
Introduction
This User Guide and Technical Reference was designed to help you get the best results from your
InduSoft Web Studio™ software. This document provides technical information and step-by-step
instructions for all the tasks you need to create Web-enabled HMI/SCADA programs.

Who should read this

This User Guide and Technical Reference is a comprehensive document designed to provide useful
information for both novice and advanced users of IWS.

New Users: This publication uses a step-by-step, hands-on approach to the project
development process. Be sure to read the introductory chapters describing the product's
features and development environment.

Experienced Users: This publication offers advanced instructions, tips, and troubleshooting
information to help you get the most out of your projects.

Note: We assume you are familiar with working in a Windows environment, and we do not
attempt to explain Windows navigation, file management, and so forth. If you are unfamiliar with
any of these procedures, we recommend using the Windows Help feature (Start > Help) or
consulting your Microsoft Windows documentation.

Contents

The information in this document is organized into the following chapters:

This chapter: Describes the purpose, content, and organization of the User Guide and Technical
Reference. In addition, this chapter contains the following information:

Explains the formatting, mouse, and Windows conventions used

Lists other publications providing information about IWS

Explains how to contact a technical support representative

About This Software: Provides a high-level overview of the product's uses, features, and
functions.

Installing and Uninstalling: Provides step-by-step instructions for installing, licensing,
starting, and uninstalling InduSoft Web Studio and CEView.

Navigating the Development Environment: Describes the IWS interface (or development
environment), and explains some basic skills and techniques you must understand before
creating a new project.

How the Software Works: Describes the internal structure of IWS, including how data flows
through the runtime modules and how these modules are executed.

Creating and Configuring a New Project: Provides step-by-step instructions for creating
and configuring a new project.

Introduction
This User Guide and Technical Reference was designed to help you get the best results from your
InduSoft Web Studio™ software. This document provides technical information and step-by-step
instructions for all the tasks you need to create Web-enabled HMI/SCADA programs.

Who should read this

This User Guide and Technical Reference is a comprehensive document designed to provide useful
information for both novice and advanced users of IWS.

New Users: This publication uses a step-by-step, hands-on approach to the project
development process. Be sure to read the introductory chapters describing the product's
features and development environment.

Experienced Users: This publication offers advanced instructions, tips, and troubleshooting
information to help you get the most out of your projects.

Note: We assume you are familiar with working in a Windows environment, and we do not
attempt to explain Windows navigation, file management, and so forth. If you are unfamiliar with
any of these procedures, we recommend using the Windows Help feature (Start > Help) or
consulting your Microsoft Windows documentation.

Contents

The information in this document is organized into the following chapters:

This chapter: Describes the purpose, content, and organization of the User Guide and Technical
Reference. In addition, this chapter contains the following information:

Explains the formatting, mouse, and Windows conventions used

Lists other publications providing information about IWS

Explains how to contact a technical support representative

About This Software: Provides a high-level overview of the product's uses, features, and
functions.

Installing and Uninstalling: Provides step-by-step instructions for installing, licensing,
starting, and uninstalling InduSoft Web Studio and CEView.

Navigating the Development Environment: Describes the IWS interface (or development
environment), and explains some basic skills and techniques you must understand before
creating a new project.

How the Software Works: Describes the internal structure of IWS, including how data flows
through the runtime modules and how these modules are executed.

Creating and Configuring a New Project: Provides step-by-step instructions for creating
and configuring a new project.

Working with Tags: Explains basic concepts about the product database, tag types (arrays,
classes, and pointers), tag values and parameters. Following the concepts discussion, this
chapter provides instructions for creating and editing tags for your projects.

Creating Screens and Graphics: Explains how to use the different IWS development tools to
create your project screens and graphics.

Configuring Background Tasks: Explains how to create and configure the different IWS task
worksheets for your projects.

Event Settings: Describes the logging and event-retrieval features.

Communicating with Other Devices: Describes how to configure your project to read from
and write to a device's registers. The information includes instructions for configuring drivers
and OPC, TCP/IP, and DDE communication.

Configuring a Security System: Explains how to set-up and manage a security system for
your projects.

Testing and Debugging Your Project: Discusses how to test and debug projects using tools
such as the Database Spy and Output windows. This chapter includes a list of possible error
messages and methods for correcting those errors.

Configuring a Web Solution: Explains how configure and run your projects on the Web.

Downloading to a Remote Device: Explains how to download, monitor, and debug projects
from a remote runtime workstation.

Using the Translation Tool: Explains how to use the Translation Tool to translate the text in
your projects from one language to another.

Database Interface: Explains how to connect IWS to compatible databases.

Scripting Languages: Describes IWS's built-in scripting language, as well as the support for
VBScript in IWS.

Troubleshooting and FAQs: Provides instructions for verifying projects, describes some
common development errors, and explains what to do if you need to contact a support
representative.

Related documentation

You may want to review the following manuals in addition to this Technical Reference:

Getting Started Manual: Provides basic information about InduSoft Web Studio, including a
systematic tutorial that allows you to develop a single project and become familiar with the
product in a short time.

Tutorial Manual: Describes how to build an project, step-by-step, with the main product
features. You can use this document as a self-training manual.

Drivers User Guides: Explain how to configure individual direct communication drivers,
according to their unique protocol characteristics. One customized user guide is included with
each driver.

Note: All manuals are located in the Documentation folder on the IWS installation CD. IWS
installs the Drivers User Guides in the\Drv folder in the program directory. You also can access

technical information from the Help menu.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Conventions used in this
documentation
This documentation uses standardized formatting and terminology to make it easier for all users to
understand.

Text conventions

This documentation uses special text formatting to help you quickly identify certain items:

Titles, labels, new terms, and messages are indicated using italic text (for example, Object
Properties).

File names, screen text, and text you must enter are indicated using monospace text (for
example, D:\Setup.exe).

Buttons, menu options, and keyboard keys are indicated using a bold typeface (for example,
File menu).

In addition, this documentation segregates some text into Tip, Note, and Caution boxes:

Tips provide useful information to save development time or to improve the project
performance.

Notes provide extra information that may make it easier to understand the nearby text, usually
the text just before the note.

Cautions provide information necessary to prevent errors that can cause problems when
running the project, and may result in damage.

Mouse and selection conventions

Because most PCs used for project development run a version of Microsoft Windows with a mouse,
this documentation assumes you are using a mouse. Generally, a PC mouse is configured for right-
handed use, so that the left mouse button is the primary button and the right mouse button is the
secondary button.

This documentation uses the following mouse and selection conventions:

Click and Select both mean to click once on an item with the left mouse button. In general,
you click buttons and you select from menus and lists.

Double-click means to quickly click twice on an item with the left mouse button.

Right-click means to click once on an item with the right mouse button.

Select also means you should use your pointing device to highlight or specify an item on the
computer screen. Selecting an item with a touchscreen is usually the same as selecting with a
mouse, except that you use your finger to touch (select) a screen object or section. To select
items with your keyboard, you typically use the Tab key to move around options, the Enter key

to open menus, and the Alt key with a letter key to select an object that has an underlined
letter.

Drag means to press down the appropriate mouse button and move the mouse before releasing
the button. Usually an outline of the item will move with the mouse cursor.

Windows conventions

This documentation uses the following Windows conventions:

dialoges (or dialogs) are windows that allow you to configure settings and enter information.

Text boxes are areas in dialogs where you can type text.

Radio buttons are white circles in which a black dot appears or disappears when you click on
the button. Typically, the dot indicates the option or function is enabled (selected). No dot
indicates the option or function is disabled (not selected).

Check boxes are white squares in which a check () appears or disappears when you
click on it with the cursor. Typically, a check indicates the option or function is enabled
(selected). No check indicates the option or function is disabled (not selected).

Buttons are icons in boxes appear "pressed" when you click on them.

Lists are panes (white boxes) in windows or dialogs containing two or more selectable options.

Combo boxes have arrows that, when clicked, show part or all of an otherwise concealed list.

Dockable windows are windows that you can drag to an edge of the interface and merge with
that edge.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

About This Application

InduSoft Web Studio (or simply IWS or Studio) is a powerful, fully integrated software program that
enables you to design and build feature-rich HMI (Human-Machine Interface) or SCADA (Supervisory
Control and Data Acquisition) projects for:

Data acquisition

Local supervisory stations

Remote supervisory stations

Data concentrators on distributed processes

Data communications with corporate systems

Product Overview

Product Features

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

About This Application >

Product Overview
InduSoft Web Studio projects run on microcomputers connected in real-time to machines or
processors through programmable controllers, remote I/O devices, and other data-acquisition
equipment.

These projects consist of animated operator-interface screens, configurable PLC (programmable logic
controller) drivers and other controllable I/O devices, a project tags database, and optional modules
such as alarm monitors, logic, trend charts, recipes, schedulers, and a security system. IWS projects
interface with industrial I/O systems and other Windows applications in the runtime environment
using the following protocols:

ODBC (Open Database Connectivity)

DDE (Dynamic Data Exchange)

NetDDE (Network Dynamic Data Exchange)

OPC (Open Connectivity)

TCP/IP (Transmission Control Protocol/Internet Protocol)

After developing a project, you can run it on your development workstation or download the project
to a runtime workstation (using a serial or TCP/IP connection) and run it using InduSoft Web Studio
or CEView runtime software. The workstation processes scan data from connected devices according
to parameters defined in the project and then react to, display, store and upload the data.

The product consists of two parts:

The development system software runs on a desktop, laptop, or industrial PC running a
currently supported Microsoft Windows desktop or server operating system.

The runtime system software runs on an operator interface workstation running a currently
supported Microsoft Windows desktop operating system or Windows Embedded.

Note: The runtime client for Windows Embedded operating systems (CEView) is often pre-
loaded on the HMI. If necessary, you can update the CEView version of the development
system software by downloading the current version to the HMI.

Parent topic: About This Application
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

About This Application >

Product Features

The InduSoft Web Studio product provides the following features:

Integrated Windows development environment with toolbars, dialogs, and menus:

Drop-down (pop-up) menus, which you activate by right-clicking on any area of the
development environment (Options vary according to context.)

Customizable fly-over toolbars

Tasks, objects, and controls organized in a tree-view explorer

Full-featured objects and animations (the ability to modify object properties, execute
commands, or inset values to tags used to build screens on the fly at runtime):

Configurable objects such as buttons, rectangles, ellipse, polygons, lines, and text

Object animations such as bar graphs, color, resizing, position, hide/unhide, rotation,
command, hyperlink, and text input/output

On-line and historical alarm list displays

On-line and historical trending

Alignment and distribution tools

Background bitmap layer creation and editing

Graphics importation

ActiveX object containers

On-line remote management and configuration

Microsoft DNA architecture compliance, with full OPC and XML support

Web interface enabled, which exports project screens to a "thin" client through the
Internet/intranet and by exchanging data on-line through the TCP/IP protocol

Symbols library with more than 100 pre-made objects, such as pushbuttons, meters, sliders,
switches, text and numeric displays, LED-style indicators, pipes, bumps, icons, vehicles, valves,
frames, motors, gauges, and common controls

Debugging tools:

Database Spy window to monitor/force tag values and execute functions

LogWin module to record OPC, DDE, and TCP/IP transactions, modules activation, trace
tags, and so forth

Cross-referencing to locate tags throughout the project

On-line system and network diagnostics

Powerful and flexible tag database (Boolean, Integer, Real, and String tags), array tags,
classes, and indirect tag-pointers

Open architecture with API exchanges and tag values with external software

Translation editor, which enables you to translate a project into several different languages, and
switch between them while the runtime system is online

TCP/IP client and server modules to exchange tag values and configure redundancy systems

More than 200 direct communication drivers for different devices (such as PLC) from several
manufacturers; such as Allen-Bradley, Siemens, GE-Fanuc, as well as standard protocols such
as MODBUS RTU/ASCII, DeviceNet, Profibus, Interbus, and so forth

Full integration with PC-based control packages (imports tags database) such as ISaGRAF,
SteepleChase, Think&Do, OpenControl, FP Control and ASAP.

OPC Server and OPC Client with integrated OPC Browser

Screen and object password-protected runtime security (256 levels)

Logical expressions and a scripting language with more than 200 functions

Recipe and Report (ASCII, UNICODE, and RTF formats) builders integrated into the product

Event scheduler based on date, time, or data condition (100ms resolution)

Multi-layer project, which means modular worksheets and screens can be merged easily to
other projects

Dial-Up functions to trigger, monitor, and hang-up a dial-up connection with the RAS Server of
remote stations

Functions to send e-mail from IWS (or CEView)

Real-time project documentation

Screen resolution converter

Note: IWS provides different product types for each level of project responsibility. However, IWS
does not support some features in certain product types (such as CEView). You can review the
TargetVersions.pdf document on the IWS installation CD for detailed information about these

the limitations of each product-type limitations.

Parent topic: About This Application
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

About This Application >

Understanding the Internal
Structure and Data Flow

IWS runtime environment runs on an operator interface workstation (running Windows
2K/XP/Vista/CE) and consists of the following modules or threads (program elements that can
execute independently of other program elements):

Background Task (a supervisory task): Executes other internal tasks (IWS worksheets). For
example, the Background task executes scripts configured in the Math and Scheduler
worksheets and manages parameters configured in the Alarm, Recipe, Report, and Trend
worksheets.

Database Spy (debugging tool):

Executes functions and/or expressions for testing purposes

Reads data (such as tag values) from the Tags database

Writes data (such as tag values) to the Tagsdatabase

DDE Client: Manages DDE communication with a DDE Server (local or remote), according to
parameters configured in the DDE Client worksheets.

DDE Server: Manages DDE communication with a DDE Client (local or remote).

LogWin (debugging tool): Traces messages generated from other modules/tasks.

Driver Runtime: Manages the read/write commands configured in the Driver worksheets.

OPC Client: Manages OPC communication with an OPC Server (local or remote), according to
parameters configured in the OPC Client worksheets.

