out-of-range!

LCD Line # must be (1-4) Only!

PM channel out-of-range!

System Variable Index Out-of-range!

Shifting of (A-Z) Out-of-range!

Illegal Opcode - Please Inform Manufacturer!

Timer or Counter # Out-of-Range!

Chapter 3 - Statement, Functions, Data & Operators

II. 3-1

1. Statements, Functions and Delimiter.

1.1 1.1 STATEMENTSTATEMENT

A STATEMENT is a group of keywords used by TBASIC to perform certain
action. A statement may take 0,1,2 or more arguments. The following
are some TBASIC statements: PRINT, LET, IF, WHILE, SETLED ...etc.

1.2 1.2 FUNCTIONFUNCTION

A FUNCTION acts on its supplied arguments and return a value. The
returned value may be an integer or a string. A function can usually be
embedded within an expression as if it is a variable or a constant, since
its content will be evaluated before being used in the expression. e.g.

A$ = "Total is $"+STR$(B+C)

STR$(n) is a function which returns a string and therefore can be used
directly in the above string assignment statement.

The most distinguishable feature of a FUNCTION is that its arguments are
enclosed within parenthesis "(" and ")". e.g. ABS(n), ADC(n),
MID$(A$,n,m), STRCMP(A$,B$).

Note: Statements or functions and their arguments are NOT case-sensitive.
This means that commands such as PRINT and PriNt are identical.
However, for clarity seek we use a mix of upper and lower case
characters in this manual.

1.3 1.3 DELIMITERDELIMITER

A TBASIC program consists of many statements. Each statements are
usually separated by a different line. The new line therefore acts as a
"delimiter" which separate one statement from another. Some
statements such as IF..THEN..ELSE..ENDIF span multiple statements and
should be separated by proper delimiters.

To make a program visually more compact, the colon symbol ":" may
be used to act as delimiter. e.g.

IF A > B THEN
C = D*5

ELSE
C = D/5

ENDIF

TRiLOGI Version 4.1 PART TWO: Chapter 3 - Statement, Functions & Operators

II. 3-2

may be written more compactly as
IF A >B : C=D*5:ELSE:C=D/5:ENDIF

2. Integer Data

The TBASIC compiler in TRiLOGI Version 4.1 supports full 32-bit integer
computations. However, only variable A to Z are 32 bits in length which allow
them to represent number between -231 to -231, the remaining system
variables and data memory DM[n] are all 16-bit variables which means that
they can only store number between -32768 to +32767. However, all
numerical computations and comparisons in TBASIC are carried out in 32-bit
signed integer, regardless of the bit-length of the variables involved in the
numerical expression.

2.1 2.1 Integer ConstantsInteger Constants

These may be entered directly in decimal form, or in hexadecimal form
by prefixing the number with the symbol "&H". e.g.

12345678
&H3EF =1007 (decimal)

If the result of an expression is outside the 32-bit limits, it will overflow and
change sign. Care must therefore be exercised to prevent unexpected
result from an integer-overflow condition.

A constant may be used in an assignment statement or in an expression
as follow:

A = 12345
IF A*30 + 2345/123 > 100 THENENDIF

IMPORTANT

When entering an integer constant using the hexadecimal prefix “&H”, it is
important to note the sign of the intended value and extend the signs to
most significant bit of the 32 bit expression. E.g. to represent a decimal
number “-1234”, the hexadecimal representation must be
“&HFFFFFB2E” and not “&HFB2E”.

Assuming that a 16-bit variable DM[1] contains the number -1234 and a
comparison statement is made to check if the number is -1234. The 32-
bit hexadecimal representation of constant -1234 is &HFFFFFB2E. If you
enter the constant as 16-bit representation “&HFB2E” as follow:

 IF DM[1] <> &HFB2E CALL 5

TRiLOGI Version 4.1 PART TWO: Chapter 3 - Statement, Functions & Operators

II. 3-3

TBASIC translates the number “&HFB2E” into a 32-bit decimal number
64302, which when compared to the number “-1234” contained in DM[1]
will yield a “False” result which is an error. The following are the correct
representation:

a) IF DM[1] <> -1234 CALL 5 : ENDIF
or b) IF DM[1] <> &HFFFFFB2E” CALL 5: ENDIF

2.22.2 Integer variablesInteger variables:

Variables are memory locations used for storing data for later use. All
Integer variables used in TBASIC are GLOBAL variables - this means that
all these variables are shared and accessible from every custom
function.

TBASIC supports the following integer variables:

i) 26 Integer variables A, B, C....Z which are 32-bit variables. Note that
the variable name must be a single character.

ii) A large, one-dimensional 16-bit integer array from DM[1] to
DM[4000], where DM stands for Data Memory. A DM is addressed by
its index enclosed between the two square brackets "[" and "]". e.g.
DM[3], DM[A+B*5], where A and B are integer variables.

iii) System variables. These are special integer variables which relates to
the PLC hardware, as follow:

I/Os, Timers and Counters ContactsI/Os, Timers and Counters Contacts
The bit addressable I/Os elements are organized into 16-bit integer
variables INPUT[n], OUTPUT[n], RELAY[n], TIMERBIT[n] and CTRBIT[n] so
that they may be easily accessed from within a CusFn. These I/Os are
arranged as shown in the following diagram:

15 0 15 0 15 0

INPUT[1]INPUT[2]INPUT[3]

11732 163348

RELAY[1]RELAY[2]RELAY[3]

I/O numbers

.........

OUTPUT[1]OUTPUT[2]OUTPUT[3]

TIMERBIT[1]TIMERBIT[2]TIMERBIT[3]
CTRBIT[1]CTRBIT[2]CTRBIT[3]

.........

Bit #

TRiLOGI Version 4.1 PART TWO: Chapter 3 - Statement, Functions & Operators

II. 3-4

Timers and Counters Present ValuesTimers and Counters Present Values

The present values (PV) of the 128 timers and 128 counters in the PLC
can be accessed directly as system variables:

 timerPV[1] to timerPV[128], for timers' present value
 ctrPV[1] to ctrPV[128], for counters' present value

DATE and TIME VariablesDATE and TIME Variables

The PLC's Real-Time-Clock (RTC) derived date and time can be
accessed via variables DATE[1] to DATE[3] and TIME[1] to TIME[3],
respectively as shown in the following table:

Date Time

YEAR DATE[1] HOUR TIME[1]

MONTH DATE[2] MINUTES TIME[2]

DAY DATE[3] SECOND TIME[3]

Day of Week DATE[4]

DATE[1] : may contain four digits (e.g. 1998, 2003 etc).
DATE[4] : 1 for Monday, 2 for Tuesday, 7 for Sunday.

High Speed CountersHigh Speed Counters

The M-series PLC support High Speed Counters (HSC) which can be
used to capture high frequency incoming pulses from positional
feedback encoder. These high speed counters are accessible by
CusFn using the variables HSCPV[1] to HSCPV[8]. All HSCPV[n] are 32-
bit integer variables.

2.32.3 Integer operators:Integer operators:

““Operators” perform mathematical or logical operations on data. TBASIC
supports the following integer operators:

i) Assignment Operator: An integer variable (A to Z, DM and system
variables, etc) may be assigned a value using the assignment
statement:

A = 1000
X = H*I+J + len(A$)

ii) Arithmetic Operators:

Symbol Operation Example
+ Addition A = B+C+25
- Subtraction Z = TIME[3]-10
* Multiplication PRINT #1 X*Y

TRiLOGI Version 4.1 PART TWO: Chapter 3 - Statement, Functions & Operators

II. 3-5

/ Division X = A/(100+B)
MOD Modulus Y = Y MOD 10

iii) Bitwise Logical Operators: logical operations is perform bit-for-bit
between two 16-bit integer data.

Symbol Operation Example
& logical AND IF input[1] & &H02 ...
| logical OR output[1] = A | &H08
^ Exclusive OR A = RELAY[2] ^ B
~ logical NOT A = ~timerPV[1]

iv) Relational Operators : Used exclusively for decision making
expression in statement such as IF IF expression THENTHEN and WHILEWHILE
expression

Symbol Operation Example
= Equal To IF A = 100
<> Not Equal To WHILE CTR_PV[0]<> 0
> Greater Than IF B > C/(D+10)
< Less Than IF TIME[3] < 59
>= Greater Than or

Equal To
WHILE X >= 10

<= Less Than or
Equal To

IF DM[I] <= 5678

AND Relational AND IF A>B AND C<=D
OR Relational OR IF A<>0 OR B=1000

v) Functional Operators : TBASIC supports a number of built in functions
which operate on integer parameters as shown below:

ABS(ABS(n), ADC(), ADC(n), CHR$(), CHR$(n), HEX$(), HEX$(n), STR$(), STR$(n))

For detailed explanation of these functions please refer to the next
chapter: “Programming Language Reference”

2.42.4 Hierachy of Operators:Hierachy of Operators:

The hierarchy of operators represent the priority of computation. Eg. X =
3 + 40*(5 - 2). The compiler will generate codes to compute 5 - 2 first
because the parentheses has the higher hierarchy, the result is then
multiplied by 40 because multiplication has a higher priority then
addition. Finally 3 will be added to the result. If two operators are of the

TRiLOGI Version 4.1 PART TWO: Chapter 3 - Statement, Functions & Operators

II. 3-6

same hierarchy, then compiler will evaluate from left to right. e.g. X = 5
+ 4 - 3. 5+4 is first computed and then 3 will be subtracted. The
following table list the hierarchy of various operator used.

Hierarchy Symbol Descriptions
Highest () Parentheses

*, / , MOD Multiplication/Division
+, - Add/Subtract
- Negate
&, |, ^,~ Logical AND,OR,XOR,NOT

Lowest =,<>,>,>=,<,<
=

Relational operators

3. String Data
A string is a sequence of alphanumeric characters (8-bit ASCII codes) which
collectively form an entity.

3.1 3.1 String ConstantsString Constants

A string constant may contain from 0 to 70 characters enclosed in
double quotation marks. e.g.

"TBASIC made PLC numeric processing a piece of cake!"
"$102,345.00"

3.2 3.2 String VariablesString Variables

TBASIC supports a maximum of 26 string variables A$, B$... Z$. Each
string variable may contain from 0 (null string) up to a maximum of 70
characters.

3.3 3.3 String OperatorsString Operators

i) Assignment Operator: A string variable (A to Z, DM and system
variables, etc) may be assigned a string expression using the
assignment statement:

A$ = "Hello, Welcome To TBASIC"
Z$ = MID$(A$,3,5)

ii) Concatenation Operators: Two or more strings can be
concatenated (joined together) simply by using the "+" operator.
e.g.

M$ = "Hello " + A$ + ", welcome to " + B$

TRiLOGI Version 4.1 PART TWO: Chapter 3 - Statement, Functions & Operators

II. 3-7

If A$ contains "James", and B$ contains "TBASIC", M$ will contain the
string: "Hello James, welcome to TBASIC.

iii) Comparison Operators: Two strings may be compared for equality
by using the function STRCMP(A$,B$). However, the integer
comparator such as "=", "<>", etc cannot be used for string
comparison.

iv) Functional Operators: TBASICTBASIC supports a number of statement and
functions which take one or more string arguments and return either
an integer or a string value. e.g.

LEN(x$), MID$(A$,x,y), PRINT #1 A$,....
SETLCD 1, x$ VAL(x$),

Please refer to the next chapter for detailed descriptions of these
operators.

4. Link Variables for EMIT 3.0 (Internet Connectivity)

The T100MD+ and T100MX+ PLCs can be linked to the internet via a special
“emGateway” software supplied by the emWare Inc of Salt Lake City, USA.
emGateway runs on any Windows 95/98/NT PC. The M+ series PLC
incorporates the emMicro code licensed from emWare which allows a JAVA
applet to be easily developed so that the PLC’s internal data can be
accessed by any browser on the internet from literally anywhere in the world!

The emGateway acts as the middle man between the internet and the M+
PLCs. It uses predefined variable names in the PLC and through a JAVA
applet allows exchange of data between a JAVA-enabled internet browser
such as Netscape or Microsoft Internet Explorer 4.0 and above.

To allow greater flexibility in programming and for protection of internal data,
TBASIC does not expose existing internal system variables to the emGateway.
Instead, TBASIC creates 32 special system variables for the sole purpose of
interacting with emGateway. The user program can therefore control what
data is to be exposed or obtained from the internet. The data to be exposed
will be copied to the special em-variables and data obtained from the
internet can be used selectively by the control program.

Pre-defined Variable Names for emGateway

The following variables name are defined in the emMicro code
implemented by M+ series PLCs. These are the names to use when you write
the JAVA applet user interface.

TRiLOGI Version 4.1 PART TWO: Chapter 3 - Statement, Functions & Operators

II. 3-8

a) emInt1 to emInt16 : These are 16 bit unsigned integer variables
b) emLInt1 to emLInt16: These are 32-bit unsigned integer variables.
c) emStringA and emStringB: These two are byte array of 70

characters each, used mainly as strings variables.

These variables have a one to one correspondence with the following system
variables defined in TBASIC:

emMicro
(case sensitive)

TBASIC
(non case sensitive)

emInt1 to emInt16 EMINT[1] to EMINT[16]
emLInt1 to emLInt16 EMLINT[1] to EMLINT[16]

emStringA A$
emStringB B$

Chapter 4 - Programming Language Reference

II. 4-1

ABS(x)

Purpose : To return the absolute value of the numeric expression x

Examples : A = ABS(2*16-100)

Comments : A should contain the value 68.

ADC(n)

Purpose : To return the value from the Analog-To-Digital Converter channel #n.
n should be between 1 and 16.

Examples : A = ADC(2)

Comments : n may be a numeric expression which returns a value between 1 and
16. If it is out-of-range, a run-time error will be reported and the function
will be aborted.

TRiLOGI software is able to support up to 16 channels of 16-bit bipolar
ADC (which may has a range of between -32768 to 32767. The actual
number of ADC channels and the resolution will depend on the target
PLC. On the T100MX, all the A/D are normalized to 12-bit with a range of
between 0 and 4096

ASC(x$, n)

Purpose : To return the numeric value that is the ASCII code for the nth
character of the string x$. If x$ is a null string, ASC(x$,n) returns value
0. n may start from 1 up to the length of the string.

Examples : B = ASC("Test String",6)

Comments : B should contain the value 83 (which is ASCII value of 'S'). If n is less than 1
or greater than string length, ASC(ASC(x$, n)) returns a 0.

See Also : CHR$(n)CHR$(n)

CALL n

Purpose : To call another Custom Function CusFn #n as subroutine. When the
called function returns, execution will continue from the following
statement. n must be an integer constant between 1 and 128.

Examples : IF B > 5 THEN CALL 8 : ENDIF
See Also : RETURN

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-2

CHR$(n)

Purpose : To convert a number n into its corresponding ASCII character. n must
be a numeric constant (0 to 255)

Examples : C$ = "This is Message #" + CHR$(&H35)
Comments : C$ should contain: "This is Message #5", since CHR$(&H35) returns the

character '5'.

See Also : ASC()

CLRBIT v, n

Purpose : To clear the Bit #n of the integer variable v to '0'. n is an integer
constant or variable of value between 0 and 15. v may be any
integer variable or a system variable such as relay[n], output[n], etc.
If v is a 32-bit integer, CLRBITCLRBIT will only operate on the lower16 bits.

Following digital electronics convention, bit 0 refers to the least
significant bit (right most bit) and bit 15 the most significant bit (left
most bit) of the 16-bit integer variable. A quick way to find out the
bit position and index of an I/O variable is to open their I/O table and
check the “CH:BIT” column. Bit position beyond 9 are represented by
hexadecimal number A to F.

Examples : CLRBIT output[2],11

Comments : Output #28 will be turned OFF.
 (Output channel #2 bit #11 = Output #17 +11 = 28)

See Also : SETBIT, TESTBIT

* CLRIO labelname {* Applicable only to M+ PLC models}
* SETIO labelname
* TOGGLEIO labelname
* TESTIO (labelname)

Purpose : Manipulate the logic states of any input, output, relay, timer or
counter contact bit within a CusFn. The labelname refers to the label
names defined in the input, output, relay, timer or counter tables.

SETIO set a bit to ON, CLRIO clear the bit to OFF, and TOGGLEIO
flip the current logic state of that I/O bit. TESTIO function returns a 1
if the bit is ON and a 0 if the bit is OFF.

E.g. SETBIT alarm
IF TESTBIT(alarm) THEN … ELSE …ENDIF

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-3

Comments This function offers a more efficient way of manipulating the I/O bits
compared to the SETBIT and CLRBIT function. However, SETBIT and CLRBIT
functions has the advantage that they can use variables to indicate the
index and bit position of the bit to be affected, whereas the I/O bit that are
being affected by the commands here are fixed during compile time.

Note that output bit changed in custom function will only be
updated at the physical output at the end of the ladder logic scan
unless a “REFRESH” command is being executed.

See Also : SETBIT, CLRBIT, TESTBIT

* DELAY n {* Applicable only to M+ PLC models}

Purpose : To provide a time delay of n millisecond to the process.

Example : DELAY 100

Comments : Provide a 100 ms (0.1s) delay to the current custom function. It is
important to note that this is a “brute force” delay method and only to
be used with caution. When a DELAY function is executed the CPU
waits at the statement until the period specified by the “delay” is over.
This means that all the remaining ladder programs and other custom
functions will stop responding to changing input conditions, only system
services (serial input, countdown timers and host link commands etc) as
well as interrupt driven CusFns will work during the period of delay. This
may not be desirable if the rest of the process must respond to fast
changing inputs. For delays longer than 0.1s a much better way is to
invoke the regular PLC timer and use the timer contact to trigger
another custom function at the end of the delay.

For T100MD+ and T100MX+, the minimum delay provided by this
function is 10ms, and the resolution of the time delay is 10ms. This
means that if you execute DELAY 155 the actual delay will be
rounded to 160ms, whereas for DELAY 154 the actual delay will be
150ms.

FOR ... NEXT

Purpose : To execute a series of instructions for a specified number of times in a
loop.

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-4

Syntax :
FOR variable = = x TO y [STEP z]

NEXT

where variable may be any integer variable A to Z only and is used
as a counter. x, y and z are numeric expressions. STEP z is an
optional part of the statement.

x is the initial value of the counter, y is the final value of the counter.
Program lines following the FOR statement are executed until the
NEXT statement is encountered. Then the counter is incremented by
the amount specified by STEP. If STEP is not specified, the
increment is assumed to be 1.

A check is performed to see if the value of the counter is greater
than the final value y if STEP is positive (or smaller than the y if STEP
is negative). If it is not greater, the program branches back to the
statement after the FORFOR statement, and the process is repeated. If it
is greater, execution continues with the statement following the NEXT
statement. This is called a FOR-NEXT loop.

A run-time error will result if STEP is evaluated to be 0.

Examples : FOR I=1 TO 10
 FOR J = 100 to 1 STEP -10

 DM[I] = DM[J]
 NEXT

NEXT

Comments : FOR-NEXT loops may be nested; i.e. a FOR-NEXT loop may be placed within
the context of another FOR-NEXT loop. When loops are nested, each loop
must have a unique variable name as its counter. The NEXT statement for
the inside loop must appear before that for the outside loop. Each Loop
must have a separate NEXT statement to mark the end of the loop.

See Also : WHILE ... ENDWHILE

GetCtrSV (n)
GetTimerSV (n)

Purpose : Return the Set Value (S.V,)Set Value (S.V,) of the Counter #n or Timer #n.
n should be between 1 and 128.

Note : Although the present values (P.V.) of timers and counters #n can be
accessed directly as variables “TimerPV[n]” & “CtrPV[n]”, the Set
Values however can only be obtained by these two functions.

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-5

See Also : SetCtrSV, SetTimerSV

GETHIGH16(v)

Purpose : This function returns the upper 16-bit of a 32-bit integer variable v.
This can be used to break the value of a 32-bit integer data or
variable into two 16-bit values so that they can be saved to the
EEPROM or to the DM[n].

Examples : DM[1] = GetHIGH16(A)
save_EEP GetHIGH16(&H12345678), 10

See Also : SETHIGH16

GOTO @ n

Purpose : To branch unconditionally out of the normal program sequence to a
specified line with label @n within the present Custom Function.

The destination line must have a corresponding line label marked as
"@n", where n must be a constant within 0-255. Note that the label is
local only to the present CusFn. i.e. another CusFn may have a label
with the same n but the GOTO @n will only branch to the line label
within the same CusFn.

 Examples : @156 SETBIT 0,3
. . .