OPC Server: Manages OPC communication with an OPC Client (local or remote).

ODBC Runtime: Manages ODBC data communication with any SQL relational database,
according to parameters configured in the ODBC worksheets.

TCP/IP Client: Manages TCP/IP communication with a remote TCP/IP Server module (from
IWS), according to parameters configured in the TCP/IP Client worksheets.

TCP/IP Server: Manages TCP/IP communication messages with a remote TCP/IP Client
module (from IWS).

Viewer: Executes all scripts (On Open, On While, On Close, Command, Hyperlink, and so forth)
configured for project screens and updates the screen objects.

None of the preceding runtime modules exchange data directly with another module or task. Instead,
runtime modules send data to and receive data from the Tags database, which is the "heart" of IWS.

The Tags database manages the flow of data between modules. In addition, the Tags database stores
all tag values and the status of all properties associated with each tag (such as alarm conditioning,
timestamp, quality, and so forth).

Note: Tags are variables (such as communication points in field equipment, calculation results,

alarm points, and so forth) that are used in screens and worksheets. For detailed information
about tags, tag values, and tag properties see Working with Tags.

Figure 1. Data Flow

Each IWS module contains a virtual table of the tags that are relevant for that module at the current
time. The Tags database uses this table to determine which information must be updated in each
module. For example, the Viewer contains a virtual table that lists all tags configured for all of the
open project screens. If a tag value changes, the Tags database sends a message to the Viewer, and
then the Viewer updates the value in all objects where the tag is configured.

For example, if a driver reads a new value from the PLC, the driver updates the tag associated with
this value in the Tags database. Then, if this new information must display on the project screen, the
Tags database sends the new tag value to the Viewer task, and the Viewer updates the screen.

Figure 2. Data Flow Example

Note that the driver does not send new tag values directly to the Viewer. In addition, there is no
pooling between tasks — the Tags database receives the updated information and immediately
forwards it to all runtime tasks requiring that information.

Important: The Viewer module will update an object only when (at least) one of the object's
tag values change.

If you configure an object animation (such as Text Data Link) with a function that does not
require a tag (for example, NoInputTime()), the Viewer will not update the object because there is
are no tags associated with that object.

The architecture of IWS significantly improves the internal data flow performance and makes it easy
for you to add new internal tasks. Even though each task works independently, it can access
information from any other task through the Tags database.

Parent topic: About This Application
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

About This Application >

Executing/Switching Modules

IWS is a SCADA system composed of modules that must be executed simultaneously. Based on the
multi-tasking concept, each runtime module (Viewer , Driver , and so forth) is a thread and the
operating system switches from one thread to other automatically. It is a common misconception
that you execute a SCADA system when you execute a PLC program. A PLC program contains a
simple loop:

Figure 1. PLC Program Loop

However, in a SCADA system, there are several modules running simultaneously, and most of them
can read and write data. Because a SCADA system modifies data (tag values) continuously during
task execution, the preceding diagram is not applicable.

IWS only has one process: Studio Manager.exe . When you execute a runtime project, the Studio
Manager.exe process starts the Tags database and all of the runtime modules configured for the

project. You can specify which modules (such as Viewer and Driver) will start during the runtime.

Each process keeps a list of active threads for the operating system. Actually, each process activates
and deactivates each thread during the runtime, according to the algorithm of each process. Also,
when you create a thread you specify a priority value. The operating system continuously scans all
currently active threads, and executes the threads according to their priority value — executing the
higher-priority threads first. When threads with higher-priority values are active, the threads with

lower-priority values are not executed at all. If there is more than one thread with the same priority
value, and there are no other threads with higher-priority values, the operating system keeps
switching between the threads with the same priority.

Note: All IWS threads are set to priority 7 , which is THREAD_PRIORITY_NORMAL . (Most programs
contain this priority value.)

Real-time program (such as SoftPLCs and Device Drivers) threads are assigned a higher-priority
value (THREAD_PRIORITY_HIGHEST); however, these programs must provide a mechanism to keep
them inactive for some period of time or the threads with normal priority would never be
executed.

IWS uses the UNICOMM.DLL library for serial drivers. This library creates a THREAD_PRIORITY_HIGHEST
thread that "sleeps" (remains inactive) until data arrives in the serial channel. When IWS detects
new data in the serial channel, the THREAD_PRIORITY_HIGHEST thread "wakes up" (becomes active)
and transfers the data from the operating system buffer to the thread buffer, where it can be
read by the Driver. This thread is the only highest-priority thread created by IWS .

If you allowed threads to remain active all the time, the CPU usage would be 100% all the time,
which must be avoided for performance reasons. Every program provides a mechanism to prevent
threads from staying active all the time.

IWS uses the following parameters to prevent threads from staying active continuously:

TimeSlice (from operating system): Causes the operating system to switch automatically
between active threads with the same priority value.

By default, the operating system executes each active thread for approximately 20ms and then
switches to the next active thread. In other words, if there are multiple active threads with the
same priority value waiting to be executed, the operating system will not execute any one
active thread for more than 20ms.

TimeSlice (from IWS): Specifies how long each IWS thread can remain continuously active.

You use this parameter in addition to the operating system's TimeSlice parameter. You
configure a TimeSlice value for each IWS thread (except the Background Task) and specify how
long each thread can remain continuously active. As long as a thread is active, the operating
system can switch to that thread.

Period (from IWS): Specifies the maximum amount of time each IWS thread (except the
Background Task) can remain inactive.

CAUTION:

We strongly recommend that you do not modify these default values unless it is
absolutely necessary. Configuring these parameters incorrectly can cause the entire
system to malfunction (for example, CPU usage will go to 100%) and/or cause some
tasks to perform poorly.

If you must change the parameter defaults, note the values before making your
changes so if a malfunction occurs you can return to the original settings.

To change the IWS TimeSlice and Period parameter default values:

From the IWS installation directory (for example, C:\Program Files\installation folder \Bin),1.

2.

double-click \BIN to open the folder.
1.

Double-click the Program Settings.INI file to open the file in Microsoft® Notepad.

The following is a list of all parameters contained in this .ini file and their default values (in
milliseconds).

[Period]

DBSpy=1000

UniDDEClient=200

UniDDE=200

Driver=20

LogWin=100

UniODBCRT=100

OPCClient=20

OPCServer=20

TCPClient=100

TCPServer=100

Viewer=50

[TimeSlice]

UniDDEClient=100

Driver=10

OPCClient=10

OPCServer=10

TCPClient=200

TCPServer=200

Viewer=200

Note: You may not see all of these parameters listed when you open your Program
Settings.INI file. However, even if a parameter is not visible in your list, IWS still uses that
parameter and its default value.

To change the default value of a displayed parameter: In Notepad, delete the default value
and type the new value in its place.

To change the default value of a parameter that is not displayed in your list: In Notepad,
type the parameter name exactly as shown in the following list, the equal sign, and then
the new value.

2.

Save the file (File > Save) and close Notepad (File > Exit).3.

The following figure illustrates how IWS executes a generic thread (such as the Viewer).

Figure 2. Executing a Generic Thread

Where:

Signal 1 is the Period time period (set to 50ms for this example).

Signal 2 shows when the thread is active for the operating system.

Signal 3 is the TimeSlice time period (set to 30ms for this example).

Signal 4 shows the execution of the thread itself.

In this example, IWS generates a Period message every 50ms (signal 1). When IWS generates this
message, its thread becomes active and remains active until the specified TimeSlice time period
(from IWS) expires. The thread then remains inactive until IWS generates the next Period message
(signal 1).

While the thread is active, the operating system is responsible for executing that thread. However,
just because a thread is active does not mean the operating system will execute it immediately — the
operating system may be executing other threads, for example.

When the operating system executes the thread, the TimeSlice timer starts counting and the thread
is executed for 20ms (TimeSlice from the operating system). After the 20ms period, the operating
system automatically switches to the next active thread (such as the Driver), and so on.

In the above example, the TimeSlice time was set to 30ms, which means the operating system is not
supposed to execute the thread more than once in each TimeSlice of IWS . However, if you specify
higher values for the IWS TimeSlice time period, it is likely that the operating system will execute the
same thread more than once in the same TimeSlice time period.

In the next example, the Period and the TimeSlice values were changed as follows, but the default
operating system TimeSlice period (20 ms) was not changed.

Figure 3. Setting a Higher TimeSlice

Where:

Signal 1 is the Period time period (set to 100ms).

Signal 2 shows when the thread is active for the operating system.

Signal 3 is the IWS TimeSlice time period (set to 80ms).

Signal 4 shows the execution of the thread itself.

Notice that the thread can be executed more than once in the same TimeSlice time period. When the
IWS TimeSlice time period expires, the operating system interrupts the thread execution; however,
even though the IWS Period and TimeSlice parameters are set to 100ms and 80ms respectively, the
operating system will not execute this thread continuously for more than 20ms, because the
operating system TimeSlice time period is set to 20ms.

When the operating system is not executing the Viewer thread, the CPU can execute any other
thread or remain idle (if there are no other active threads to execute). Remember, the IWS Period
and TimeSlice parameters were created to prevent all threads from being active at the same time to
prevent 100% CPU usage.

During thread execution, the thread must handle its pending messages. For example, the Viewer
module must update any related screen objects. If there are no messages pending, the thread
deactivates itself and gives control back to the operating system. The operating system immediately
switches to the next active thread. In other words, a thread can interrupt its own execution — even if
the operating system TimeSlice time period has not yet expired (which occurs frequently in real-world
applications).

Note: The Database Spy , DDE Server , LogWin , and ODBC Runtime modules do not have a
TimeSlice parameter. Consequently, after each thread handles all of its pending messages, the
threads become inactive until the next Period message for each one of the threads occurs.

The Background Task is the exception to the execution/switching process just discussed. The
mechanism for executing/switching the Background Task is described in the next section.

Parent topic: About This Application
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

About This Application >

Executing/Switching the
Background Task
The Background Task executes scripts from the Math and Scheduler worksheets (for example,
messages from Alarm and Trend worksheets). In addition, the Background Task executes all Recipe
and Report commands when the Recipe() or Report() functions are executed during the runtime.

Although the Alarm, Math, Scheduler, and Trend tasks are not threads, you can specify or change
their Period time in the Program Settings.ini file located in the IWS program directory.

The Period default values (in milliseconds) are as follows:

[Period]

Math=100

Sched=50

Alarm=100

Trend=1000

These values mean that every 100ms, IWS generates a Period message to the Math task. Every
50ms, IWS generates a Period message to the Scheduler task, and so on.

CAUTION:

We strongly recommend that you do not modify the Background Task default values
unless it is absolutely necessary. Configuring any of these parameters incorrectly can
cause your entire system to malfunction (for example, CPU usage will go to 100%)
and/or cause some tasks to perform poorly.

If you must change the parameter defaults, note the values before making your
changes so if a malfunction occurs you can return to the original settings.

Keep in mind that the Background Task thread has the same priority as other threads in IWS
(Drivers, Viewer, and so forth), which means that the operating system will not execute this task
continuously for more than 20ms.

The Background Task executes the Recipe and Report worksheets when the Recipe() and Report()
functions are called, respectively. Because the Recipe() and Report() functions are synchronous, once
the Background Task starts executing the functions, it will not switch to another task (Alarm, Math,
Scheduler, or Trend) until it completely executes the functions. Executing a Recipe() or Report()
function usually takes a few milliseconds.

The Background Task must switch between the Alarm, Math, Scheduler, and Trend tasks. When
Background Task switches to the Scheduler task, it will not switch to another task (Alarm, Math, or
Trend) until all Scheduler worksheets are executed. After executing all Scheduler worksheets, the
Background Task will not execute the Scheduler again until it receives the next Period message for

the Scheduler task.

The Background Task applies the same behavior when executing the Alarm and Trend tasks — when
the Background Task switches to the Alarm or Trend task, it will not switch to another task until it
handles all pending messages. So, the Background Task will not execute the Alarm or Trend task
again, until IWS generates the next Period message for each of these tasks.

The Background Task typically executes the Alarm, Scheduler, and Trend tasks in a few milliseconds.
However, it can take longer to execute the Math task because it usually contains loops and complex
scripts. Consequently, the mechanism used to execute the Alarm, Scheduler, and Trend tasks cannot
be applied to the Math task.

The Background Task executes the Math task for no more than 10ms continuously before switching
to other task (such as the Scheduler). The Background Task cannot execute the Math task again for
the next 50ms; however, the Background Task can execute other tasks (Alarm, Recipe, Report,
Scheduler, or Trend) during this 50ms period. After the Background Task executes all of the Math
worksheets, it will not begin a new scan of the Math worksheets until IWS generates a new Period
message for the Math task.

It is important to re-emphasize that this process was created to prevent 100% CPU usage all the
time.

CAUTION:

We recommend caution when using the Math() function in a Scheduler worksheet or for
a screen object (such as the Command animation).

When the Scheduler task executes a Math() function, no other task can be executed by
the Background Task until the Scheduler executes the entire Math worksheet called
by the Math() function. This process can take several milliseconds or even seconds,
depending on how you configured the script in the Math worksheet (especially for
loops).

If you configure a Math() function for a screen object, the Viewer stops updating the
screen until the Viewer executes the entire Math worksheet called by the Math()
function.

If you must use the Math() function for the Scheduler task or a screen object, we
recommend using the following procedure to prevent process delays:

Specify one auxiliary tag with the value 1 and the Scheduler or Viewer task will
send a message to the Tags database to update this tag value.

1.

Configure the tag in the Execution field of the Math worksheet to be executed.
When the Background Task scans the Math worksheet, IWS will execute the
worksheet.

2.

Reset the tag in the last line of the Math worksheet (write the value 0 to the
auxiliary tag).

3.

As a result, the Background Task will not execute the Math worksheet in the next scan
unless the auxiliary tag is set to the value 1 again.