GOTO @156

Comments : An error message will appear during compilation if the destination label is
undefined.

HEX$(n)
* HEX$ (n, d) {* Applicable only to M+ PLC models}

Purpose : To return a string that represents the hexadecimal value of the
numeric argument n. If the second format is used then this function
will return a string of ‘d’ number of characters.

Examples : A$ = HEX$(1234)
B$ = HEX$(1234,7)

Comments : A$ will contain the string : "4D2" , B$ will contain the string “00004D2”.

See Also : HEXVAL(), STR$(), VAL()

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-6

HEXVAL(x$)

Purpose : To return the value of a hexadecimal number contained in the
argument x$.

Examples : B = HEXVAL("123")*100

Comments : B should contain the value 29100 (&H123 =291)

See Also : HEX$(), STR$(), VAL()

HSTIMER n

Purpose : To define PLC Timer #1 to #n as “High Speed Timers” (HST). A HST
counts down every 0.01s instead of every 0.1s for normal timer, and
their other properties are identical to normal timer. Those Timers
whose number are above n are not affected and remain ordinary
timers.

HSCDEF ch, fn_num, value

Purpose : Enable and set up parameters for the High Speed Counters channel
ch. These counters operate independently of the ladder logic scan
time and can capture high speed input pulses generated by
position encoders.

ch = channel number (1-8)
fn_num = Custom Function # to trigger when value is reached.
value = trigger when HSC reach this (32-bit) integer value.

If the PLC supports quadrature encoder inputs, then the HSC counter
variable HSCPV[ch] will increment/decrement according to
direction of rotation. When value is reached, the specified custom
function activates immediately.

Important : All High Speed Counters are disabled automatically when the PLC is
reset unless they are enabled by the HSCDEFHSCDEF statement. However, if
more than one HSCDEFHSCDEF for the same channel ch is executed, only
the last executed HSCDEFHSCDEF statement will take effect. Hence you
should put the next HSCDEF statement within the CusFn triggered by
the first HSCDEF. By chaining the HSCDEF statement from one
CusFn to another, you can control the motion of the machine using
the HSC value to execute a series of CusFn one by one. Within these
CusFn you can program what to do to control the motion. E.g.
changing the speed, putting on the brake, change direction of
motion, etc. You can use the SETBIT, CLRBIT for digital ON/OFF control
and setDAC, setPWM for proportional control.

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-7

Example : HSCPV[1] = 0
HSCDEF 1,19,-3310003
. . . .
SETLCD 1,1,STR$(HSCPV[1],6)

Comments : Enable High-Speed Counter #1 and make it activate function #19 when
the counter reaches -33,100,003. Present value of HSC#1 was cleared to
0 before activating it. Note that TRiLOGI Version 4.1 does not perform
simulation of the High Speed counter operation since there is no High
Speed Counter inputs on the simulator screen.

See Also : HSCOFF

HSCOFF ch

Purpose : Disable High Speed Counter #ch (ch = 1 to 8)

 If you no longer need the high speed counter, it should be disabled in
order not to waste the CPU’s time to service the interrupt generated by
the change of state at the HSC input..

IF .. THEN .. ELSE .. ENDIF

Purpose : To make a decision regarding program flow based on the result
returned by an expression.

Syntax : IF expression [THEN]

[ELSE]

ENDIF

If the result of the expression is non-zero (logical true), the block of
program lines between the THEN and the ELSE statements will be
executed. If the result of the expression is zero (false), the block
between the IF and ELSE will be ignored, and the block between
the ELSE and ENDIF statements will be executed instead.

If there is no ELSE statement, and if the result of the expression is
false, the block of program lines between the THEN and the ENDIF
statement will be ignored, but execution will continue right after the
ENDIF statement.

Nesting of IF statementNesting of IF statement

Statement blocks within the IF..THEN..ELSE statement may contain other
IF..THEN..ELSE blocks (nesting). Note that each IF statement must be ended with the

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-8

ENDIF statement. Otherwise an error message "IF without ENDIF" will be reported
during compilation.

Testing Equality: Special comparison operators may be used in the expression of
the IF statement. Only integer expression may be compared. For comparison of
strings, please refer to the "STRCMP(A$, B$)" function.

Equal =
Not Equal <>
Greater than >
Less than <
Greater than or Equal to >=
Less than or Equal to <=

Examples : IF A >= B*5-20*C OR C=20
 B = B-1

ELSE
B = B*3

ENDIF
Comments : A few comparison expressions may be linked with logical-AND (AND

statement) or logical-OR (OR statement) operator as shown in the
above examples.

INCOMM(ch)

Purpose : To return a single 8-bit binary data obtained from comm. channel
ch.

ch must be a numeric constant between 1 and 8. The actual target
hardware determines the valid port #. This function returns -1 if
there is no data waiting at serial port.

Example : FOR I=1 to 100
 DM[I] = INCOMM(2):
 IF DM[I]<0 RETURN :ENDIF
NEXT

Comments : Usually the PLC buffers the serial data arriving at its COMM port so that
the program does not need to continuously check the COMM port for
data. When the program is ready to process the data it can use the
FOR..NEXT loop shown in the above example to read in all the data in
the COMM buffer until it encounters a -1, which indicates that the buffer
is empty.

Note: INCOMM is now supported on all COMM ports of T100MD1616+INCOMM is now supported on all COMM ports of T100MD1616+
and T100MX+ families of PLCs.and T100MX+ families of PLCs.

See Also : OUTCOMM, INPUT$(), PRINT #

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-9

INPUT$(ch)

Purpose : To return a string obtained from communication port ch.
ch must be a numeric constant between 1 and 8. The actual target
hardware determines the valid port #. This function returns f0 if there
is no valid string waiting at serial port.

Example : D$ = INPUT$(2)

Comments : A Carriage Return (CR) or ASCII code 13 marks the end of the input string
from the communication port. The returned string however will exclude
the CR character. In TRiLOGI simulator, the user will be prompted to
enter the string in a pop-up window.

See Also : INCOMM(), PRINT #, OUTCOMM

INTRDEF ch, fn_num, edge

Purpose : Enable Interrupt Input channel ch.
ch = channel number (1-8)
fn_num = Custom Function number to execute when interrupt pin

changes according to the defined edge. This is the
Interrupt Service Routine ISR.

edge = Positive number means rising edge-triggered.
0 or negative number means falling-edge triggered.

See Also : INTROFF

INTROFF ch

Purpose: Disable Interrupt Input channel ch.

See Also : INTRDEF

LEN(x$)

Purpose : To return the number of characters in x$.
Examples : L = LEN("This is a test string"+CHR$(13))

Comments : L = 22 because blanks and non-printing characters are counted.

LET

Purpose : To assign the value of an expression to a variable

Syntax : [LETLET] variable = expression

Examples : LET D = 11
A$ = "Welcome to TBASIC"

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-10

Comments : LET statement is optional: i.e. the equal sign is sufficient when assigning
an expression to a variable name. The variable type on both sides of the
equal side must be the same. i.e. string variable may not be assigned to
a numeric expression and vice-versa.

Important : a) When assigning a 16-bit variable to a 32-bit integer, only the
lower 16 bits of the 32-bit integer will be assigned. Hence the
programmer must take special care if the 32-bit number is out
of the range of a 16-bit number (which is between -32768 to
32767).

b) If a negative 16-bit number is assigned to 32-bit integer
variable, then the sign bit will be extended to 32 bits.

e.g. DM[1] = -123.
A = DM[1]

The 16-bit hexadecimal value of -123 is &HFF85, but A will be
assigned the hexadecimal value &HFFFFFF85. Their decimal
representation are however the same.

LOAD_EEP(addr)

Purpose : To return a 16-bit integer value saved in the EEPROM by the
SAVE_EEP statement.

addr - EEPROM address (1-2000) in TRiLOGI. Actual PLC may have
less EEPROM space. Please refer to your PLC’s reference
manual for the upper limit.

Examples : relay[1] = LOAD_EEP(10): A = LOAD_EEP(2)

See Also : SAVE_EEP

LSHIFT i, n

Purpose : To shift 1 bit to the left the integer variable i which must be either an
integer variable, a DM[n] or a system variable such as relay[n],
output[n], etc.

LSHIFT instruction permits more than one variable to be chained
together before performing a bit shift. The parameter n indicates the
number of channels to be chained starting from i upward. n =1 if
only one variable is involved.

Examples : LSHIFT relay[2],3
Comments : The relay channels #2,#3, and #4 (which represent relays number #17

to #64) are chained together in the following manner:

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-11

15 0 15 0 15 0

Relay[2]Relay[3]Relay[4]

LSHIFT

Bits are shifted from the lower channel towards the upper channel.
Bit #15 of Relay[2] will be shifted into Bit #0 of Relay[3] and so on. Bit
#15 of the highest channel Relay[4] will be lost.

See Also : RSHIFT

MID$(x$, n, m)

Purpose : This function returns a sub-string of m characters from x$, beginning
with the nth character.
x$ - any string expression, variable or constant.
n - any numeric expression producing a result of between 1 to 255
m - any numeric expression producing a result of between 0 to

255.

Examples : A$ = MID$("Welcome to TBASIC",4,7)

Comments : A$ should contain the string :"come to".

NETCMD$(ch, x$)

Purpose : This function sends a multi-point host link command string specified in
the x$ via serial port #ch to another M-series or H-series PLC. It will
then wait for a specified amount of time for a response string from
the other PLC and this response string is then returned.

ch - This refer to the communication port #. Please refer to the target
PLC for details.

x$ - contains a valid host link command in multi-point format,
excluding the Frame Check Sequence (FCS) and the terminator
characters (* and CR). NETCMD$ function will automatically
compute the FCS and append to the end of x$ and together with
the terminator characters will be sent to the other PLC via COMM
#ch.

Note: 1) If the target PLC does not respond then this function returns an
empty string.

2) This function checks the FCS of the response string, and if the FCS is
wrong it indicates an error in the serial reception and it will return an
empty string.

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-12

Examples : A$ = NETCMD$(3, "@05RI00")

Comments : To read the Input channel #0 of the PLC with ID = 05 connected to
COMM #3 of this PLC. The response string will be assigned to A$.

Special : If the last character of x$ is a “~” character, NETCMD$ will send out the
string without the ‘~’ character, followed by a Carriage Return (&H0D). It
will not append the FCS and ‘*’ to the outgoing string, it will also NOT
check the response string for FCS. This allow NETCMD$ to be used to
interface to third-party ASCII devices with different command/response
formats. E.g. A$ = NETCMD$(3, “Hello World~”). The string “Hello World”
will be sent out of serial COMM port #3. A$ will receive the full returned
string without applying any FCS check on the return string.

OUTCOMM n, x

Purpose : This statement can be used to send an 8-bit byte of data ' x ' via
Comm port #n. This command is added because PRINT #n
command cannot be used to send out CHR$(0). Zero is treated as
the end of a string in TBASIC and will be ignored if you use PRINT #n
statement to send out CHR$(0).

Examples : OUTCOMM 2,225

PAUSE

Purpose: To set a breakpoint for executing the CusFn. This is used mainly for
debugging a CusFn. By Inserting a PAUSE statement at the place of
interest, you can suspend the program execution when PAUSE is
encountered, after which you may examine the values of the relevant
variables. You can continue to perform on-line monitoring of the PLC
that has been paused. Program execution can also be continued by
pressing the <P> key during Simulation or On-line Monitoring.

PIDdef ch, lmt, P, I, D,

Purpose: To set up the parameters for a Proportional, Integral and Derivative (PID)
Controller function. The function PIDcompute() will make use of the
parameters defined here for the corresponding channel ch.

ch = channel number (1-16)
lmt = Maximum (saturation) limit for the computed result.
P = Proportional Gain (KP)

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-13

 I = Integral Gain (KI)
D = Differential Gain (KD)

Transfer Function of a PID Controller are defined as follow:

All four parameters: lmt, P, I & D can be either 16 or 32-bit integer
constants or integer variables. For the lmt term, the computed
controller output value by the PIDcompute() function is not allowed
beyond the + lmt value (i.e. lmt represents the saturation point of the
computed controller output). PIDcompute() function implements
"Integrator anti-windup" feature, which will avoid integrating the error
signal when output is already saturated .

ImportantImportant: When this statement is run, the integral and differential terms of channel
ch is set to zero. Hence PIDdef should be run only once during
initialization and not repeatedly executed. Otherwise the PIDcompute(
) function will not run properly because of the loss of integral and
differential data.

See Also : PIDcompute()

PIDcompute(ch, E)

Purpose: This function computes the output for the PID compensator/ controller,
using the P,I, and D Gains defined in the PIDdef statement for the
same channel ch. The integral and differential values are stored within
the channel's internal data space and will be automatically used by the
PID computation routine. The PIDcompute() function uses the lmt (max.
limit) term of PIDdef statement to limit the results of its computation. If
the absolute value of the computed result is greater then "lmt", then the
result will be set equal to "lmt" for +ve number and to "-lmt" for negative
value. When this happens, the integral term will not accumulate the
current error to prevent an "integrator windup" which is very undesirable
for the system.

ch = channel number (1-16)

G(s) = KP +
KI
s

 + KD s

 KP = Proportional Gain =
1

Porportional Band

KI = Integral Gain =
1

Integral Time Constant

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-14

Err = Closed-loop Error.
(i.e. Set point value - Feedback Value)

The controller may obtain feedback from ADC, High Speed Counters,
PULSEFREQUENCY or other means. The obtained result is then
scaled and subtracted from the desired (set point) value to get "Err ". All
computations are performed in 32-bit integers and the function returns
a 32-bit integer which can be assigned to any variable. Any scaling for
actual output (DAC or PWM) will be computed by the user within the
same CusFn and sent to the output.

Example :

PLC-PID
Controller

Plant

A/D#2

Sensor

PWM#4

E.g. Implementing Closed-loop Digital Control with
PID computation function

10,000

E = 10000 - ADC(2)*20
 A = PIDcompute(5,E)

setPWM 4, (A + 8000)/100

Comments: The set point value is 10000 units, the feedback value is read from ADC
channel #2 and then multiplied by 20 to convert (scale) it to the same unit
as the parameter to be controlled. PID computation channel #5 (assume
somewhere in the program a PIDdef for channel #5 has been executed
before) is then used to compute the desired controller output value using the
error signal (= set point - feedback value ADC(2) x 20).

The desired output (stored in variable A) is then added to the offset value
8000 and then scaled down by a factor of 100 before being sent out
physically via PWM Channel #4.

Important:Important: In actual implementation, use a clock pulse such as 0.1s, 0.5s or 1s etc
to periodically activate the PIDcompute() function so that digital
control in discrete-time can be implemented. The PID sampling period
depends on the time constant of the system. For very slow response
processes such as the cooking temperature of a large body of water,
the time constant is very large and even slower than 1.0 seconds clock
may be sufficient. Do not use unnecessarily short sampling time
because it increases computation time and slows down overall
performance of the system.

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-15

PRINT# n x$; y; z.... Statement

Purpose : To send a string of ASCII characters formed by its parameter list (x$; y;
z) out of the PLC to other devices via the communication channel
#n.

Parameters: n must be an integer constant of between 1 and 8. Integer value in
the parameter list (y; z..) will be converted into the equivalent ASCII
representation. Each parameter must be separated by the
semicolon(;).

Action : The ASCII string is first formed by the PRINT statement using all the
arguments in the argument list and the completed string is then sent
out of the serial channel #n at one go. The PRINT statement
automatically sends a Carriage Return (CR-ASCII 13) out of the
specified serial port after sending out the last character in the
argument list. the PRINT statement that ends with a semi-colon “;", will
not send the CR character.

If you have a long string to send than you can use ";" to break the
whole command into several lines, with each line ending with a ";"
except the last lines.

Examples : PRINT #2 "The value of A+B = ";A+B;
 PRINT #2 "Units"

Comments : IF A=5 and B=100, the string "The value of A+B = 105 Units" and a CR
character will be sent out via the comm. port #2. In TRiLOGI simulation
mode, the ASCII string will be displayed on a pop-up window to simulate
PRINT action.

See Also : INPUT$()

PMON ch
PMOFF ch

Purpose: PMON enables Pulse Measurement Function at channel #ch, whereas
PMOFF disables the channel. After enabling the channel, you may
then use the functions PULSEWIDTH(ch) and PULSEPERIOD(ch) to
obtain the width and period of the input pulses arriving at the pulse
measurement input pin. You must call PMON once during initialization
to enable the pulse measurement hardware. Otherwise the two
functions will only return 0. You should avoid repeatedly executing
PMON function, otherwise the pulse measurement hardware will be
reset repeatedly as well, and accurate measurement cannot be
obtained.

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-16

If you no longer need to measure the pulse-width or period for a
particular channel which has been PMON before, you should disable it
using PMOFF to save CPU time because pulse measurement is interrupt
driven and consumes CPU time.

Example: PMON 1 : PMOFF 5

See Also : PULSEWIDTH(), PUSEPERIOD()

PULSEFREQUENCY(ch)
PULSEPERIOD(ch)
PULSEWIDTH(ch)

Purpose: Return in Hz the frequency of the last input pulse; Return in
microseconds the width and period of the input pulses arriving at
channel ch of the pulse-measurement pin. The pulse-measurement
channel ch must have been enabled by the PMON statement
already. If the pulses stop coming in then PULSEFREQUENCY will return
a zero while the other two functions will saturate at a certain
maximum value (for T100MD+ it is equivalent to about 3.28 seconds)

ch = channel # (1-8)

Example: A = PULSEWIDTH(1)

See Also : PMON, PMOFF

* READMODBUS (ch, DeviceID, address) {* Applicable only to M+ PLC models}

Purpose : Automatically query a MODBUS ASCII device and return the 16-bit
register data using the MODBUS ASCII protocol. The communication
baud rate is the default baud rate of that COMM unless it has been
changed by the SETBAUD command.

ch - PLC COMM port number (1-8)
DeviceID - device ID of the MODBUS device (1 to 255)
address - zero-offset address of the holding register in the

MODBUS device.

Example : relay [3] = READMODBUS (3, 5, 101)

Comments : The relay will contain the 16-bit data obtained from the MODBUS device
with ID = 05 and from register offset address 101 (in MODBUS term this
refer to the #40102 holding register) . Reading it into the relay[]
channel allows bit level manipulation by ladder logic. It can of course
also be read into any data memory. The command automatically
checks the response string received from the slave device for the

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-17

correct LRC and the slave address. The status of the operation can be
checked in the user program by executing the STATUS(2) function,
which will return a ‘0’ if there is any error or if the slave device iswhich will return a ‘0’ if there is any error or if the slave device is
not present.not present.

See Also : WRITEMODBUS, STATUS(2), NETCMD$()

REFRESH

Purpose : To Force immediate refresh of the physical inputs and outputs. This
can be used after executing a SETBIT or CLRBIT command on an
output[n] variable and to force the physical output to change
immediately (subject to I/O refresh time delay). Otherwise, the physical
output will only be updated during the normal refresh cycle which will
occur only at the end of every ladder logic scan.

This is useful for situations which require immediately action such as
shutting down a load during an emergency. This command is likely to
be used mainly by an Interrupt CusFn.

REM (or ') Statement

Purpose : To allow explanatory remarks to be inserted in a program. The text
after the REM statement until the end of the line will be ignored by the
compiler. An abbreviation for the REM statement is the apostrophe ('
)

Examples : REM Waiting for the right time to turn on
' This is also a remark line.

RESET

Purpose : To perform a software reset of the PLC from within a CusFn. All the
variables will be reset to zero or inactive and all the hardware outputs
such as DAC and PWM will be turned OFF. The effect is the same as
the Master Reset [MaRST] function in the ladder logic. The first scan bit
(1st.Scan) will also be turned ON for one scan time.

However, if the program is stuck at some dead loop (such as WHILE,
FOR-NEXT) in a CusFn, then [MaRST] would not be executed since the
ladder program would not have a chance to scan the ladder rung
containing the [MaRST] function. If this command is used by an
interrupt service function, then it is possible to get the system out of
the dead loop since the interrupt function can interrupt the dead loop
and reset the PLC.

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-18

RETURN

Purpose : Unconditionally ends the execution of the current CusFn and return to
the caller (which is either the ladder program or another CusFn which
has executed a CALL command).

Use of the RETURN statement is optional if there is no condi tional
ending required. After executing the last statement the CusFn will
return to the caller automatically.

See Also : CALL

RSHIFT i,n Statement

Purpose : To shift the integer variable i 1 bit to the right. i must be either an
integer variable, a DM[n] or a system variable such as relay[n],
output[n], etc.