Parent topic: About This Application
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

Installation

System requirements
These are the minimum system requirements to install and run the InduSoft Web Studio
software.

Installing the Software

Starting the Software

Uninstalling the Software

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Installation >

System requirements
These are the minimum system requirements to install and run the InduSoft Web Studio software.

Note: The requirements described below are based on typical projects. Depending on your
specific project, the requirements may vary:

"Windows Embedded and Windows Mobile-compatible devices" includes a wide variety of
processors and feature sets, from smartphones to industrial displays. Consult your vendor
for the specific hardware requirements to run your project on these devices.

Some of the items listed as optional may be mandatory depending on your project. For
instance, if you need to exchange data with a PLC via a serial interface, then the computer
must have a serial COM port.

Development

To install and run the development application, you must have:

A Windows-compatible computer with a standard keyboard, mouse, and SVGA display

A Windows desktop or server operating system that is currently supported by Microsoft, which
at this time includes:

Microsoft Windows XP Service Pack 3 or later

Microsoft Windows Vista Service Pack 1 or later

Microsoft Windows 7, all versions

Microsoft Windows Server 2003 Service Pack 2 or later

Microsoft Windows Server 2008, all versions

Microsoft Internet Explorer 6.0 or later

Minimum of 500MB free hard drive space

Ethernet adapter or wireless networking

CD-ROM drive (optional, to install the application; it can also be downloaded from our website)

USB port (optional, to be used with hard key licensing)

Serial COM ports and adapters (optional, to be used for direct communication with devices)

Tip: Any station that has the development application installed can also run as a project server
and/or a project client.

Project Server

To run as a project server, you must have:

A Windows or Windows Embedded-compatible computer

A Windows desktop, server, or embedded operating system that is currently supported by
Microsoft, which at this time includes:

Microsoft Windows XP Service Pack 3 or later

Microsoft Windows Vista Service Pack 1 or later

Microsoft Windows 7, all versions

Microsoft Windows Server 2003 Service Pack 2 or later

Microsoft Windows Server 2008, all versions

Microsoft Windows XP Embedded Service Pack 3

Microsoft Windows Embedded Standard 7 (2009)

Microsoft Windows Embedded Compact (previously known as Windows CE), version 5.0 or
later

Tip: We recommend "Professional" and "Ultimate" editions over "Home" and "Media
Center" editions, because they include Internet Information Services (IIS) that can be used
as your project's Web server.

Minimum of 500MB free hard drive space

Ethernet adapter or wireless networking

USB port (optional, to be used with hard key licensing)

Serial COM ports and adapters (optional, to be used for direct communication with devices)

Project Client – Embedded

To run as a project client using CEView, you must have:

A Windows Embedded or Windows Mobile-compatible device with a mouse or touchscreen input

A Windows embedded or mobile operating system that is currently supported by Microsoft,
which at this time includes:

Microsoft Windows XP Embedded Service Pack 3

Microsoft Windows Embedded Standard 7 (2009)

Microsoft Windows Embedded Compact (previously known as Windows CE) or Windows
Mobile, version 5.0 or later

Ethernet adapter or wireless networking

Project Client – Thin

To run as a project client using the Secure Viewer program or the browser-based Thin Client, you
must have:

A Windows or Windows Embedded-compatible computer with a mouse or touchscreen input

A Windows desktop, server, or embedded operating system that is currently supported by

Microsoft, which at this time includes:

Microsoft Windows XP Service Pack 3 or later

Microsoft Windows Vista Service Pack 1 or later

Microsoft Windows 7, all versions

Microsoft Windows Server 2003 Service Pack 2 or later

Microsoft Windows Server 2008, all versions

Microsoft Windows XP Embedded Service Pack 3

Microsoft Windows Embedded Standard 7 (2009)

Microsoft Windows Embedded Compact (previously known as Windows CE) or Windows
Mobile, version 5.0 or later

Microsoft Internet Explorer 6.0 or later

Ethernet adapter or wireless networking

Parent topic: Installation
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Installation >

Installing the Software
InduSoft Web Studio provides development tools for all IWS projects, and it can be installed on a PC
running Microsoft Windows XP, Windows Vista, or Windows 7 operating system. For more
information, see System Requirements.

You can install the development application either from the web download or from the InduSoft Web
Studio installation CD. For projects running on Windows Embedded target systems, you can use the
development application to download CEView (the runtime engine) to the target system via serial or
TCP/IP link.

The IWS installation program creates directories as needed, copies files to your hard drive, and
creates the InduSoft Web Studio icon on your Windows desktop.

Note:

You must have Administrator privileges on your PC in order to install or uninstall the
development application.

You must uninstall an older version of the development application (or move it to a
different directory) before installing a new version. Also, you cannot install the same
version of the development application in two different paths on the same PC.

The instructions for installing InduSoft Web Studio and CEView are provided inthe following two
sections.

Installing the Development Application on Your Windows PC

To install the IWS development application from the installation CD:

Turn on your PC and be sure that no other programs are running.1.

Insert the installation CD into your PC's CD-ROM drive.

Internet Explorer should run automatically and show the CD's welcome screen. If it does not —
for example, if you have the Autorun feature turned off in your Windows settings — then you
can manually show the screen by using Windows Explorer to locate and open the file
D:\InduSoft.htm.

2.

In the welcome screen, select the product that you want to install.

Internet Explorer will ask if you want to run or save the installer.

3.

Click Run.

The product's installation wizard will begin.

4.

Follow the wizard's instructions to proceed with the installation.5.

When the installation is finished, select Yes, I want to restart my computer now and then
click OK.

6.

6.

After your PC has restarted, you can run the development application. See Starting the Software for
instructions.

Note: When you install the development application, Microsoft .NET Framework 2.0 and some
other utilities are also installed to support the features of IWS. Your PC may have later versions
of the .NET Framework already installed, but there is no reason for concern because multiple
versions of the .NET Framework should not conflict with each other. You can see which versions
are installed on your PC by opening the Add or Remove Programs control panel (Start >
Control Panel > Add or Remove Programs).

For more information about Microsoft .NET Framework, see Database Appendix A: Using ODBC
Databases.

Installing CEView on Your Windows Embedded Device

CEView is the runtime engine for IWS projects on Windows Embedded devices. CEView must be
installed on your device before you send your project to it.

Where the Files Are Located

Given the nature of Windows Embedded devices, each combination of OS version and device
processor has its own build of CEView. All of these builds are located in the following directory:

[…]\InduSoft Web Studio v7.0\Redist\

The build for your specific device is located in the following directory:

[…]\InduSoft Web Studio v7.0\Redist\version\processor\

…where:

version is the version of the operating system on the device where CEView will be installed:

The\WinCE 5.0 folder contains the files for Windows CE and Windows Mobile 5.0 or later;

and

The\WinEmbedded folder contains the files for Windows XP Embedded and Windows

Embedded 7.

processor is the processor used by your Windows CE device. We provide a CEView runtime for

every processor that is currently supported by the Windows CE operating system (e.g.,
Pocket2003-ArmV4, ArmV4i, x86). For more information, consult the manufacturer's
documentation for the device.

To install the files on your device, use the Remote Management tool in the development application.

Installing via TCP/IP (Ethernet)

Tip: We recommend using TCP/IP whenever possible.

To install CEView on a Windows Embedded device via a TCP/IP (Ethernet) connection:

Make sure your Windows Embedded device is connected to your network.1.

Turn on the device.

The Remote Agent dialog should open automatically. If it does not, then you must manually
install the file CEServer.exe on the device. The file is located here:

[…]\InduSoft Web Studio v7.0\Redist\version\processor\CEServer.exe

There are different ways to install the file — for example, you can use Microsoft ActiveSync (for
Windows 2000 and Windows XP) or Windows Mobile Device Center (for Windows Vista) to
communicate directly with the device or you can map the device as a shared folder on your PC.
For more information about copying and executing files, consult the manufacturer's
documentation for the device.

2.

In the Remote Agent dialog, click Setup and then configure the communication settings for the
device's network connection. In particular, note the IP address of the device.

3.

Start the development application on your PC.4.

On the Home tab of the ribbon, in the Remote Management group, click Connect. The
Remote Management dialog is displayed:

Figure 1. Remote Management dialog

5.

In the Target System group-box, select Network IP and then type the IP address of the
device.

6.

Click Connect to establish a connection between the development application and the device.

If the conncection is successful, then the device's specifications will be displayed in the
Platform text-box.

7.

8.

9.

7.

Click Install System Files to download the CEView files to the device.8.

When the installation is completed, click Disconnect.9.

For more information about downloading and running finished projects on the Windows Embedded
device, please see Remote Management.

Installing via Microsoft ActiveSync

To install CEView on a Windows Embedded device via Microsoft ActiveSync:

Make sure that Microsoft ActiveSync (for Windows 2000 and Windows XP) or Windows Mobile
Device Center (for Windows Vista) is installed on your PC.

1.

Turn on the Windows Embedded device and connect it to your PC. Most devices should be able
to connect via USB.

2.

Start the development application on your PC.3.

On the Home tab of the ribbon, in the Remote Management group, click Connect. The
Remote Management dialog is displayed.

4.

In the Target System group-box, select Microsoft ActiveSync.5.

Click Connect to establish a connection between the development application and the device.

If the conncection is successful, then the device's specifications will be displayed in the
Platform text-box.

6.

Click Install System Files to download the CEView files to the device.7.

When the installation is completed, click Disconnect.8.

Note: In some cases, the Remote Management tool may not be able to connect via Microsoft
ActiveSync to a device running Windows CE 6.0 or later. This is because of a problem in the
default configuration of Windows CE 6.0. You can fix the problem by using a small utility that is
included with IWS. The utility is located at:

[…]\InduSoft Web Studio v7.0\Redist\ActiveSyncUnlock.exe

Copy this file to the device using the stand-alone version of Microsoft ActiveSync and then
execute the file on the device. It doesn't matter where on the device the file is located. (For
more information about copying and executing files, consult the manufacturer's documentation
for the device.) When this is done, try again to use the Remote Management tool to connect to
the device.

For more information about downloading and running finished projects on the Windows
Embedded device, please see Remote Management.

Parent topic: Installation
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Installation >

Starting the Software

To run InduSoft Web Studio:

Double-click the InduSoft Web Studio v7.0 icon on the desktop; or

Choose Start > All Programs > InduSoft Web Studio v7.0 > InduSoft Web Studio v7.0.

Tip: You can run the IWS development environment under any video setting. However, we
recommend that you configure the video settings to a resolution of 800x600 (or higher) and use
more than 256 colors for a more pleasing environment. The project resolution (screen size) is
independent of the operating system resolution.

Parent topic: Installation
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Installation >

Uninstalling the Software

CAUTION:

Before starting the uninstall procedure, be sure to back-up any program files you may
find useful later. Also, be certain that you have a current (or newer) version of the
IWS installation CD or diskettes so you can re-install the software later if necessary.

If you find it necessary to remove IWS from your system, follow these instructions:

From the Windows task bar, select Start > Settings > Control Panel to open the Control
Panel.

1.

Double-click on the Add/Remove Programs icon in the Control Panel window.2.

When the Add/Remove Programs Properties dialog displays, select InduSoft Web Studio from
the list and click Add/Remove.

3.

When the Confirm File Deletion dialog displays, click Yes.

The Uninstall Shield Wizard and the Remove Programs from Your Computer dialogs display.

4.

When the Uninstall successfully completed message displays and the OK button becomes
active, click OK.

Verify that InduSoft Web Studio is no longer listed in the Add/Remove Programs Properties
dialog.

5.

Click the Cancel button or the close button (), to close the Add/Remove Programs
Properties dialog, then close the Control Panel window.

6.

Open the Windows Explorer and browse to IWS program directory.7.

Verify that all of the IWS files and folders were deleted. (You must manually delete any that
remain.)

8.

Note: The uninstall tool cannot delete files you created or modified in your IWS projects folder.

You must have administrator privileges to uninstall (and install) InduSoft Web Studio.

Parent topic: Installation
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Licensing

Protection Types

License Settings

Execution Modes

Product Versions

Installing a New Hardkey License

Upgrading the Current Hardkey License

Installing a New Softkey License

Invalid Licenses

Installing or Upgrading a CEView License (Locally)

Installing or Upgrading a CEView License (Remotely)

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Licensing >

Protection Types

InduSoft Web Studio and CEView support the following protection types:

Hardkey

An encapsulated chip that must be physically connected to the computer's parallel port (LPT1)
or USB interface.

The software license resides in the hardkey, and you cannot share this license simultaneously
with more than one other copy of software in the network. If you connect the hardkey to
another computer, then you effectively transfer the license to that computer.

Using the parallel port hardkey does not prevent you from connecting another device — such
as a printer — to the port. The hardkey should be electronically transparent to other devices
connected to the parallel port. You simply connect the hardkey to the computer and then
connect the printer cable to the hardkey. However, you may encounter problems if you install
more than one hardkey (for different products) on the same parallel port.

On the other hand, while using the USB hardkey, the USB port cannot be shared with any other
device.

CAUTION:

Be careful when installing or removing a hardkey from the computer's parallel
port. We strongly recommend that you turn off the computer and disconnect it
from the power supply before installing or removing a hardkey.

Softkey

When you install InduSoft Web Studio or CEView, the program generates a unique code called
a Site Code. You can send this site code to your software vendor, who will then generate a
license code called a Site Key to match your site code. The site key installs the InduSoft Web
Studio or CEView license on your computer or Windows Embedded device.

Note: When you use a softkey, IWS records the license in the computer's (or Windows
Embedded device's) non-volatile memory. If this device is damaged, you will lose the
license.

Parent topic: Licensing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Licensing >

License Settings

Both hardkey and softkey licenses set the following parameters:

Version

The overall version of the IWS software, e.g., 6.1. (This does not include the service pack, if
any.)

Drivers

The number of direct communication drivers that can be simultaneously enabled.