RSHIFT instruction permits more than one variable to be chai ned
together before performing a bit shift. The parameter n indicate the
number of channels to be chained starting from i upward. n =1 if
only one variable is involved.

Examples : RSHIFT relay[2],3

Comments : The relay channels #2,#3, and #4 (which represent relays number #17
to #64) are chained together in the following manner:

15 0 15 0 15 0

Relay[2]Relay[3]Relay[4]

RSHIFT

Bits are shifted from the upper channel towards the lower channel. Bit #0
of Relay[4] will be shifted into Bit #15 of Relay[3] and so on. Bit #0 of the
lowest channel Relay[2] will be lost.

See Also : LSHIFTLSHIFT

SAVE_EEP data, addr

Purpose : To store a 16-bit integer data in the user’s definable EEPROM address
addr for non-volatile storage. If you attempt to save a 32-bit data,
only the lower 16-bit will be saved. To save the entire 32-bit data,
save the upper 16-bit using the GETHIGH16() function and the
lower 16-bit directly in two separate locations.

data - may be a 16-bit integer constant or variable.
addr - EEPROM address (1-2000 in TRiLOGI). Actual PLC may have

less EEPROM space. Please refer to your PLC’s reference
manual for the upper limit.

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-19

Example : save_EEP relay[1],100

See Also : LOAD_EEP(), GETHIGH16(), SETHIGH16

SETBAUD ch, baud_no

Purpose : To set the communication “Baud Rate” of the PLC’s serial channel
#ch. All the M series PLC serial ports are defined as 8 data bit, 1
stop bit, and no parity and each has been preset to a certain
default baud rate, which the PLC will assume every time its powers
up. The baud rate may or may not be changed, depends on the
PLC model. Please refer to the PLC’s User’s manual for the baud_no
that represent the baud rate of each serial channel and the range
of baud_no each of these serial ports may assume.

Caution should be taken when programming the baud rate of the
“Host link” port because if a wrong baud value is set the host PC
may not be able to communicate with it. If this happens suspend
the PLC using its hardware switch and reset the PLC and re-load the
program with correct setting.

Examples : SETBAUD 3,3 ‘ Set serial port #3 to 9600.

SETBIT v,n

Purpose : To set the bit #n of the integer variable v to '1'. n is an integer
constant or variable of value between 0 and 15. v may be any
integer variable or a system variable such as relay[n], output[n], etc.
However, if v is a 32-bit integer, SETBIT will only operate on the
lower 16 bits.

Following digital electronics convention, bit 0 refers to the least
significant bit (rightmost bit) and bit 15 the most significant bit.
(leftmost bit) of the 16-bit integer variable. A quick way to find out
the bit position and index of an I/O variable is to open their I/O table
and check the “CH:BIT” column. Bit position beyond 9 are
represented by hexadecimal number A to F.

Examples : SETBIT output[2],11

Comments : output #28 will be turned ON.
 (Output channel #2 bit #11 = Output #17 +11 = 28)

See Also : CLRBIT, TESTBIT()

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-20

SetCtrSV n, value
SetTimerSV n, value

Purpose : Change the Set Value (S.V,)Set Value (S.V,) of the Counter #n or Timer #n to
value. This statement to allow the user to modify the S.V. of the PLC
internal timers and counters without changing the source program.
A TBASIC function can be written easily to make use of a few digital
or analog inputs to modify the SV of these internals timers/counters.
The new S.V is also stored in the program EEPROM and hence is
non-volatile. (See sample program “set_TCSV.PC4”)

n should be between 1 and 128.
value should be between 0 and 9999.

Examples : SetCtrSV 10,1234
SetTimerSV 3, GetTimerSV(3)+10

Comments : Counter #10 will assume a S.V. of 1234..
: S.V of Timer #3 will be increased by 10.

Related : The present values (P.V.) of timers and counters can be read or
written directly as integer variables “TimerPV[n]” & “CtrPV[n]”. But the
Set Values can only be changed by these two functions.

See Also : GetCtrSV(), GetTimerSV()

SETDAC n, x Statement

Purpose : To set channel #n of the PLC's Digital-to-Analog Converter (DAC) with
the 16-bit integer result of the expression x. n must range between 1
and 16. Once set, the DAC channel will latch the set value until the
next SETDAC statement on the same channel is executed.

Examples : SETDAC 5,A+B*16

Comments : DAC channel #5 will be set with the value of A+B*16. A run- time error
will result if n is less than 1 or is greater than 16. The actual number of
DAC channels depends on the PLC model in use.

SETHIGH16 v, data

Purpose : To assign the upper 16-bit of a 32-bit integer variable v to data. The
lower 16-bit of v is unaffected. This can be used to construct the
value of a 32-bit integer data using two 16-bit data obtained from
either the EEPROM or the DM[n].

Examples : A = DM[2]
SETHIGH16 A,DM[1]

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-21

See Also : GETHIGH16()

SETLED n, m, value

Purpose : To display the integer value on the PLC's built-in 7-segment LED
displays, starting from the nth digit and occupying m number of
digits. Leading zeros will be added to the left of the display if value
occupies less digit than that specified by m.

However, if m is less than 1 (e.g. m = 0) then value is treated as a
single 8-bit ASCII character to be displayed rather than as a numeric
value. Special symbols may be displayed on the LED panel if the
LED driver is able to display the corresponding ASCII character.

n must be between 1 to 16. The digit position is counted from left to
right. i.e. the leftmost LED digit is digit #1. TRiLOGI supports up to 16
LED digits. The actual number of LED on the PLC may vary from 0 to
16, in this case only the available digits will be effective. Value may
be a 16- or 32-bit integer number. Once set, the LED display will
latch the set value until the next SETLED statement on the same digit
is executed. On the TRiLOGI simulator, the result of the SETLED is
displayed together with the Special Variables screen, which may be
viewed by pressing the <V> key while in the simulation mode.

 Examples : SETLED 5,4,89

Comments : LED digit #5 to #8 (counting from left to right) displays 0089.

SETLCD n, offset, x$

Purpose : To display the string expression x$ on Line #n on built-in
alphanumeric Liquid Crystal Display (LCD) or compatible Vacuum
Fluorescent Display (VFD). x$ may be formed by concatenation of
various strings using the ‘+’ operator (e.g. “Temp
=”+STR$(A,3)+CHR$(223)+” C”). Integers must be converted to
string using the STR$() or HEX$() function to be accepted by this
function.

Special case: if n =0 the string x$ will be sent to the LCD’s
“Instruction-Register” which allows hardware-specific LCD
configuration such as clear screen, set cursor ON/OFF etc.
(please refer to LCD’s manual for details)

The parameter offset = 1 to 40 allows you to send the string x$
beginning from the offsetth position. Only the characters position to
be occupied by x$ will be written to the display, other characters of
the display remain unaffected.

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-22

The PLC may support LCD display modules capable of displaying
up to 4 lines x 40 characters per line of alphanumeric characters. If
the display has fewer lines or fewer characters per line, the
unavailable lines or characters will be ignored by the PLC. Once
set, the LCD display will latch the set value until the next SETLCD
statement on the same line and same offset is executed. On the
TRiLOGI simulator, the result of the SETLCD is displayed together with
the Special Variables view screen.

Examples : SETLCD 1,1,"This is a 1x20 LCD Display"

SETPWM n, x, y

Purpose : To set channel #n of the PLC's Pulse-Width Modulation (PWM) output
with duty cycle represented by (x/100 %) and at a frequency (in Hz)
given by parameter y.

n must range between 1 and 8. Once set, the PWM channel will
latch the set value until the next SETPWM statement on the same
channel is executed. x should range between 0 and 10000. If x is
more than 10000, the duty cycle will be set to 100%

Examples : SETPWM 1,4995,2000

Comments : PWM channel #1 will be set to operate at 49.95% duty cycle for PWM
that can resolve up to 0.01%. The actual resolution will depend on the
PLC's PWM resolution. The PWM frequency is set to 2000 Hz or nearest.
For a 10-bit PWM the best resolution is about 1/1024 = 0.1 %. This means
that in the above example the PWM will be rounded to 50%. Please
check the target PLC's manual for the actual resolution.

* SETPASSWORD string {* Applicable only to M+ PLC models}

Purpose : When this statement is executed, the PLC will not properly respond
to any host link commands sent to it except the command
“PWxxxx…xx” which must contains the same string “xxxx…xx” (not
more than 19 characters) as defined in the SETPASSWORD
command. All other commands will receive a “PWER” response
indicating a “password error” state. Once the correct password has
been accepted the PLC will work as normal and respond to all
host link commands. Execution of “PW” host link command without
any string will put the password lock back in force to prevent
unauthorized access.

Example : SETPASSWORD “I love TRiLOGI”

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-23

When using TL41.EXE the editor will automatically prompt you to
enter the password string if it encounters a PLC which has been
password-locked. Note that the password is case sensitive.
Password locked PLC cannot be accessed by older version of
TRiLOGI.

Comments : This feature is mainly used to protect an unattended PLC which is linked
to an auto-answer modem. Without password protection anybody can
dial in with a TL41.EXE and have full control of the PLC, which may be a
serious security problem. When TL41.EXE disconnects the modem it
automatically executes the “PW” command to re-arm the password lock
so that there will not be unauthorized access by subsequent callers.
Within the PLC software you may also use a timer to periodically re-arm
the PLC with this command for maximum protection. You can also use
different passwords for different time of the day or a set of rotating
passwords to provide greater security.

STATUS (n)

Purpose : Return the status of various system operations.
Function Returned value
STATUS (1) 0 - Normal power on reset

1 - Reset by Watch Dog Timer (WDT)
STATUS (2) 0 - READMODBUS or WRITEMODBUS failure

1 - READMODBUS or WRITEMODBUS successful

STATUS(8) PLC’s ID address stored in EEPROM for host
communication

Examples : IF STATUS(2) ‘ MODBUS READ/WRITE OK
 …

ELSE ‘ MODBUS READ/WRITE failed
 …

 ENDIF

STEPCOUNT (ch)

Purpose : While the stepper motor controller is sending out pulses, this function
can be used to monitor the number of stepper pulses sent to the
Stepper Motor Channel #ch since the execution of the last
“STEPMOVE” command. Hence this function returns the relative
number of step moves.