Product Type

Specifies which features and restrictions are enabled for the application (e.g., the maximum
number of tags supported). Consult your software vendor about which product types are
available and which features are enabled for each type.

Execution Mode

Specifies one of the following options:

Engineering Only: Can develop a IWS project and then run it for short-term testing
only. You cannot use this license as a long-term runtime license.

Runtime Only: Can run a IWS project for an unlimited period. You cannot use this
license to develop or modify the project.

Engineering + Runtime: Can develop a IWS project and then run it for an unlimited
period.

For more information, see Execution Modes.

Importers

The list of third-party applications that can be handled by the Import Wizard.

Thin Clients

The number of Thin Clients that can connect simultaneously to the server. One connection is
included with every license. Contact your vendor to purchase additional connections.

Secure Viewers

The number of Secure Viewer clients that can connect simultaneously to the server. One
connection is included with every license. Contact your vendor to purchase additional
connections.

SMA Clients

The number of Studio Mobile Access (SMA) clients that can connect simultaneously to the
server. One connection is included with every license. Contact your vendor to purchase
additional connections.

Parent topic: Licensing

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Licensing >

Execution Modes
InduSoft Web Studio and CEView support the following execution modes:

Execution Mode IWS CEView

Evaluation Mode Y N

Demo Mode Y Y

Licensed for Engineering Only Y N

Licensed for Runtime Only Y Y

Licensed for Engineering +
Runtime

Y N

Evaluation Mode

Enables all of the product's engineering and runtime features.

The first time you install InduSoft Web Studio on a computer, the product runs for forty (40)
hours in Evaluation Mode. This evaluation period includes any time you run a product module
(engineering or runtime). You can use this evaluation period continuously or not (for example:
10 hours a day for 4 days, 5 hours a day for 8 days, 10 hours a day for 3 days plus 5 hours a
day for 2 days, and so on).

After running for 40 hours in the Evaluation Mode the evaluation period terminates and IWS
automatically converts to and runs in Demo Mode (see following description) until you install a
valid license (Hardkey or Softkey). You cannot reactivate Evaluation Mode, even if you uninstall
and then reinstall the product on your computer.

Note: Every version of IWS has an evaluation period that is independent of every other
version. For example, if your IWS version 6.1 evaluation period expires and you are
running in Demo Mode because you have not installed a license, when you install IWS
version 6.1 on the same computer, the newer version will begin its own 40-hour evaluation
period and the 6.1 version will continue running in Demo Mode only.

Demo Mode

Allows you to download projects to remote stations and to run projects for testing or
demonstration purposes. You can execute runtime tasks and use the debugging tools (LogWin
and Database Spy), but they shut down automatically after running for two hours continuously.
You can restart the Demo Mode again and run for another two hours, and so on.

You cannot create or modify screens, worksheets, or project settings in Demo Mode.

Licensed for Engineering Only

Enables all workbench options for an unlimited time.

This mode also allows you to execute the runtime tasks and debugging tools (Database Spy,
Output window, and LogWin module) for 24 hours continuously. After the 24-hour period these
tasks shut down, but you can restart them again and run for another 24 hours, and so on. You
can use this license for development and testing only.

Licensed for Runtime Only

Enables you to run all runtime and debugging tools (Database Spy, Output window, and
LogWin module) for unlimited time, but you cannot create or modify screens and/or
worksheets.

The menu options available in Runtime Only mode are the same as the options listed for Demo
Mode (see previous table).

Licensed for Engineering + Runtime

Enables all engineering tools, runtime tasks, and debugging tools (Database Spy, Output
window, and LogWin module) for an unlimited period of time.

Note: The Remote Management tool (Connect on the Home tab of the ribbon) is always
available, regardless of execution mode, so that you can upload files from or download files to
remote stations.

To see which execution mode you are currently running, click About on the Help tab of the ribbon;
the About dialog shows the execution mode, including the time remaining if you are in Evaluation
Mode.

Parent topic: Licensing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Licensing >

Product Versions

InduSoft Web Studio and CEView should both have the same version number, which uses the syntax
X.Y+SPWW (for example, InduSoft Web Studio v7.0 and CEView v7.0), where:

X represents the Family version. The Family version changes only when major enhancements
are added to the product technologies and concepts.

Y represents the Sub-version: The Sub-version changes when minor enhancements and/or
new features are added to the product.

WW represents the Service Pack. The Service Pack version changes when you must install add-
on packages to accomplish the following:

Upgrade files for the version previously installed

Fix bugs in the product (showstoppers and no-workarounds)

Provide minor enhancements before releasing the next version of the product

Each Service Pack release supersedes the previous Service Pack release. For example, SP2
includes all the contents of SP1 and all newly upgraded files, bug fixes, and enhancements. SP3
includes all the contents of SP2 and all new upgraded files, bug fixes, enhancements and so on.

Both InduSoft Web Studio and CEView can execute projects built in previous versions of the product.
However, older versions of IWS and CEView cannot execute projects built or modified in newer
versions of the product.

For example, you cannot execute version 6.1 projects using IWS version 6.0 but you can execute
version 6.0 projects with IWS version 6.1.

Important: We issue each license for a specific Family version and Sub-version (X.Y), and the
license is valid for that version (including Service Packs) only. The license is not valid for a newer
Family version or Sub-version of the product. Therefore, if you install a new version of IWS or
CEView, then you must upgrade your license to the new version being installed. If you install a
Service Pack only, then you do not need to upgrade your license.

Parent topic: Licensing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Licensing >

Installing a New Hardkey License

To install a new hardkey license for InduSoft Web Studio or CEView:

Install IWS or CEView according to the instructions provided earlier in this chapter.1.

On the computer where you've installed the software, connect the hardkey to the parallel port
(LPT1) or USB interface.

CAUTION:

Be careful when you connect or remove a hardkey on a parallel port. We strongly
recommend that you turn off the computer and disconnect it from the power
supply before connecting or removing the hardkey.

2.

Run the software.3.

If the software recognizes the hardkey, then it will run normally without any alert messages.
However, if it does not, then try the following:

For IWS, use the Protection Manager utility to make sure the software is set to check for a
hardkey. (See Upgrading the Current Hardkey License.)

For CEView, if the software does not recognize the hardkey, then it will automatically check for
a softkey. If it does not find a softkey either, then use the Remote Agent utility on the Windows
Embedded device to diagnose the problem. (See Installing or Upgrading a CEView License
(Locally).)

Please note that not all Windows Embedded devices can recognize the USB hardkey technology
used by InduSoft; our internal testing has shown only Windows Embedded devices that fully
support USB flash memory (a.k.a. "thumb drives" or "memory sticks") will recognize our USB
hardkey. Check with the manufacturer of your Windows Embedded device.

Parent topic: Licensing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Licensing >

Upgrading the Current Hardkey
License

Note: These instructions only apply to upgrading a hardkey license for InduSoft Web Studio. To
upgrade a license for CEView, see Installing or Upgrading a CEView License (Locally) or Installing
or Upgrading a CEView License (Remotely).

To upgrade your current hardkey license for InduSoft Web Studio:

Close all IWS development and runtime modules and then exit the application.1.

Make sure the hardkey is connected to the parallel port (LPT1) or USB interface on the
computer where you installed InduSoft Web Studio.

2.

Choose Start > All Programs > InduSoft Web Studio v7.0 > Register to launch the
Protection Manager.

3.

When the Protection Manager dialog displays, select Hardkey in the Protection Type section
and then click Check.

Figure 1. Protection Manager: Select Hardkey

If you do not have a valid hardkey connected to the computer's parallel port (LPT1) or
USB interface, the following error message displays:

Figure 2. No Hardkey

If you do have a valid hardkey connected to the computer's parallel port (LPT1) or USB

4.

interface, the Hardkey Settings dialog displays, which contains the current license settings
recorded on the hardkey.

Figure 3. Checking the Hardkey Settings

Click the Change License button to open the Change License – Hardkey dialog:

Figure 4. Change License Dialog

5.

Copy the code from the Site Code text box and send it to your software vendor.6.

Your software vendor should send back a Site Key to match the Site Code. Type this site key
into the Site Key field of the Change License – Hardkey dialog and then click the Authorize
button.

You will be prompted to confirm the operation. If the program accepts (validates) your site key,
the following message displays:

Figure 5. Register: Successful Completion

Note: If your new Site Key is not valid, an error message displays. If this happens, double-
check that you entered the Site Key correctly. If you entered the key correctly and still

7.

receive an error message, contact your software vendor for assistance.

You can upgrade any license setting (ProductType, Execution Mode, or Number of Thin Clients)
simultaneously supported by the server, or upgrade the software version that is being supported
currently. The upgrade cost will depend on your current license settings and the settings of the
upgrade license.

Parent topic: Licensing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Licensing >

Installing a New Softkey License

Note: These instructions only apply to installing a softkey license for InduSoft Web Studio. To
install a license for CEView, see Installing or Upgrading a CEView License (Locally) or Installing or
Upgrading a CEView License (Remotely).

Also, you must have Administrator privileges on the computer on which you are installing or
modifying a softkey license.

To install a new softkey license for InduSoft Web Studio:

Install InduSoft Web Studio according to the instructions provided earlier in this chapter.1.

Launch the Protection Manager by choosing Start > All Programs > InduSoft Web Studio
v7.0 > Register.

2.

Select Softkey in the Protection Type group, and then click Check.

Figure 1. Protection Manager: Softkey

Note: If you already have a hardkey license installed on your computer, then you will be
asked to confirm the change of protection type.

The Softkey Settings dialog displays:

If you already have a valid InduSoft Web Studio softkey license installed, then the current
license settings display.

If you have not previously installed a license on your computer, then the Status text box
displays a "License not found" message.

Figure 2. Checking the Softkey Settings

3.

Click the Change License button on the Softkey Settings dialog.4.

When the Change License – Softkey dialog displays, copy the code information from the Site
Code text box and send it to your software vendor.

Figure 3. Change License: Softkey

Your software vendor will send back a Site Key that matches this Site Code. Type the Site Key
into the Site Key field of the Change License – Softkey dialog and then click the Authorize
button.

You will be prompted to confirm the operation. If the program accepts (validates) your Site Key,
the following message displays:

Figure 4. Successful Site Key Installation

Note: If your new Site Key is not valid, an error message displays. If this happens, double-
check that you entered the site key correctly. If you entered the key correctly and still
receive an error message, contact your software vendor for assistance.

5.

Close the Protection Manager and run IWS.6.

6.

Parent topic: Licensing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Licensing >

Invalid Licenses
When you try to run InduSoft Web Studio with an invalid license, you will receive a specific warning
message that gives you the information you need to resolve the issue. Examples:

Figure 1. Version of software higher than license version

Figure 2. Selected Target System is not supported by the license

Parent topic: Licensing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Licensing >

Installing or Upgrading a CEView
License (Locally)

Tip: You can purchase some Windows Embedded devices with a CEView softkey license already
installed. Ask your software vendor about this possibility.

You can register a CEView license on your Windows Embedded device by using the Remote Agent
utility on the device itself. This works for both hardkey and softkey licenses.

To install a new (or upgrade an existing) CEView softkey license (locally):

Download the Remote Agent program (CEServer.exe) into the \Non-Volatile Folder path of the
Windows Embedded device. The \Non-Volatile Folder must retain this data after you reboot the

Windows Embedded device.

Note: The \Non-Volatile Folder path can vary with each Windows Embedded device

manufacturer.

After installing InduSoft Web Studio on the Win2K/XP/Vista computer, the Remote Agent
program file (CEServer.exe) is stored in the following path:

[…]\InduSoft Web Studio v7.0\Redist\version\processor\Bin\CEServer.exe

…where:

version indicates the operating system version.

processor is the Windows Embedded device processor type (for example, x86).

Note: In some Windows Embedded devices, the \Non-Volatile Folder points to a FlashCard

memory that is connected to the device. Also, before downloading the Remote Agent
program (CEServer.exe) to your Windows Embedded device, be sure it is not already loaded
in the \Non-Volatile Folder.

Tip:

There are two ways to download the Remote Agent program (CEServer.exe) to a
Windows Embedded device:

You can use the Microsoft ActiveSync® utility to download/upload files from a
Win2K/XP/Vista station to a Windows Embedded device. You can download
ActiveSync from the Microsoft Web site at no charge.

You can use the following command syntax to map a shared folder from a

1.

Win2K/XP/Vista computer to most Windows Embedded devices:

net use [LocalName] [RemoteName] [/user:UserName]

After executing this command successfully, open a Command Prompt window
and use a COPY command to copy files to the Windows Embedded device.

We strongly recommend that you configure the Windows Embedded device to execute
the Remote Agent program automatically when you power on the Windows Embedded
device. See the Windows Embedded device manufacturer's documentation for
information about how to configure the Startup program on the device.

If the Remote Agent program (CEServer.exe) does not start automatically when you power on

the Windows Embedded device, you can run it manually from the \Non-Volatile Folder.

Figure 1. Remote Agent Dialog

2.

If you are upgrading a hardkey license, make sure the hardkey is connected to the device.3.

From the Remote Agent dialog, click the Setup button to open the Setup dialog:

Figure 2. Setup Dialog

4.

Click the License button to open the License dialog:

Figure 3. License Dialog

5.

5.

Click the Change License button to open the Change License dialog:

Figure 4. Change License Dialog

Copy the site code information (provided in the Site Code field) and send it to your
software vendor.

Your software vendor will send back a Site Key that matches this site code. Type the Site
Key into the Site Key field on the Change License dialog, and click the Authorize button.

If the Site Key is accepted (validated), the following message displays:

Figure 5. Successful Site Key Installation

Note: If the new site key is not validated, an error message displays. If this happens,
double-check that you entered the site key correctly. If you typed the key correctly and get
an error message, contact your software vendor for further assistance.

6.

Parent topic: Licensing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Licensing >

Installing or Upgrading a CEView
License (Remotely)

Tip: You can purchase some Windows Embedded devices with a CEView softkey license already
installed. Ask your software vendor about this possibility.

You can register a CEView license on your Windows Embedded device by using IWS to send the
license to the device. This works for both hardkey and softkey licenses.

To install a new (or upgrade an existing) CEView license (remotely):

Perform the four first steps described in the previous section.1.

In the Setup dialog, specify the Device Connection type by clicking (enabling) the Serial Port
or TCP/IP radio button. (If you enable Serial Port, you also must select a port from the
combo-box list). Click OK to close the dialog.

2.

Connect your development workstation to the Windows Embedded device using either a serial or
TCP/IP link.

3.

Run the IWS development application.4.

On the Home tab of the ribbon, in the Remote Management group, click Connect. The Remote
Management dialog is displayed:

Figure 1. Remote Management dialog

5.

Specify a target system by clicking one of the following radio buttons in the Target System:6.

Network IP, and then type the IP address into the field provided

Serial Port, and then select a port from the combo-box list provided

Microsoft ActiveSync

Note: You cannot upgrade a CEView hardkey license via Microsoft ActiveSync.

6.

When the Connect button becomes active, click the button to connect to the Windows
Embedded device on which the Remote Agent is running. (If you select Network IP, then you
must also enter the IP address in the text box provided.)

Tip: TCP/IP links provide better communication performance than serial links.

The Status field must display the following message: Connected to CEView version

7.

Select the Embedded License tab to see which license settings are currently installed on your
Windows Embedded device.

8.

From the License Codes section, copy the information from the Site Code field and send it to
your software vendor.

Your software vendor will send you a Site Key that corresponds to this Site Code. Type this
site key into the Site Key field.

Click the Send button to send the code to the Remote Agent running on the Windows
Embedded device.

The Remote Agent program will attempt to install the new license using the site key sent from
the Remote Management tool. If the site key is accepted (validated), then a confirmation
message is displayed.

Note: If the new site key is not valid, an error message will display. If this happens,
double-check that you typed the Site Key correctly. If you entered the Site Key correctly
and still receive an error message, contact your software vendor for further assistance.

CAUTION:

After sending the license to the Windows Embedded device, be sure to save its
registry settings. If you do not save these settings, you will lose the license after
rebooting the device.

9.

Parent topic: Licensing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment
InduSoft Web Studio incorporates a modern, Ribbon-based Windows interface to provide an
integrated and user-friendly development environment.

Figure 1. The IWS Development Environment

Application button
The Application button opens a menu of standard Windows application commands like New,
Open, Save, Print, and Close.

Quick Access Toolbar
The Quick Access Toolbar is a customizable toolbar that contains a set of commands that are
independent of the ribbon tab that is currently displayed.

Ribbon
The new ribbon combines the numerous menus and toolbars from the previous version of IWS
into a single, user-friendly interface. Almost all application commands are now on the ribbon,
organized into tabs and groups according to general usage.

Project Explorer
The Project Explorer organizes all of the screens, worksheets, and other components that make
up your project and presents them in an expandable tree-view.

Screen/Worksheet Editor
Use the powerful, object-oriented screen editor to create and edit a variety of screens and
worksheets for your projects. You can input information using your mouse and keyboard, output
control data to your processes, and automatically update screens based on data input from your
processes.

Database Spy
The Database Spy window is a debugging tool that allows you to: monitor and force values to
project tags; execute and test functions; and execute and test math expressions.

Output (LogWin)
You can use the Output window to view debugging messages generated during project runtime.
The window displays OPC, DDE, and TCP/IP transactions, module activation, trace tags, and so
on.

Title Bar
The Title Bar located along the top of the development environment displays the application
name (e.g., InduSoft Web Studio) followed by the name of the active screen or worksheet (if
any).

Status Bar
The Status Bar located along the bottom of the development environment provides information
about the active screen (if any) and the state of the application.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment >

Application button
The Application button opens a menu of standard Windows application commands like New, Open,
Save, Print, and Close.

Figure 1. Application button opens menu of commands

Recent Projects
The Recent Projects area of the Application menu lists the most recently opened projects.

New
The New command on the Application menu is used to create a new worksheet file or project.

Open Project
The Open Project command on the Application menu is used to open a saved project.

Open
The Open command on the Application menu is used to open a saved worksheet file.

Save
The Save command on the Application menu is used to save the active screen or worksheet.

Save As
The Save As command on the Application menu is used to open a save the active screen or
worksheet at another location.

Save All
The Save All command on the Application menu is used to save all open worksheet files.

Save All as HTML
The Save All as HTML command on the Application menu is used to save all of your project's
screens and screen groups in HTML format.

Save as HTML
The Save as HTML command on the Application menu is used to save the active screen in
HTML format.

Save Screen Group as HMTL
The Save Screen Group as HTML command on the Application menu is used to save a
selected screen group in HTML format.

Print
The Print command on the Application menu is used to print the active screen or worksheet.

Print Preview
The Print Preview command on the Application menu is used to see what the active worksheet
would look like when it is printed.

Print Setup
The Print Setup command on the Application menu is used to configure the options (e.g.,
paper size, print orientation) for a selected printer.

Close
The Close command on the Application menu is used to close the active screen or worksheet.

Close All
The Close All command on the Application menu is used to close all open screens and
worksheets.

Exit
The Exit command on the Application menu is used to close all open screens and worksheets,
save the project database, and then exit the application.

Parent topic: The Development Environment
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Recent Projects
The Recent Projects area of the Application menu lists the most recently opened projects.

To open one of the listed projects, simply click it.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

New
The New command on the Application menu is used to create a new worksheet file or project.

The New dialog (see the following figures) contains two tabs:

File tab: Select this tab to create new worksheets or screens for an open project.

Project tab: Select this tab to create a new project.

Instructions for creating new files and projects follow.

Creating a New File

To create a new worksheet or screen:

Click the File tab.

Figure 1. New File tab

1.

Select Display or a Worksheet type from the list.2.

Click OK.3.

2.

The New dialog is closed and your selection is opened in the worksheet editor.

3.

Note: When you add an I/O driver to the project, an associated option allows you to open a new
driver worksheet. You also can create new screens or worksheets by right-clicking on the folder
in the Project Explorer and selecting the Insert option from the shortcut menu.

Note: Worksheets for DDE Client and ODBC are not available for Windows CE projects, because
they are not supported by the Windows® CE operating system.

Creating a New Project

To create a new project:

Click the Project tab.

Figure 2. New Project tab

1.

In the Project name box, type a name for your project.2.

By default, IWS stores all projects in the location specified by the Default Project Path
preference (Preferences on the Project tab of the ribbon), so that path will be automatically
displayed in the Location box. To save your project in another location, click Browse and then
select a folder.

3.

Select a Target platform.4.

Click OK to continue to the Project Wizard dialog.5.

4.

Figure 3. Project Wizard

5.

In the Resolution box, select a screen resolution. If you select Custom, then also type the
width and height in pixels.

6.

To share tags with another PC-based control application, select the application type from the list
and click the Configure button. (Each type has its own configuration options; please consult
the application vendor.) Otherwise, leave it set to <None>.

7.

Click OK when you're done.8.

For a more detailed walkthrough, see Creating a New Project.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Open Project
The Open Project command on the Application menu is used to open a saved project.

Selecting the command opens a standard Windows Open dialog, which you can use to locate and
open the project file (*.app).

Figure 1. Open dialog

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Open
The Open command on the Application menu is used to open a saved worksheet file.

Selecting the command opens a standard Windows Open dialog, which you can use to locate and
open the worksheet file. The application can open many different file types, so use the File type
combo-box to filter the files.

Figure 1. Available worksheet file types in the Open dialog

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Save
The Save command on the Application menu is used to save the active screen or worksheet.

The command becomes available only after you modify the worksheet in some way.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Save As
The Save As command on the Application menu is used to open a save the active screen or
worksheet at another location.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Save All
The Save All command on the Application menu is used to save all open worksheet files.

The command becomes available only after you modify the a worksheet in some way.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Save All as HTML
The Save All as HTML command on the Application menu is used to save all of your project's
screens and screen groups in HTML format.

After saving, the files can be found in the Web folder in the Project Explorer. For more information,
see Deploying your project as a Web application.

Note: You must close all worksheets before you execute this command.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Save as HTML
The Save as HTML command on the Application menu is used to save the active screen in HTML
format.

After saving, the file can be found in the Web folder in the Project Explorer. For more information, see
Deploying your project as a Web application.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Save Screen Group as HMTL
The Save Screen Group as HTML command on the Application menu is used to save a selected
screen group in HTML format.

After saving, the files can be found in the Web folder in the Project Explorer. For more information,
see Deploying your project as a Web application.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Print
The Print command on the Application menu is used to print the active screen or worksheet.

Selecting the command opens a standard Windows Print dialog, which you can use to adjust the print
range and the number of copies.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Print Preview
The Print Preview command on the Application menu is used to see what the active worksheet
would look like when it is printed.

Use the buttons located along the top of the Print Preview window as follows:

Click Print to open the Print dialog and print the screen or worksheet.

Click Next Page to view the next page in a series of pages.

Click Prev Page to view the previous in a series of pages.

Click Two Page to view two pages at a time.

Note: The Next Page, Prev Page, and Two Page buttons become active only when you
are printing more than one page.

Click Zoom In to check details.

Click Zoom Out to change back to the default size.

Note: The Zoom Out button becomes active after you Zoom In.

Click Close to close the Print Preview window.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Print Setup
The Print Setup command on the Application menu is used to configure the options (e.g., paper
size, print orientation) for a selected printer.

Selecting the command opens a standard Windows Print Setup dialog:

Figure 1. Print Setup dialog

Note: To specify a default printer:

Go to your Windows Start menu and select Start > Settings > Printers.1.

When the Printers dialog displays, right-click on a printer name.2.

When the shortcut menu displays, select Set As Default.3.

A check displays next to Set As Default indicating the selected printer is the default.4.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Close
The Close command on the Application menu is used to close the active screen or worksheet.

When you select this command, you will be prompted to save your changes before closing.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Close All
The Close All command on the Application menu is used to close all open screens and worksheets.

When you select this command, you will be prompted to save your changes before closing.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Application button >

Exit
The Exit command on the Application menu is used to close all open screens and worksheets, save
the project database, and then exit the application.

When you select this command, you will be prompted to save your changes before closing.

Note: Selecting this command is the same as clicking the Close button on the title bar.

Parent topic: Application button
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment >

Quick Access Toolbar
The Quick Access Toolbar is a customizable toolbar that contains a set of commands that are
independent of the ribbon tab that is currently displayed.

Move the Quick Access Toolbar

The Quick Access Toolbar can be located in one of two places:

Upper-left corner next to the Application button (default location); or

Below the ribbon, where it can run the full length of the application window.

If you don't want the Quick Access Toolbar to be displayed in its current location, you can move it to
the other location:

Click Customize Quick Access Toolbar .1.

In the list, click Show Below Ribbon or Show Above Ribbon.2.

Add a command to the Quick Access Toolbar

You can add a command to the Quick Access Toolbar directly from commands that are displayed on
the ribbon:

On the ribbon, click the appropriate tab or group to display the command that you want to add
to the Quick Access Toolbar.

1.

Right-click the command, and then click Add to Quick Access Toolbar on the shortcut menu.2.

You can also add and remove commands — as well as reset the toolbar to its default — using the
Customize dialog:

Click Customize Quick Access Toolbar .1.

In the list, click More Commands. The Customize dialog is displayed.

Figure 1. Customize Quick Access Toolbar dialog

2.

2.

In the Choose commands from menu, select the appropriate Ribbon tab. The commands
from that tab are displayed in the Commands list.

3.

In the Commands list, select the command that you want to add to the Quick Access Toolbar.4.

Click Add.5.

Only commands can be added to the Quick Access Toolbar. The contents of most lists, such as indent
and spacing values and individual styles, which also appear on the ribbon, cannot be added to the
Quick Access Toolbar.

Parent topic: The Development Environment
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment >

Ribbon
The new ribbon combines the numerous menus and toolbars from the previous version of IWS into a
single, user-friendly interface. Almost all application commands are now on the ribbon, organized into
tabs and groups according to general usage.

Figure 1. The Ribbon interface

Home tab
The Home tab of the ribbon is used to manage your project within the development
environment.

View tab
The View tab of the ribbon is used to customize the look of the development environment itself.

Insert tab
The Insert tab of the ribbon is used to insert new tags, screens, worksheets, and other
components into your project.

Project tab
The Project tab of the ribbon is used to configure your project settings.

Graphics tab
The Graphics tab of the ribbon is used to draw project screens.

Format tab
The Format tab of the ribbon is used to format and arrange objects in a project screen.

Help tab
The Help tab of the ribbon provides additional help with using the software.

Parent topic: The Development Environment
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Ribbon >

Home tab
The Home tab of the ribbon is used to manage your project within the development environment.

Figure 1. Home tab of the ribbon

The tools are organized into the following groups:

Clipboard : Cut , copy , paste , and find items in project screens and task worksheets.

Local Management : Run and stop the project on the local station (i.e., where the
development application is installed), as well as manage the execution tasks .

Remote Management : Connect to a remote station (e.g., a Windows Embedded device) so
that you can download the project to it, and then run , stop , and trouble shoot the project on
that station.

Tools : Miscellaneous tools to verify the project , import tags from other projects, convert
screen resolutions , and register ActiveX and .NET controls .

Tags : Manipulate tags and tag properties in the project database.

Parent topic: Ribbon

Related information
View tab
Insert tab
Project tab
Graphics tab
Format tab
Help tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Ribbon >

View tab
The View tab of the ribbon is used to customize the look of the development environment itself.

Figure 1. View tab of the ribbon

The tools are organized into the following groups:

Show/Hide: Show and hide the different parts of the development environment, as well as
restore the default layout.