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-24

This function can also be used to “measure” the physical size of a
part if we use the stepper motor to drive a sensor and use the
STEPSTOP command and the interrupt input to halt the stepper
motor when the edges are detected. The physical size is then
computed using the number of steps the stepper motor travels from
one edge to another edge. The center position can be easily
determined using such data too.

STEPCOUNTABS (ch) { Applicable only to M+ PLC models}

Purpose : Returns the absolute position of the stepper motor #ch. This
function returns a zero if a STEPHOME command had just been
executed and the stepper has not been moved since.

* STEPHOME ch {* Applicable only to M+ PLC models}

Purpose : Set the current position counter of stepper # ch to zero. This
indicates a new “Home” position of that stepper motor. This
command should be executed only when the stepper has
reached a particular position to be regarded as the home
position. All STEPMOVEABS command executed subsequently will
be relative to the defined home position.

STEPSPEED ch, pps, acc

Purpose : To set the speed pps and acceleration/retardation acc parameters
for the PLC's stepper motor motion controller (pulse-generator)
channel #ch.

ch should return a value of between 1 and 8. Speed pps is based on
no. of pulse per second (pps) output by the pulse generator. The
acceleration acc determines the total number of steps taken to
reach full acceleration from standstill and the number of steps from
full speed to a complete stop. The stepper motor calculates and
performs the speed trajectory according to these parameters when
the command STEPMOVE is executed.

STEPSPEED command should be executed at least once before
executing any STEPMOVE command to control the pulse generation.
The defined parameters will be remembered until another
STEPSPEED statement operating on the same stepper channel is
executed again.

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-25

Examples : STEPSPEED 2,2000,20

Comments : The PLC's Stepper motor controller channel #2 is configured to send out
pulses at 2000 pulses per second when STEPMOVE instruction is executed.
It follows a linear acceleration trajectory which takes 20 pulses to reach
the full speed of 2000 pps. This is equivalent to an acceleration of

a =
V
2S

2

 =
2000
2x20

2

 = 100,000 pulse/s2

STEPMOVE ch, count, r

Purpose : To activate the PLC's built-in stepper motor pulse generator channel
#ch to output count number of pulses. The speed and acceleration
parameters for the motion is defined by the STEPSPEED statement on
the same channel # ch, which must be executed at least once
before the first STEPMOVE command is issued. After executing the
STEPMOVE command the PLC hardware will take over the actual
pulse generation operation. The user’s program will continue to
execute even though the pulse generation is not yet completed.
The internal relay #r can be used to signal to the other parts of the
ladder program regarding the status of pulse generation, as follow:

When STEPMOVE command is first executed, the internal relay #r will
be cleared before the first pulse is sent. After the completion of the
movement (i.e. when all the pulses have already been sent), the
relay #r will be set.

ch should be between 1 and 8. Count is a 32-bit integer number
which allows you to program the stepper motor to move from 1 to
+231 .(i.e. 2,147,483,647) steps. Count can also be an integer
variable A-Z. However, If you use a 16-bit variable such as DM[n] for
count then the range of movement can only be between 1 to
32,767.

Speed (pps) Stepper pulse output speed trajectory

If the total number of
steps to move is less
than 2 times
accsteps, Desired
speed will not be
reached.

Desired speed
(pps)

No. of Steps

minimum
pps

accsteps accstepsTotal steps - 2xaccsteps

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-26

Pulse generation can be interrupted by issuing a STEPSTOP
command in another CusFn, which may occur say, in cases when
the hardware hits a limit-switch and must stop the motor
immediately.

Important: When a stepper channel is already activated (i.e. mid-way through
its pulse generation) repeat execution of STEPMOVE command on
the same channel will be ignored by the PLC. Re-execution of the
STEPMOVE command on this channel can only take effect after the
channel’s pulsing operation has been completed by itself or
aborted by the STEPSTOP command.

When in TRiLOGI simulation mode, execution of the STEPMOVE
command will bring up a pop-up window which displays all the
parameters of the motion path.

Examples :: STEPMOVE 1,5000,10

Comments : Send out 5000 pulses on channel 1 and at the end of motion turn ON
relay #10.

See Also : STEPMOVEABS, STEPCOUNT(), STEPCOUNTABS(),
STEPSPEED, STEPSTOP, STEPHOME

STEPMOVEABS ch, position, r { Applicable only to M+ PLC models}

Purpose : This new command allows you to move the stepper motor # ch to
an absolute position indicated by the position parameter. At the
end of the move the relay # r will be turned ON. Position can be
between -231 to +231 .(i.e. about ±2 x 109). The absolute position is
calculated with respect to the last move from the “HOME” position.
(The HOME position is set when the STEPHOME command is
executed). The speed and acceleration profile are determined by
the STEPSPEED command as in the original command set.

This command automatically computes the number of pulses and
direction required to move the stepper motor to the new position
with respect to the current location. The current location can be
determined at any time by the STEPCOUNTABS() function.

Once STEPMOVEABS command is executed, re-execution of this
command or the STEPMOVE command will have no effect until the
entire motion is completed or aborted by the STEPSTOP command.

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-27

See Also : STEPCOUNTABS, STEPHOME , STEPSPEED, STEPMOVE,
STEPSTOP, STEPCOUNT

STEPSTOP ch

Purpose : To abort a stepper channel #ch which is in motion due to
exceptional circumstances.

Examples : STEPSTOP 2

Important : Motion aborted by STEPSTOP command will not trigger the end-
motion relay #r specified in the STEPMOVE command.

See Also : STEPCOUNT(), STEPSPEED, STEPMOVE

STR$(n)
 STR$ (n, d) { Applicable only to M+ PLC models}

Purpose : To return a string that represents the decimal value of the numeric
argument n. If the second format is used then this function will return
a string of ‘d’ number of characters.

Examples : A$ = STR$(-1234)
B$ = STR$(-1234,7)

Comments : A$ will contain the string : "-1234" , B$ will contain the string “-001234”

STRCMP(A$, B$)

Purpose : Perform a comparison between its two string expressions A$ and B$.
IF A$ and B$ are equals, STRCMP will return a 0, if A$ is of lower
order (in ASCII table order) than B$ the function will return a negative
value. Otherwise it returns a positive value.

Examples : IF STRCMP$(A$, B$)=0 THEN
STEPMOVE 1,1000,1

ENDIF

Comments : IF A$ and B$ are the same then turn on the stepper motor #1.

STRUPR$(A$)

Purpose : To return a string which is an all-uppercase copy of A$.

Examples : B$ = STRUPR$(A$)

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-28

C$ = STRUPR$(C$)

Comments : The second example shows how to convert a string to upper case.

STRLWR$(A$)

Purpose : To return a string which is an all-lowercase copy of A$.

Examples : B$ = STRLWR$(A$)+Z$
C$ = STRLWR$(C$)

Comments : The second example shows how to convert a string to all lower case.

TESTBIT (v, n)

Purpose : To return the logic state of bit #n of the variable v. The function
returns 1 if the bit is ‘1’, otherwise it returns 0.

n is an integer of value between 0 and 15. v may be any integer
variable, however, if v is a 32-bit integer TESTBIT will only test the
lower significant 16 bits. A quick way to find out the bit position and
index of an I/O variable is to open their I/O table and check the
“CH:BIT” column. Bit position beyond 9 are represented by
hexadecimal number A to F.

Examples : TESTBIT (Input[2],3)

Comments : To test whether input #20 is ON
(Input channel #2 bit #3 = Input 17 +3 = 20)

See Also : SETBIT, CLRBIT

WHILE expression ENDWHILE

Purpose : To execute a series of statements in a loop as long as a given
condition is true.

Syntax : WHILE expression
. . .
. . .

ENDWHILE

When WHILE statement is encountered, the expression will be
evaluated and if the result is true, the statements following the
expression will be executed until the ENDWHILE statement.
Thereafter, execution branches back to the WHILE statement and

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-29

the expression is evaluated again. The loop statements will be
executed repeatedly until the expression becomes false.

Warning: Be careful that the WHILE loop will not be an endless loop
as the PLC will appear to freeze up, being trapped in an endless-
loop execution. TRiLOGI simulator attempts to detect this situation by
giving a warning message if a loop is executed for an unduly large
number of loops.

Examples : WHILE S = 1
 IF INPUT[1] & &H0002: S = 0 : ENDWHILE
ENDWHILE

Comments : Execution will only be terminated when input #2 is ON. WHILE loops
may be nested; i.e. a WHILE loop may be placed within the context of
another WHILE loop. Each Loop must have a separate ENDWHILE
statement to mark the end of the loop.

* WRITEMODBUS ch, DeviceID, address, data
{* Applicable only to M+ PLC models}

Purpose : Automatically write the 16-bit data to a MODBUS ASCII device using
the MODBUS ASCII protocol. The communication baud rate is the
default baud rate of that COMM port unless it has been changed
by the SETBAUD command.

ch - PLC COMM port number (1-8)
DeviceID - Device ID of the MODBUS device (1 to 255)
address - Zero-offset address of the holding register in the

MODBUS device.
data - the 16-bit data to be written to the MODBUS device

Example : WRITEMODBUS 3, 8, 1000, 1234

Comments : The data 1234 will be written to the MODBUS device with ID=08 at the
holding register offset address 1000 (in MODBUS convention this refer to
holding register #41001). The command automatically checks the
response string received from the slave device for the correct LRC and
the slave address. The status of the operation can be checked in the
user program by executing the STATUS(2) function, which will return awhich will return a
‘0’ if there is any error or if the slave device is not present.‘0’ if there is any error or if the slave device is not present.

See Also : READMODBUS(), STATUS(2), NETCMD$()

TRiLOGI Version 4.1 PART TWO: Chapter 4 Programming Language Reference

II. 4-30

VAL(x$)

Purpose : To return a value of a decimal number contained in the argument
x$.

Examples : B = VAL("123")*100

Comments : B should contain the value 12300

Chapter 5 - Application Programming Examples

II. 5-1

1. Important Notes to Programmers of TRiLOGI Version 4.1

a) Understanding Ladder Logic Execution Process

Like all industrial PLCs, the CPU of the M-series PLC first checks the logic states
of the physical inputs and copies them into memory. During the ladder logic
scan the actual logic states of the physical Inputs (except for interrupt inputs)
are ignored by the PLC. The CPU uses the memory copy of the inputs to
execute the ladder program.

The CPU executes its ladder logic program starting from the top rung of the
program to the bottom rung. When the CPU reaches a ladder rung that
activates a {CusFn} or {δCusF} that custom function will be executed. The
CPU will only continue to scan the rest of the ladder program when the current
custom function ends normally. Hence the order in which a ladder rung is
placed within a ladder program can have an effect on the behavior of the
program.

Output bits which are changed as a result of the program execution will only
be updated to the physical physical outputs at the end of the ladder logic scan. One
scan time is defined as the time it takes to execute the 3 steps (read physical
inputs, execute program, update physical outputs). The CPU repeats these 3
steps continuously all the time, known as “Ladder Logic Scanning”.

Hence, it is important to note that the variables INPUT[n] s and OUTPUT[n] in
TBASIC are not the actual physical I/Os of the PLC, but only a memory
representation of the actual I/Os which will be updated only during the I/O
update cycles. The logic states of physical inputs are copied into the INPUT[n]
variables during input scan and the physical outputs are set to the logic states
contained in the OUTPUT[n] variables during output updates.

Therefore, one potential error that traditional BASIC programmers tend to
commit is to attempt to poll for a change in the variable INPUT[n] within TBASIC
such as the following:

WHILE INPUT[1] = 0
 ..
ENDWHILE

This will result in an endless loop since the value of the variable INPUT[1] will
never change during execution of the custom function regardless of the actual
logic states of physical input #1 to #8. The only way to force upon a physical
I/O update is to use the REFRESH command, but it is not a good practice for
ladder logic programming to update physical I/Os in the midst of a program

TRiLOGI Version 4.1 PART TWO: Chapter 5 Application Examples

II. 5-2

execution. The REFRESH command is meant more for forcing an immediate
output to be turned ON or OFF during time-critical situations.

Hence it is important to allow a ladder logic program to finish its scan so that
the physical I/Os can be updated. You should never hog the CPU within a
particular custom function as this will mean the rest of the ladder program
don’t have a chance to be executed in a timely manner.

b) The Difference Between {CusFn} and {δδCusF}

It is very important to understand the difference between the two formats of the
custom functions once you understand how the ladder logic scanning process
works as described in the last section. If you use the {CusFn}{CusFn}, the custom
function will be executed EVERY SCAN of the ladder logic program as long
as its execution condition is ON.

On the other hand, the {{δδCusF}CusF} (known as the differentiated format) is
executed only ONCEONCE when its execution condition goes from OFF to ON. The
execution condition must go OFF and then ON again for the function to be
executed again. It is not difficult to see that the differentiated format is used far
more frequently than the other one since most custom functions involve
arithmetic and when a condition is ON you most likely want the computation to
be performed ONCE and not repeatedly in every scan of the ladder logic.
You can easily understand the difference between the two formats if you run
the following sample program:

[δCusf]
Fn_#1Clk1.0s

Fn_#2
Clk1.0s

 A = A+1
 Custom Function #1

{Cusfn}

{δCusf}

 B = B+1
 Custom Function #2

Run the program in simulator and press the <V> key to view the changes in
the variables A and B. You will see that B is incremented by one every second,

TRiLOGI Version 4.1 PART TWO: Chapter 5 Application Examples

II. 5-3

while A is incremented wildly for 0.5s and then stops for 0.5s. Try it! It can be
very educational!

If you want to periodically check the status of an analog input or the real time
clock, you should use a clock pulse (0.1s, 1.0s etc as shown in the example)
and connect to a {{δδCusF}.CusF}. Connecting to non-differentiated version would
mean checking thousands of times for half the period and not at all for the
other half period -- certainly not the intended outcome.

c) Timers Contact Updating Process

All the timers' contacts of the PLC, like the inputs and outputs, are updated
simultaneously at the beginning of every ladder logic scan and not at the rung
which contains the (TIM) coil. So if you are using self-reset timer, please note
that if a timer time out its contact will be ON from the beginning of the ladder
logic rung until the rung that contains the self-reset circuit. Thereafter the timer
contact will be OPEN since the coil has been self-reset.

Hence please note that you should place the self-reset timer rung after all the
ladder rungs that utilize the said timer contact. This allows those ladder rungs
which use the timer contact to have a chance of being executed before the
self-resetting rung clears the timer.

[δCusf]

Out5T1

 T1T1

(Out)

(TIM)

A pulse will be sent to Out 5 periodically determined by
the Set Value of timer T1

2. Display Alphanumeric Messages on built-in LCD Display
M-series PLC such as the T100MD-1616 supports built-in LCD display port which
allows low cost connection to industry standard LCD display module. For such
PLC programming of the LCD display is via the SETLCD statement supported
by TBASIC language.

TRiLOGI Version 4.1 PART TWO: Chapter 5 Application Examples

II. 5-4

Assignment:
Every 1 second, display a message as follow:

Where xx depends on reading of A/D #1 which is returned by function
ADC(1).

Full scale A/D is 4096.
A/D range (0 to 4096) ⇒Temperature 0 to 50oC

[δCusf]

Fn_#1Clk:1.0s

 setLCD 1,1, “Temp. Check” ‘ Display at at Column 1, Line1
 setLCD 2,1, “Sitting Rm = “+ STR$(ADC(1)*50/4096, 2)
 +CHR$(223)+”C”

 Custom Function #1

Comments:
Every one second, the special bit Clk:1.0s closes and activates Function #1. Within
the Custom Function #1, ADC(1) reads the A/D converter #1 and converts it into
degrees. The integer value is then converted into a two-digit string using the STR$
function and concatenated to the rest of the text string for display using the SETLCD
command.

Simulation of the display string to built-in LCD is supported on TRiLOGI Version
4.0x and above. When in Simulation mode, press <V> key to view the Special
Variables and the messages will appear in an LCD Simulation window.

3. Display Alphanumeric Messages on Serial LCD Display MDS100

MDS100 is a 4 line x 20 characters LCD display connected to the PLC’s RS485
port (serial port Comm#3).

Assignment:

Every 1 second, display a message as follow:

 Temp. Check
 Sitt ing Rm = xx oC.

TRiLOGI Version 4.1 PART TWO: Chapter 5 Application Examples

II. 5-5

Where xx depends on reading of A/D #1 that is returned by function ADC(1).

Full scale A/D is 4096.
A/D range (0 to 4096) ⇒Temperature 0 to 50oC

[δCusf]

Fn_#1Clk:1.0s

PRINT #3 “?P0101” ‘put cursor at Column 1, Line1
PRINT #3 “Temperature Check”

PRINT #3 “?P0102” ‘ put cursor at Column 1, Line 2
PRINT #3 “Sitting Rm = “; ADC(1)*50/4096; CHR$(223);”C”

 Custom Function #1

Comments:
Every one second, the special bit Clk:1.0s closes and activates Function #1. Within
the Custom Function #1, ADC(1) reads the A/D converter #1 and converts into
degrees. PRINT #3 displays the string. The statement PRINT #3 “?Pxxyy” is a
command to put the cursor at column xx, row yy of the display.

Simulation of the display string to MDS100 is supported on TRiLOGI Version 4.03
and above. When in Simulation mode, press <V> key to view the Special Variables
and the messages will appear in a MDS100 Simulation window. You can select
whether data sent to Comm3 is meant for the MDS100 or generic RS485 device by
the “MDS100 Simulation” option under the “Simulate” pull-down menu.

4. Setting Timer/Counter Set Values (S.V.) Using LCD Display

If you have an LCD display, then you can use two push-buttons inputs to
change the Set Values (SV) of any selected timers or counters with visual
feedback.

Assignment:
• Press push-button “Increase” increment the SV of timer #1 by 0.5s. The

upper limit for timer #1 SV is 10s (SV <=100)
• Press push-button “Decrease” decrement the SV of timer #1 by 0.5s

 Temperature Check
 Sitt ing Rm = xx oC.

TRiLOGI Version 4.1 PART TWO: Chapter 5 Application Examples

II. 5-6

• Press “test” button turns ON output #1 for a duration given by timer #1 and
then turns it OFF.

Tim1

Out1

[δCusf]
Fn_#101Increase

Fn_#102
Decrease

Out1Test

Tim1

 setTimerSV 1, getTimerSV(1)-5 ‘Decrease the current SV by 5
 SETLCD 1,1,”T1-SV=”+STR$(getTimerSV(1),4)

 Custom Function #102

 Z = getTimerSV(1)
 IF Z > 100 RETURN: ENDIF ‘ MAXIMUM 10s
 setTimerSV 1, Z+5 ‘Increase the current SV by 5 (0.5s)
 SETLCD 1,1,”T1-SV=”+STR$(getTimerSV(1),4)

 Custom Function #101

[δCusf]

[δCusf]

(OUT)

(TIM)

Comments:

The getTimerSV(1) function returns the current set value of the Timer #1. This
value is read into variable Z in CusFn #101 but used directly in CusFn #102 for
changing the Set Value of Timer #1. The setTimerSV statement uses the value of
its second argument to update Timer #1’s SV accordingly.

Note that changes to the set value SV will be updated in the program EEPROM
memory and is non-volatile. However, EEPROM has a typical life-span of about
100,000 to 1,000,000 erase-write cycle. Exceeding this limit will “wear out” the
EEPROM and resulting in a read error when the PLC operates. Hence, you should
NEVER write a program which excessively changes the set value of the timer or
counter (e.g. put it in a non-differentiated form of [CusFn] which executes every
scan of the ladder program and continuously changes the content of the EEPROM).

TRiLOGI Version 4.1 PART TWO: Chapter 5 Application Examples

II. 5-7

5. Using a Potentiometer As An Analog Timer

A cheap potentiometer can be connected to the PLC A/D input and provide
a user-adjustable “knob” as an analog Set-point input device. A scale can
be drawn around the potentiometer to provide visual indication of set point
value.

Assignment:

• A potentiometer is connected to A/D #5. Use it to provide a timing range
of 0 to 10.00 seconds.

• Pressing the “test” input turns ON output #1 for a duration determined by
the potentiometer reading, after that turns output #1 OFF.

Tim1

Out1

Fn_#10
Test

Out1Test

Tim1

 HSTIMER 1 ‘ Define Timer #1 as High Speed Timer (0.01s base)

 TimerPV[1] = ADC(1)*1000/4096 ‘ Set the timer running with value
‘ proportional to A/D value.