Zoom: Zoom in and out of the screen editor.

Options: Change the language and font used in the development environment.

Window: Arrange the windows in the development environment.

Parent topic: Ribbon

Related information
Home tab
Insert tab
Project tab
Graphics tab
Format tab
Help tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Ribbon >

Insert tab
The Insert tab of the ribbon is used to insert new tags, screens, worksheets, and other components
into your project.

Figure 1. Insert tab of the ribbon

The tools are organized into the following groups:

Global: Insert tags, classes, translations, and procedures into the Global tab of the Project
Explorer.

Graphics: Insert screens and screen groups into the Graphics tab of the Project Explorer.

Task Worksheets: Insert task worksheets into the Tasks tab of the Project Explorer.

Communication: Insert server configurations and communication worksheets into the Comm
tab of the Project Explorer.

Parent topic: Ribbon

Related information
Home tab
View tab
Project tab
Graphics tab
Format tab
Help tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Ribbon >

Project tab
The Project tab of the ribbon is used to configure your project settings.

Figure 1. Project tab of the ribbon

The tools are organized into the following groups:

Settings: Configure the general project settings, and also set the project to run as a Windows
service.

Security System: Enable and configure the project security system.

Web: Configure the project to accept connections from thin clients and mobile devices, and also
configure outgoing email and FTP.

Parent topic: Ribbon

Related information
Home tab
View tab
Insert tab
Graphics tab
Format tab
Help tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Ribbon >

Graphics tab
The Graphics tab of the ribbon is used to draw project screens.

Figure 1. Graphics tab of the ribbon

Note: This tab is available only when you have a project screen open for editing.

The tools are organized into the following groups:

Screen: Configure settings for the project screen itself, such as its attributes, script, and
background color or image.

Editing: Select and edit objects in the project screen.

Shapes: Draw static lines and shapes.

Active Objects: Draw active objects, like buttons and check boxes.

Data Objects: Draw objects that display historical data, like alarms, events, and trends.

Libraries: Select from libraries of premade objects, such as symbols, .NET and ActiveX
controls, and external picture files.

Animations: Apply animations to other screen objects.

Parent topic: Ribbon

Related information
Home tab
View tab
Insert tab
Project tab
Format tab
Help tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Ribbon >
Screens and Graphics > Editing >
Screens and Graphics >

Format tab
The Format tab of the ribbon is used to format and arrange objects in a project screen.

Figure 1. Format tab of the ribbon

Note: This tab is available only when you've selected one or more objects in a project screen.

The tools are organized into the following groups:

Arrange: Arrange objects in a project screen, including bring to front and send to back, group,
align, and rotate.

Position: Precisely adjust the position of a screen object in a project screen.

Size: Precisely adjust the size of a screen object.

Style: Change the fill and line color of a screen object.

Fonts: Change the caption font of a screen object.

Move to Front and Move to Back

Move Backward and Move Forward

Group and Ungroup Tools

Align, Center and Distribute Tools

Rotate Tool

Adjusting the position of a screen object
Moving a screen object by selecting and dragging it can be imprecise — especially if you have
"snap to grid" enabled — so you can use the Position tools to precisely adjust the position of an
object.

Resize Tools

Fill Color Tool

Line Color Tool

Fonts Tool

Parent topic: Ribbon
Parent topic: Editing
Parent topic: Screens and Graphics

Related information
Home tab
View tab
Insert tab
Project tab
Graphics tab
Help tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Ribbon >

Help tab
The Help tab of the ribbon provides additional help with using the software.

Figure 1. Help tab of the ribbon

The tools are organized into the following groups:

Documentation: Access the documentation for the development application, including this help
file / technical reference and notes for the individual communication drivers.

Information: Access other information about InduSoft Web Studio, including the license
agreement, product website, and release notes, as well as system and support details that
make it easier for Customer Support to assist you.

Parent topic: Ribbon

Related information
Home tab
View tab
Insert tab
Project tab
Graphics tab
Format tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment >

Project Explorer
The Project Explorer organizes all of the screens, worksheets, and other components that make up
your project and presents them in an expandable tree-view.

Figure 1. The Project Explorer

Click the Expand icon or double-click the folder to view the contents of the folder. Click the Collapse
icon to close the folder.

If you right-click on any component in the Project Explorer, a shortcut menu is displayed with options
for that component.

Global tab
The Global tab of the Project Explorer contains the project tags database, as well as other
features that apply to the entire project such security and UI translation.

Graphics tab
The Graphics tab of the Project Explorer contains all of the screens, screen groups, and
symbols in your project.

Tasks tab
The Tasks tab of the Project Explorer organizes the worksheets that are processed as
background tasks during project runtime.

Comm tab
The Comm tab of the Project Explorer organizes the worksheets that establish communication
with another device or software using available protocols.

Parent topic: The Development Environment

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Project Explorer >

Global tab
The Global tab of the Project Explorer contains the project tags database, as well as other features
that apply to the entire project such security and UI translation.

Figure 1. Global tab of the Project Explorer

The folders on the Global tab are described on the following pages:

Project Tags contains tags you create during project development (such as screen tags or tags
that read from/write to field equipment).

Classes contains compound tags, called class tags, created to associate a set of values (rather
than a single value) with an object.

Shared Database contains tags that were created in a PC-based control program and then
imported into the project tags database.

For example you can import SteepleChase tags into your project so that it can read/write data
from a SteepleChase PC-based control product.

System Tags contains predefined tags with predetermined functions that are used by the
project for specific, supervisory tasks (for example, Date tags hold the current date in string
format).

All system tags are read-only, which means you cannot add, edit, or remove these tags from
the database.

Security contains all of the group and individual user security accounts configured for the
current project.

Procedures contains VBScript functions and sub-routines that can be called by any other script
in the project.

Event Logger contains logging and event-retrieval features.

Translation contains the translation worksheet that defines how your project's user interface
should be translated into another language.

Parent topic: Project Explorer

Related information
Graphics tab
Tasks tab
Comm tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Project Explorer >
Screens and Graphics >

Graphics tab
The Graphics tab of the Project Explorer contains all of the screens, screen groups, and symbols in
your project.

Figure 1. Graphics tab of the Project Explorer

The folders on the Graphics tab are described on the following pages:

Screens contains all of the screens created for the current project.

Screen Group contains the entire screen groups (individual screens combined into manageable
groups) created for the current project.

Web Pages contains all of the Web pages (i.e., screens saved in HTML format) created for the
project.

Mobile Access allows configuration of the mini-site that is targeted to cell phones, PDAs,
and other mobile devices.

Project Symbols contains all of the user-defined symbols, which can be groups of images
and/or text. You can create custom symbols for the project and save them into this folder.

Graphics Script contains predefined functions that are executed when certain screen actions
occur, such as when the Thin Client is launched on a remote station.

Symbols contains the library of common symbols and graphics provided with the project.
Double-click the Library icon to open the Symbol Library.

Layout displays all screens currently open in the Screen Editor and allows you to visualize how
the screens fit together during runtime.

Screens folder

Screen Group Folder

Web Pages Folder

Mobile Access

Layout Tool

Parent topic: Project Explorer
Parent topic: Screens and Graphics

Related information
Global tab
Tasks tab
Comm tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Project Explorer >

Tasks tab
The Tasks tab of the Project Explorer organizes the worksheets that are processed as background
tasks during project runtime.

Figure 1. Tasks tab of the Project Explorer

The folders on the Tasks tab are described on the following pages:

Alarms contains the Alarm worksheets used to configure alarm groups and the tags related to
each alarm group in the project. You also use the Alarm task to define the alarm messages
generated during project runtime.

Trend contains the Trend worksheets used to configure history groups that store trend curves
for the project. You can use the Trend task to declare which tags must have their values stored
on disk, and to create history files for trend graphs. Your project stores the samples in a binary
history file (*.hst), and displays both history and on-line samples in a trend graph screen.

Recipes contains the Recipe worksheets used to configure how data is exchanged between the
project database and disk files in ASCII or DBF format, and how values are transferred between
files and real-time memory.

Reports contains the Report worksheets used to configure reports (text type) that are sent to a
printer or a disk. Reports tasks allow you to configure text reports with system data, which
makes report creation easier and more efficient.

ODBC contains the ODBC worksheets used to configure how the ODBC interface runs in a
network environment and uses standard Windows ODBC configuration. You configure ODBC
tasks to exchange data between your project and any database supporting the ODBC interface.

Math contains the Math worksheets used to configure and implement additional routines to
work with different tasks. Your project executes Math worksheets as Background Tasks during
runtime. You can configure Math worksheets to provide free environments for logical routines
and mathematical calculations required by the project.

Script contains the Startup Script and other Script Groups.

Scheduler contains the Scheduler worksheets used to configure events using defined

mathematical expressions, which are executed according to time, date, or other monitored
event.

Database/ERP contains the Database worksheets that communicate with external databases
using the standard ADO.NET interface (as an alternative to ODBC).

Parent topic: Project Explorer

Related information
Global tab
Graphics tab
Comm tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment > Project Explorer >

Comm tab
The Comm tab of the Project Explorer organizes the worksheets that establish communication with
another device or software using available protocols.

Figure 1. Comm tab of the Project Explorer

The folders on the Comm tab are described on the following pages.

Drivers contains the Driver worksheets used to configure a communication interface (or
interfaces) between the project and remote equipment (such as a PLC or transmitters).

A communication driver is a .DLL file that contains specific information about the remote
equipment and implements the communication protocol.

OPC contains the OPC worksheets used to configure OPC interfaces between your project and
an OPC Server. An OPC Client module enables your project to communicate with any device
that acts as an OPC Server by implementing the OPC standard described in theOLE for Process
Control Data Access Standard Version 2.0 document published by the OPC Foundation.

OPC UA contains the OPC UA worksheets that are used to connect to OPC Servers via the new
OPC Unified Architecture protocol.

OPC Xi contains the OPC Xi worksheets that are used to connect to OPC Servers via the new
OPC Express Interface protocol.

TCP/IP contains the TCP/IP worksheets used to configure TCP/IP Client interfaces for other
IWS stations.

IWS TCP/IP Client and Server modules enable two or more projects to keep their databases
synchronized using the TCP/IP protocol.

DDE contains the DDE worksheets used to configure a DDE Client for a DDE Server application
(such as Microsoft Excel or any other Windows program that supports this interface).

DDE (Dynamic Data Exchange) is a protocol that enables dynamic data exchange between
Windows applications. A DDE conversation is an interaction between server and client programs.
IWS provides interfaces that run as clients or as servers.

Parent topic: Project Explorer

Related information
Global tab
Graphics tab
Tasks tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment >

Screen/Worksheet Editor
Use the powerful, object-oriented screen editor to create and edit a variety of screens and
worksheets for your projects. You can input information using your mouse and keyboard, output
control data to your processes, and automatically update screens based on data input from your
processes.

Figure 1. Screen/Worksheet Editor

Other screen editor features include:

Simple point-and-click, drag-and-drop interface

Grouping objects to preserve the construction steps of individual objects

Editing objects without having to ungroup internal object components or groups

Handling bitmap objects and background bitmaps

Status line support in project windows and dialogs

Parent topic: The Development Environment
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

The Development Environment >

Database Spy
The Database Spy window is a debugging tool that allows you to: monitor and force values to project
tags; execute and test functions; and execute and test math expressions.

Figure 1. Sample Database Spy window

The window contains the following elements:

For each item that you want to monitor during runtime:

Tag/Expression: Specify a project tag, system tag, or expression that you want to
monitor.

Value: Displays the value returned by the tag/expression.

Quality: Displays the quality (GOOD or BAD) of the value returned by the tag/expression.

Continuous: Select this option to have the project continuously evaluate the
tag/expression.

DB tabs: The windows is divided into multiple sheets, so that you can keep your items
organized.

Scroll bars: Use to view areas of the Database Spy that are obscured from view because of the
window size or the size of the current sheet.

Tip: The Database Spy is dockable, which means you can move it to another location in the
development environment. Click on the titlebar and drag it to a new location. Release the mouse
button to attach or dock the window to its new location.

Parent topic: The Development Environment
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment >

Output (LogWin)
You can use the Output window to view debugging messages generated during project runtime. The
window displays OPC, DDE, and TCP/IP transactions, module activation, trace tags, and so on.

Figure 1. Sample Output Window

The window contains the following elements:

XRef tab: Use the Cross Reference tool to get a tag, and to find every place in the project
where the tag is being used. Results appear on this tab, providing path and filename, column,
row in the spreadsheet. So, if something changes in the tag, and produces unexpected or
unsuccessful results, you can locate all instances of the tag for debugging purposes.

Note: The XRef tab does not work for functions, only tags, but it does allow you to look for
array indices.

Hide Docked Window button (): Click to open or close the window.

Alternatively, to hide the window, you can deselect (uncheck) the Output Window option on
the View tab of the ribbon.

Contract/Expand button (): Click to contract and expand the Output window.

Scroll Bars: Click and drag to view areas of the Output window that are obscured from view
because of the window size or the length of your data.

The Output window is dockable, which means you can move it to another location in the development
environment. Click on the title bar and drag the window to a new location. Release the mouse button
to attach or dock the window to its new location.

Configuring the Log to Show Additional Information

By default, the log shows only debugging and error messages — that is, messages indicating that
your project is not running properly. If the log showed all messages generated by IWS, it would
quickly overflow with information, making it unusable.

1.

To configure the log to show specific additional information:

Right-click anywhere in the Output window, and then click Settings on the shortcut menu. The
Log Settings dialog is displayed.

1.

In the Log Options tab of the dialog, select the specific types of messages that you want the log
to show.

Figure 2. Log Settings — Options Tab

Option Description

Field Read Commands and
Field Write Commands

Show any read and/or write commands that are sent to
connected devices.

Protocol Analyzer Show messages generated by configured device drivers.

OPC Messages Show messages generated by OPC communications.

TCP/IP Messages Show messages generated by TCP/IP communications.

Recipe/Report Show messages generated by the Recipe and Report tasks.

Display Open/Close Display a message whenever a screen is opened or closed.

Logon/Logout Display a message whenever a user logs on or logs out. (For
more information, see Security.)

Trace Messages Show messages generated by the Trace() function. This
function is used to generate customized messages from
within your project.

Database Messages Show messages generated by the ODBC and ADO.NET
database interfaces.

DDE Messages Show messages generated by DDE communications.

Insert date/time Timestamp each message.

2.

In the Log Tags tab of the dialog, click Add to browse for project tags.

Figure 3. Log Settings — Tags Tab

3.

The Output window will display a message whenever the value of a selected tag changes.

3.

Click OK to save your settings and close the Log Settings dialog.4.

Parent topic: The Development Environment
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment >

Title Bar
The Title Bar located along the top of the development environment displays the application name (e.g.,
InduSoft Web Studio) followed by the name of the active screen or worksheet (if any).

Figure 1. Example of Title Bar

The Title Bar also provides the following buttons (from left to right):

Minimize button : Click to minimize the development environment window to the Taskbar.

Restore Down / Maximize : Click to toggle the development environment window between two
sizes:

Restore Down button reduces the window to its original (default) size.

Maximize button enlarges the window to fill your computer screen.

Close button : Click to save the database and then close the development environment. If you
modified any screens or worksheets, the application prompts you to save your work. This button's
function is similar to clicking Exit Application on the Application menu.

Note: Closing the development environment does not close either the project viewer or the
runtime system, if they are running.

Parent topic: The Development Environment
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment >

Status Bar
The Status Bar located along the bottom of the development environment provides information about
the active screen (if any) and the state of the application.

Figure 1. Example of Status Bar

The Status Bar fields (from left to right) are described in the following table:
Execution Mode
The current execution mode of the application.
CAP
Indicates whether the keyboard Caps Lock is on (black) or off (grey).
NUM
Indicates whether the keyboard Num Lock is on (black) or off (grey).
SCRL
Indicates whether the keyboard Scroll Lock is on (black) or off (grey).
Object ID
The ID number of a selected screen object.
Cursor Position
The location of the cursor on the active screen or worksheet. If it's a screen, then the position of the
mouse cursor is given as X,Y coordinates, where X is the number of pixels from the left edge of the
screen and Y is the number of pixels from the top edge of the screen. If it's a worksheet, then the
position of the text cursor is given as Line and Column.
Object Size
The size (in pixels) of a selected screen object, where W is the width and H is the height.
No DRAG
Indicates whether dragging is disabled (No DRAG) or enabled (empty) in the active screen.
Tag Count
The total number of tags used so far in the project.

Field Description

Parent topic: The Development Environment
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Creating a New Project

Use the following steps to create a new project:

Click the Application button, and then click New on the the Application menu. The New dialog is
displayed.

1.

Click the Project tab.

Figure 1. New Project dialog

2.

In the Project name box, type the name of your project, keeping the following guidelines in
mind:

You must follow the usual Windows naming conventions; and

Do not use spaces in the name if you want to access your project from the Web. (URLs do
not recognize spaces.)

3.

By default, IWS stores all projects in the directory C:\Users\username\My
Documents\InduSoft Web Studio v7.0 Projects\, so this file path will be automatically

displayed in the Location box. To save your project to another location, click Browse and then
select the desired folder.

Tip: If you want to permanently change the default location where projects will be saved,
then edit the file Program Settings.ini to include the following entry:

4.

[Application]

DefaultDirectory=filepath

Select a license level from the Target platform list, to indicate the platform on which you will
be running this project.

Tip: To check the license level on your workstation, exit from the development application
and then open the Protection Manager (Start > All Programs > InduSoft Web Studio
v7.0 > Register).

Important: If you try to open or develop an project that was originally developed using a
higher license level than exists on your current workstation, the development application
will prevent you from opening the project and put you into Demo mode.

To correct this situation, click Target System on the Project tab of the ribbon. (The menu
displays only those target systems that you are licensed to use.) Select one of these to
accomodate your current license level.

Although you can change your license level later, we recommend that you verify and select
the correct license level now, so you will not waste time developing projects requiring a
license level you are not authorized to use on the runtime device.

Also, we recommend developing for the lowest license level if you will be running your
project on multiple computers with different licenses.

5.

When you are finished configuring the Project tab, click OK to continue to the Project Wizard
dialog.

Figure 2. Project Wizard Dialog

6.

7.

Use this dialog to select a template, set the default screen resolution, and to indicate that you
want to share tags with another software product database such as Steeplechase or ISaGRAF.

Instructions for using these features are provided in the following sections.

7.

Click OK when you're done. Your new project is opened and ready for editing.8.

Specifying a Default Screen Resolution

Use the Resolution list box to select a default resolution (display size) for your project's screens.

Figure 3. Selecting a default resolution

If you select Custom, then also enter the screen Width and Height (in pixels).

Note: You can adjust the resolution of your screens after you've created them by clicking
Convert Resolution on the Home tab of the ribbon.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring additional project
settings
Select Project Settings to open the Project Settings dialog, which controls settings that affect the
overall project.

Figure 1. Project Settings dialog

Information tab

Options tab

Viewer tab

Communication tab

Web tab

Preferences tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring additional project settings >

Information tab

Figure 1. Project Settings: Identification tab

Use the following parameters to identify the project (for documentation purposes only).

Description

Revision

Company

Author

Field Equipment

Notes

Parent topic: Configuring additional project settings

Related information
Options tab

Viewer tab
Communication tab
Web tab
Preferences tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring additional project settings >

Options tab
Use this tab to specify parameters relating to your project in general.

Figure 1. Project Settings: Options tab

A description of these parameters follows:

Target system: Use the combo box to specify the target system for the current project. The
target system sets the project restrictions (such as number of tags supported) and must match
your license. The description of the main license restrictions for each target system is displayed
below the combo-box where you chose it.

CAUTION:

If you specify a Target System level that does not match the actual license level
on the target system, then your project may not run properly.

Resolution: Displays your project's screen resolution.

Alarm History and Events: Type a value into the History Life Time (days) field to specify how
long to keep alarm and event history files. After the specified number of days, the project
automatically deletes existing alarm/event history files that are older than the period specified.
If you type zero in this field, the project does not delete any history files automatically. In such
a case, you should create an external procedure to clean the old history files; otherwise, the
free memory in the computer will eventually be depleted.

History Format: Select the format of the Alarm/History event, as follows:

Format Description

Proprietary Saves the history data in the Alarm sub-folder of your project folder (by

default) in text files using the proprietary format.

Database Saves the history data in the SQL Relational Database specified by the
user, using the built-in ADO interface.

Binary Saves the history data in the Alarm sub-folder of your project folder (by

default) in binary files using the proprietary format.

For more information, see Alarm History Database.

Default Database: Allows you to configure a Default Database, which can be shared by
different tasks and objects. See Configuring a Default Database for All Task History for more
information.

Shared Tags pane: Select a third-party software from the combo-box. Click the Configure
button to configure the settings for importing tags from one of the following data sources into
the Shared Database folder:

<None>: Does not share tags with any external software

First ISaGRAF: Import tags from a First ISaGRAF project into the Shared Tags folder of
the current project, and, if enabled, configure the communication interface with the ISAGR
driver automatically.

ISaGRAF: Import tags from a ISaGRAF project into the Shared Tags folder of the current
project, and, if enabled, configure the communication interface with the ISAGR driver
automatically.

Think & Do: Import tags from a Think & Do project into the Shared Tags folder of the
current project, and, if enabled, configure the communication interface with the TND driver
automatically.

SteepleChase: Import tags from a SteepleChase project into the Shared Tags folder of
the current project, and configure the communication interface with the VLC driver
automatically.

SixNet: Import tags from a SixNet project into the Shared Tags folder of the current
project, and configure the communication interface with the SNET driver automatically.

OpenControl: Import tags from an OpenControl project into the Shared Tags folder of
the current project, and configure the communication interface with the OC driver
automatically.

Straton: Import tags from a Straton project into the Shared Tags folder of the current
project, and configure the communication interface with the STRAT driver automatically.

Note: PC-based control has its own, customized interface that requires you to provide

information about the PC-based control application in order to share tags with the IWS
project.

Alarm History Database

Configuring a Default Database for All Task History

Database Configuration

Parent topic: Configuring additional project settings

Related information
Information tab
Viewer tab
Communication tab
Web tab
Preferences tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring additional project settings > Options tab >

Alarm History Database

The alarm history can be saved either in the IWS proprietary format or to an external SQL Relational
database by ADO. The alarm history settings can be configured in the project settings (Options on
the Project tab of the ribbon):

Figure 1. Project Settings: Options tab

The Alarm History and Events interface allows you to configure the following settings:

Field Remarks Syntax

History Life Time (days) The history for alarm/event messages older than the
number of days specified in this field are automatically
deleted, following a FIFO (First-In, First-Out) behavior.
If this field is left in blank, the history of alarms/events
are not deleted automatically.

Number

History Format Defines the format of the history of alarms/events:

Proprietary: Saves the history in the proprietary
format. The alarm messages are saved in a text
file with the name ALyymmdd.ALH, where:

yy is the last two digits of the current year.

mm is the month.

dd is the day

There will be one history file for each day. By
default, the alarm history files created with the
proprietary format are stored in the \Alarm sub-

folder of the project. However, it is possible to
direct the alarms to a different directory by using
the SetAppAlarmPath function from the built-in
language.

Database: Saves the history in a third-party SQL
Relational Database (e.g., SQL Server).

Combo-box

Alarm Database When selecting Database as the format for the history
of alarms, the specific settings to interface with the
third-party SQL Relational Database can be configured

—

Field Remarks Syntax third-party SQL Relational Database can be configured
by the dialog launched when pressing this button. For
further details about support for third-party SQL
Relational Databases, see Database Interface.

When saving the alarm history in the proprietary format, each alarm event is saved in a new line,
using the pipe character (|) to delimiter the different fields, as illustrated below:

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10|P11|P12|P13|P14|P15|P16|P17|P18|P19|P20|P21

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10|P11|P12|P13|P14|P15|P16|P17|P18|P19|P20|P21

.

.

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10|P11|P12|P13|P14|P15|P16|P17|P18|P19|P20|P21

The format of the history both in proprietary format and in the SQL Relational Database format is
described in the following table:

Proprietary SQL Relational Database Remarks File Vers.

Field No. Field Name Field Type

P1 — — File version (Current =
003)

001

P2 Al_Start_Time Date/Time Start Date
(DD/MM/YYYY)

001

P3 Start Time (HH:MM:SS) 001

P4 Al_Tag Text Tag Name 001

P5 Al_Message Text Alarm Message 001

P6 Al_Ack Number Ack, where:

0: Alarm was
acknowledged or
does not require
acknowledgment

1: Alarm was not
acknowledged

001

P7 Al_Active Number Active, where:

0: Alarm is not
active

1: Alarm is active

001

P8 Al_Tag_Value Number Tag Value when the
event occurred

001

third-party SQL Relational Database can be configured
by the dialog launched when pressing this button. For
further details about support for third-party SQL
Relational Databases, see Database Interface.

When saving the alarm history in the proprietary format, each alarm event is saved in a new line,
using the pipe character (|) to delimiter the different fields, as illustrated below:

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10|P11|P12|P13|P14|P15|P16|P17|P18|P19|P20|P21

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10|P11|P12|P13|P14|P15|P16|P17|P18|P19|P20|P21

.

.

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10|P11|P12|P13|P14|P15|P16|P17|P18|P19|P20|P21

The format of the history both in proprietary format and in the SQL Relational Database format is
described in the following table:

Proprietary SQL Relational Database Remarks File Vers.

Field No. Field Name Field Type

P1 — — File version (Current =
003)

001

P2 Al_Start_Time Date/Time Start Date
(DD/MM/YYYY)

001

P3 Start Time (HH:MM:SS) 001

P4 Al_Tag Text Tag Name 001

P5 Al_Message Text Alarm Message 001

P6 Al_Ack Number Ack, where:

0: Alarm was
acknowledged or
does not require
acknowledgment

1: Alarm was not
acknowledged

001

P7 Al_Active Number Active, where:

0: Alarm is not
active

1: Alarm is active

001

Proprietary SQL Relational Database Remarks File Vers.

Field No. Field Name Field Type

P8 Al_Tag_Value Number Tag Value when the
event occurred

001

P9 Al_Group Number Alarm Group Number 001

P10 Al_Priority Number Priority Number 001

P11 Al_Selection Text Selection 001

P12 Al_Type Number Type, where:

1 is HiHi

2 is Hi(On)

4 is Lo(Off)

8 is LoLo

16 is Rate(Change)

32 is Deviation+

64 is Deviation-

001

P13 Al_Ack_Req Number Ack required, where:

0: Alarm requires
acknowledge

1: Alarm does not
require acknowldge

001

P14 Al_Norm_Time Date/Time Normalization Date
(DD/MM/YYYY)

001

P15 Normalization Time
(HH:MM:SS)

001

P16 Al_Ack_Time Date/Time Ack Date (DD/MM/YYYY) 001

P17 Ack Time (HH:MM:SS) 001

P18 Al_User User Name 002

P19 Al_User_Comment Comment 002

P20 Al_User_Full User Full Name 003

P21 Al_Station Station 003

P22 Al_Prev_Tag_Value Number Previous Value 003

P23 Bias Number Time Zone Bias 003

— Al_Start_Time_ms Number Number of milliseconds
for the Start Time
timestamp. This field is
used when the database
does not support ms in a

003

P8 Al_Tag_Value Number Tag Value when the
event occurred

001

P9 Al_Group Number Alarm Group Number 001

P10 Al_Priority Number Priority Number 001

P11 Al_Selection Text Selection 001

P12 Al_Type Number Type, where:

1 is HiHi

2 is Hi(On)

4 is Lo(Off)

8 is LoLo

16 is Rate(Change)

32 is Deviation+

64 is Deviation-

001

P13 Al_Ack_Req Number Ack required, where:

0: Alarm requires
acknowledge

1: Alarm does not
require acknowldge

001

P14 Al_Norm_Time Date/Time Normalization Date
(DD/MM/YYYY)

001

P15 Normalization Time
(HH:MM:SS)

001

P16 Al_Ack_Time Date/Time Ack Date (DD/MM/YYYY) 001

P17 Ack Time (HH:MM:SS) 001

P18 Al_User User Name 002

P19 Al_User_Comment Comment 002

P20 Al_User_Full User Full Name 003

P21 Al_Station Station 003

P22 Al_Prev_Tag_Value Number Previous Value 003

P23 Bias Number Time Zone Bias 003

— Al_Start_Time_ms Number Number of milliseconds
for the Start Time
timestamp. This field is
used when the database
does not support ms in a

003

Proprietary SQL Relational Database Remarks File Vers.