 Custom Function #10

[δCusf]

(OUT)

(TIM)

Comments:

To take full advantage of the resolution of the A/D converter, the timing range of 0-
10 seconds is more finely divided when timer is defined as high-speed timer using
the HSTIMER command. The time base is now 0.01s. This means that for maximum
value of 10.00s, the timer should count down from 1000.

The next statement in CusFn #10 computes the ratio of the A/D input with respective
to its full scale value of 4096 and multiplies it to the maximum timing value of 1000.
I.e., if the potentiometer wiper is at half way, the A/D reading will be around 2048,
the computation will results in a timing value = 2048*1000/4096 = 500, or 5.00
second. Note that TRiLOGI does not support floating point arithmetic, hence the
multiplication must be carried out before the division. Otherwise, if you compute
2048/4096 *1000, the result of the integer division of 2048/4096 = 0 and the whole
expression yields a ‘0’, which is clearly wrong!

TRiLOGI Version 4.1 PART TWO: Chapter 5 Application Examples

II. 5-8

The timer #1’s Present Value (P.V) register is loaded with this number, which will
start the timer count-down. In the next logic rung, the timer coil connected to the
latched “OUT1” is necessary to prevent the timer from resetting itself. But It will
not overwrite the PV with its own Set Value (SV), which will not be used at all in this
case. This is because the previous ladder program has already started the timer with
a value determined by the position of the potentiometer “knob”.

6. Motion Control of Stepper Motor

The M-series PLC can generate pulses to feed to stepper motor driver. The
maximum speed, acceleration, deceleration and total number of pulses to
generate are definable using TBASIC. Both absolute positioning commands
and relative move commands are supported.

Assignment:
• A “DEFHOME” input define the current location as home position.
• Press the “START” input begin Indexing the stepper motor to position at

1500, -2000, 4500 and 9000 steps with respect to the HOME position.
Pause for 1 seconds at each position. Return to home at the end of the
cycle.

• Maximum speed = 5000 pps, Acceleration=100 steps to full speed.

TRiLOGI Version 4.1 PART TWO: Chapter 5 Application Examples

II. 5-9

Fn_#10DEFHOME

 DM[1] = 1500: DM[2]= -2000: DM[3]=4500 ‘Store index position
 DM[4]=9000: DM[5]=0
 N = 1
 STEPSPEED 1, 5000,100 ‘Stepper1: Max 5000pps, Acc:100
 STEPMOVEABS 1, DM[N], 5 ‘ Move to position stored in DM[1]
 ‘ at the end, turns ON relay 5

 STEPHOME(1) ‘Define the HOME position for stepper 1

 Custom Function #10

Fn_#11START

 Custom Function #11

[δCusf]

[δCusf]

 N = N+1
 IF N <= 5
 STEPMOVEABS 1, DM[N], 5 ‘ Move to next position in DM[N]
 ENDIF ‘ at the end, turns ON relay 5

 Custom Function #11 Custom Function #20

T1secRLY5
(TIM)

Fn_#20T1sec
[δCusf]

Comments:

RLY5 is the label for internal relay #5. T1sec is a timer with preset value of 10.
At the end of the pulse generation, RLY5 will be activated. Ladder logic senses
RLY5 and executes the T1sec timer to cause a 1 second delay, after which custom
function #20 is executed which triggers another STEPMOVEABS command and the
process repeats for the other four indexing positions.

7. Activate Events at Scheduled Date and Time

All M-series PLCs have built-in Real Time Clock which keeps track of Date and
Time and can be used to activate events at scheduled time.

Assignment:

• Every day turn on output #1 at 19:00.
• Turn OFF output #1 at 7:00
• On 1st Jan 2000 at 12:00 turn ON output #5
• On the same day at 18:00 turn OFF output #5

TRiLOGI Version 4.1 PART TWO: Chapter 5 Application Examples

II. 5-10

(TIM)
Tim30sTim30s

IF TIME[1]=19 AND TIME[2]=0 ‘ Hour hand at 19
 SETBIT OUTPUT[1],0 ‘ Minute hand at 00
ELSE IF TIME[1]=7 AND TIME[2]=0
 CLRBIT OUTPUT[1],0
ENDIF

IF DATE[1]=2000 AND DATE[2]=1 ‘ Jan, year 2000
 IF DATE[3]=1
 IF TIME[1]=12 SETBIT OUTPUT[1],4: ENDIF
 ELSE IF TIME[1]=18 CLRBIT OUTPUT[1],4: ENDIF
 ENDIF
ENDIF

Custom Function #1

[δCusf]
Fn_#1Tim30s

Comments:

1. Tim30s should have a Set Value = 300 and it activates Function #1 every 30
seconds. It is not necessary to check the clock too often as checking consume
CPU execution cycles.

2. Output #1 is bit #0 of the variable output[1]. The statement SETBIT
output[1],0 turns ON output #1. You can find the channel and bit-position
number on the 3rd column of the Output definition table in TRiLOGI Ver. 4.03
and above.

3. Actually it may not be necessary to check the minute hand since when the RTC
turns from 18:59 to 19:00, the output will be turned ON as long as TIME[1]=19.
Only when TIME[1]=7, then output #1 needs to be changed.

8. HVAC (Heating, Ventilation and Air-Conditioning) Control

Assignment:

• Read desired temperature setting (S) from a potentiometer connected to
A/D #5.

• Read current air temperature (T) from sensor attached to A/D #1 (T)
• Turn ON cold air-conditioner (output #1)

if T > S by more than 1.5 oC.

TRiLOGI Version 4.1 PART TWO: Chapter 5 Application Examples

II. 5-11

• Turn ON hot air-conditioner if (output #2)
if S > T by more than 1.5 oC.

• Turn OFF both hot and cold air-conditioner if T is within + 1.5 oC of S.
• Display both Set Point and Actual Temperature.

Parameters

Full scale A/D is 4096.
Range of Set Point: A/D #5 = 0 ⇒ 16.0 oC

A/D #5 =4096 ⇒ 30.0 oC

Range of Sensor: ADC#1 =0 ⇒ -10.0 oC
ADC#1 = 4096 ⇒ 50.0 oC

[δCusf]

Fn_#20Clk:1.0s

S = ADC(5)*(300-160)/4096 +160 ‘Convert to oC x 10
T = ADC(1)*(500+100)/4096 -100 ‘Convert to oC x 10

IF S -T > 15 : SETBIT OUTPUT[1],0 ‘Cold Airconditioning ON
ELSE CLRBIT OUTPUT[1],0 : ENDIF ‘ if T is hotter by 1.5 oC

IF S-T < -15 SETBIT OUTPUT[1],1 ‘Heater ON
ELSE CLRBIT OUTPUT[1],1: ENDIF ‘ if T is colder by 1.5 oC

PRINT #3 “?P0101” : PRINT #3 “Set Point :”; S/10; “ C”
PRINT #3 “?P0102” : PRINT #3 “Actual :”; T/10; “ C”

 Custom Function #20

Comments:

Since TRiLOGI Version 4.x does not support floating point computation, in order
to handle decimal value (±1.5o C) in this application we use a unit integer to
represent 0.1 quantity. All temperature readings are x10 times. Hence 16.0oC is
represented by 160, -10.0oC is represented by -100. This method, known as fixed-
point computation is quite commonly used in industrial control program..

TRiLOGI Version 4.1 PART TWO: Chapter 5 Application Examples

II. 5-12

9. Closed-Loop PID Control of Heating Process

PID
Controller

Burner

A/D#1

Sensor

D/A #1

E.g. Implementing Closed-loop Digital Control with
PID computation function

A/D#5

PID Controller Transfer Function:

G(s) = KP +
KI

s
 + KD s

 KP = Proportional Gain = 1
Proportional Band

KI = Integral Gain =
1

Integral Time Constant

Assignment:

• Read desired set-point temperature from a potentiometer connected to
A/D #5 (S) with temperature range between 50 oC - 200 oC

• Measure the process temperature from a thermocouple + signal
conditioner attached to A/D #1(T)

• Compute the Error = S - T. Apply Proportional + Integral + Derivative
(P.I.D) algorithm to compute output X.

• Apply output X to Digital-to-Analog converter D/A #1 to control a variable
position valve that feed fuel to the flame.

• Sample and compute every 1 second.

Full scale A/D range is 4096.

Range of Set Point: A/D #5 = 0 ⇒ 50 oC
A/D #5 =4096 ⇒ 200 oC

Range of Sensor: ADC#1 =0 ⇒ 0 oC
ADC#1 = 4096 ⇒ 300 oC

TRiLOGI Version 4.1 PART TWO: Chapter 5 Application Examples

II. 5-13

[δCusf]

Fn_#5Def_PID

S = ADC(5) * (200-50)/4096 + 50 ‘Convert to oC
T = ADC(1) * (300 - 0)/4096

X = PIDcompute(1, S - T)/100 + 2048 ‘ X can vary within + 50%
setDAC 1, X ‘ Write to analog D/A output #1

Custom Function #6

P = 500: I = 50: D = 0
PIDDEF 1, 2048*100 ,P,I,D ‘ Use PID Engine #1, maximum limit

‘ = +/- 50% of full scale

Custom Function

[δCusf]

Fn_#6Clk1.0s

Comments:

1. We use two decimal places to represent the gains KP, KI and KD. Each integer
unit represents 0.01. Proportional gain KP = 5 is represented by variable P =
500. Likewise, Integral gains KI = 0.5 is represented by I = 50 and Differential
gains = 0 means Differential term is not used (P.I. only). The integrator limits
of + 2048 for the PIDDEF statement must be multiplied by 100 to be put on the
same scale as the P,I and D parameters.

Note that since TRiLOGI does not support floating point arithmetic, the
multiplication must be carried out before the division. Otherwise, if you
compute 150/4096 *ADC(5), the result of the integer division of 150/4096 = 0
and the whole expression yields a ‘0’, which is clearly wrong!

2. The value returned by PIDcompute() function is then divided by 100 to get the
real value of controller output. PIDcompute() returns a signed value which
can vary from -limit to + limit. We choose the 50% D/A output (4096/2 = 2048)
as the mean control point so that negative values from PIDcompute() means
D/A output will be < 2048, positive values means D/A output will be > 2048.

	Cover
	Copyright Notice
	Table of Contents
	- Chapter 1: Version 3.3 vs Version 4.1
	- Chapter 2: Using TBASIC Editor & Simulator
	- Chapter 3: Statements, Functions, Data & Operators
	- Chapter 4: Programming Language Reference
	 -Chapter 5: Application Programming Examples