Field No. Field Name Field Type does not support ms in a
TimeStamp field.

— Al_Norm_Time_ms Number Number of milliseconds
for the Norm Time
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

— Al_Ack_Time_ms Number Number of milliseconds
for the Ack Time
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

— Al_Deleted Number Deleted, where:

0: Alarm message
was not deleted by
the user (not
visible).

1: Alarm message
was deleted by the
user (visible).

003

— Last_Update Date/Time Timestamp of the last
update for this event.

003

— Last_Update_ms Number Number of milliseconds
for the Last Event
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

See also:

SQL Relational Databases

Studio Database Gateway

Database Appendix A: Using ODBC Databases

Configuring a Default Database for All Task History

Parent topic: Options tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

does not support ms in a
TimeStamp field.

— Al_Norm_Time_ms Number Number of milliseconds
for the Norm Time
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

— Al_Ack_Time_ms Number Number of milliseconds
for the Ack Time
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

— Al_Deleted Number Deleted, where:

0: Alarm message
was not deleted by
the user (not
visible).

1: Alarm message
was deleted by the
user (visible).

003

— Last_Update Date/Time Timestamp of the last
update for this event.

003

— Last_Update_ms Number Number of milliseconds
for the Last Event
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

See also:

SQL Relational Databases

Studio Database Gateway

Database Appendix A: Using ODBC Databases

Configuring a Default Database for All Task History

Parent topic: Options tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring additional project settings > Options tab >
Database Interface >

Configuring a Default Database for
All Task History
You can configure a Default Database that will save the historical data from all Tasks in a project.
After you do, when you create a new Task worksheet, you can choose either to use the Default
Database or to configure a new database for that specific worksheet.

To configure the connection settings for the Default Database:

On the Project tab of the ribbon, in the Settings group, click Options. The Project Settings
dialog is displayed.

1.

Click Configure. The Default Database Configuration dialog is displayed.

Figure 1. Default Database Configuration dialog

2.

Please refer to Database Configuration dialog for help completing the fields in this window.

Parent topic: Options tab
Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring additional project settings > Options tab >
Database Interface >

Database Configuration
The Database Configuration dialog allows you to configure the necessary settings to link IWS to an
external database file.

Figure 1. Database Configuration dialog

Database combo-box: Allows you to select either Primary or Secondary. With Primary, all
settings displayed in the Database Configuration window apply to the Primary Database
interface. Otherwise, they apply to the Secondary Database interface. You can configure the
Secondary database in the following modes:

Disabled: In this mode, IWS saves data in the Primary Database only. If the Primary
Database is unavailable for any reason, the data is not saved anywhere else. This option
may cause loss of data if the Primary Database is not available.

Redundant: In this mode, IWS saves data in both Primary and Secondary Databases. If
one of these databases is unavailable, IWS keeps saving data only in the database that is
available. When the database that was unavailable becomes available again, IWS
synchronizes both databases automatically.

Store and Forward: In this mode, IWS saves data in the Primary Database only. If the
Primary Database becomes unavailable, IWS saves the data in the Secondary Database.
When the Primary Database becomes available again, IWS moves the data from the
Secondary Database into the Primary Database.

Note: The Primary and Secondary can be different types of databases. However, they

must have the same fields.

Using the Secondary Database, you can increase the reliability of the system and use the
Secondary Database as a backup when the Primary Database is not available. This architecture
is particularly useful when the Primary Database is located in the remote station. In this case,
you can configure a Secondary Database in the local station to save data temporarily if the
Primary Database is not available (during a network failure, for instance).

Use project default checkbox: When this option is checked, IWS uses the settings configured
in the Default Database for the task that is being configured (Connection string, User name,
Password, Retry Interval and Advanced Settings). When this option is not checked, you can
configure these settings individually to the current task.

Connection string field: This field defines the database where IWS will write and read values
as well as the main parameters used when connecting to the database. Instead of writing the
Connection string manually, you can press the browse button (…) and select the database type
from the Data Link Properties window.

Figure 2. Data Link Properties dialog

Note: The list of Database Providers shown in the Data Link Properties window depends on
the providers actually installed and available in the computer where you are running IWS.
Consult the operating system documentation (or the database documentation) for further
information regarding the settings of the Provider for the database that you are using.

User name field: User name used to connect to the database. The user name configured in this
field must match the user name configured in the database.

Password field: Password used to connect to the database. The password configured in this
field must match the password configured in the database.

Retry Interval field: If IWS is unable to connect to the database for any reason, it retries
automatically to connect to the database after the number of seconds configured in this field
have passed.

Advanced button: After pressing this button, you have access to customize some settings. For
most projects, the default value of these settings do not need to be modified and should be
kept.

Figure 3. Database Configuration: Advanced dialog

Milliseconds combo box: You can configure how the milliseconds will be saved when
saving the date in the database. Each database saves the date in different formats; for
example, some databases do not support milliseconds in a Date field. The following
options are available:

Default: Uses the format pre-defined for the current database. The databases
previously tested by InduSoft are previously configured with the most suitable
option. When selecting Default, IWS uses the setting pre-configured for the current
database type. If you are using a database that has not been previously configured,
the Default option attempts to save the milliseconds in a separate field.

Tip: The default option for each database is configured in the StADOSvr.ini file,
stored in the \BIN sub-folder of IWS. See Studio Database Gateway for
information about how to configure the StADOSvr.ini file.

Disable: Does not save the milliseconds at all when saving the date in the database.

Enable: Saves the milliseconds in the same field where the date is saved.

Separate Column: Saves the milliseconds in a separated column. In this case, the
date is saved in one field (without the milliseconds precision) and the number of
milliseconds is saved in a different column. This option is indicated where you want to
save timestamps with the precision of milliseconds but the database that you are
using does not support milliseconds for the Date fields.

Save time difference checkbox: When this option is checked (default), IWS saves the
Time Zone configured in the computer where the project is running in each register of the
database. This option must be enabled to avoid problems with daylight savings time.

Database Gateway: Enter the Host Name/IP Address where the IWS Database Gateway
will be running. The TCP Port number can also be specified, but if you are not using the
default, you will have to configure the IWS Database Gateway with the same TCP Port.
See the Studio Database Gateway section for information about how to configure the
advanced settings for the IWS ADO Gateway.

Disable Primary Keys: For some modules, IWS will try to define a primary key to the
table in order to speed up the queries. If you are using a database that does not support
primary keys (e.g., Microsoft Excel), then you should select (check) this option

Table Pane

This area allows you to configure the settings of the Table where the data will be saved. All tasks can
share the same database. However, each task (Alarm, Events, Trend worksheets) must be linked to
its own Table. IWS does not check for invalid configurations on this field, therefore you should make
sure that the configuration is suitable for the database that you are using.

Use default name checkbox: When this option is checked (default), IWS saves and/or
retrieves the data in the Table with the default name written in the Name field.

Automatically create checkbox: When this option is checked (default), IWS creates a table
with the name written in the Name field automatically. If this option is not checked, IWS does
not create the table automatically. Therefore, it will not be able to save data in the database,
unless you have configured a table with the name configured in the Name field manually in the
database.

Name: Specifies the name of the Table from the database where the history data will be saved.

Tip: To specify a sheet in a Microsoft Excel spreadsheet file, use the following syntax:

[sheetname$]

Refresh button: If the database configured is currently available, you can press the Refresh
button to populate the Name combo-box with the name of the tables currently available in the
database. In this way, you can select the table where the history data should be saved instead
of writing the Table name manually in the Name field.

Run-Time Pane

This area allows you set runtime values. The following fields are available:

Status (output) checkbox: The tag in this field will receive one of the following values:

Value Description

0 Disconnected from the database. The database is not available; your
configuration is incorrect or it is an illegal operation.

Value Description

1 The database is connected successfully.

2 The database is being synchronized.

Reload (output): Specify a reload tag if you are using curly brackets in any of the configuration
fields. When you want to reconnect to the database using the updated values on your tags, set
the tag on this field to 1. IWS will update the configuration when trying to perform an action in
the database, setting the tag back to 0 when it is finished.

See also:

Configuring a Default Database for All Task History.

Parent topic: Options tab
Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

1 The database is connected successfully.

2 The database is being synchronized.

Reload (output): Specify a reload tag if you are using curly brackets in any of the configuration
fields. When you want to reconnect to the database using the updated values on your tags, set
the tag on this field to 1. IWS will update the configuration when trying to perform an action in
the database, setting the tag back to 0 when it is finished.

See also:

Configuring a Default Database for All Task History.

Parent topic: Options tab
Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring additional project settings >

Viewer tab
Use this tab to configure the project viewer and change certain runtime behaviors.

Figure 1. Project Settings: Runtime Desktop tab

Titlebar checkbox and text field: Click (enable) this box and type a new name into the field
provided to specify or change the default titlebar text for the Viewer window.

Minimize Box, Maximize Box, and Close Boxcheckboxes: Click these boxes to display
(enable) or hide (disable) these buttons on the Viewer window.

Start Maximized checkbox: Click (enable) this box to maximize the Viewer window
automatically when you run your project.

Menu checkbox and Options… button: Click (enable) the checkbox and the Options… button
to specify which menu options are available at runtime. When the Runtime menu options dialog
displays (as follows), click the checkboxes to display (enable) or hide (disable) these menu
options.

Figure 2. Runtime Menu Options dialog

Resize Border checkbox: Click (enable) this box to allow the user to resize the Viewer window
during runtime.

Status Line checkbox: Click (enable) this box to display the Status Line in the runtime project.

Startup screen field: Click the combo box and select the screen (.SCR) or screen group (.SG)
you want to display automatically when you open the runtime project.

Note: Another way to specify a screen or screen group as the startup screen is to right-
click on it in the Project Explorer and then choose Set as startup from the shortcut menu.

Show ???? when quality is not GOOD checkbox: Click (enable) this box to display question
marks (???) instead of the tag's value when their quality is not good.

Hide Taskbar checkbox: Click (enable) this box to hide the Windows taskbar by default.

Enable ToolTips checkbox: Click (enable) this box to see Windows ToolTips when running your
project. You can configure tooltips in the Hint field of the Object Properties dialog of each
object.

Auto Screen Scaling checkbox: Click (enable) this box to automatically scale project screens
when you resize the Viewer window. This feature is available for local projects running on
Windows PC or in the Thin Client. This parameter is not available for projects running on
Windows Embedded target systems.

Active area indication pane: Click (enable) the Show Object Edge and Change Mouse Cursor
checkboxes in this area to modify the object edge and the mouse cursor when moving the
cursor over any object where the Command animation has been applied.

Virtual Keyboard: When this option is checked, the Virtual Keyboard is enabled for your
project. (This option does not apply when your project is running on a Thin Client; for more
information, see Project Settings: Web.) The keyboard allows the user to enter data during
runtime on touchscreen panels — that is, without typing on a physical keyboard. For example, a
Text object with the Text Data Link animation applied and the Input Enabled option checked.

You can establish a default configuration for the virtual keyboard:

Default: Select the default keyboard type to be used in your project, when no keyboard
type is specified by the calling object or function.

Scale: Using this option, you can shrink or enlarge the keyboard to fit the size of the
target display. A value of 100% represents the default size of each keyboard type.

Show Hint checkbox and field: When this option is checked, a hint is displayed in the title
bar of the keyboard. For individual objects, the hint is configured in the Object Properties

dialog. Otherwise, type a string value in the Show Hint field to serve as a defaut hint.

Show Min/Max Fields option: When this option is checked, the minimum and maximum
allowed values are displayed at the bottom of the keyboard. For objects, these values are
configured in the Object Properties dialog. Otherwise, the Min and Max properties of the
associated Tag are used by default.

Note: The Min and Max fields are displayed only on the Keypad keyboard type, and
only when the associated Tag is defined as Integer or Real. If Min is greater than Max,
then input will be disabled. If Min/Max configured on the object is different from
Min/Max configured in the Tag properties, then your project will attempt to scale the
input accordingly.

Mouse Cursor checkbox: Click (enable) this box to show the mouse cursor in the runtime
project.

Note: The Mouse Cursor option is not supported in Windows CE running on Armv4I
processors.

Execute only topmost object commands checkbox: This option controls how your project
behaves when the user clicks in an area where two or more screen objects overlap. If this
option is checked, then only the commands on the topmost object will be executed. If this
option is not checked, then the commands on all of the overlapping objects will be executed.

Note: The topmost object is the one with the highest ID number. (The ID number of an
object is displayed in the status bar at the bottom of the development environment.) You
can use the Move to Back / Move to Front and Move Backward / Move Forward tools
to change the order in which objects are stacked.

Parent topic: Configuring additional project settings

Related information
Information tab
Options tab
Communication tab
Web tab
Preferences tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring additional project settings >

Communication tab
Use this tab to specify communication parameters relating to your project in general.

Figure 1. Project Settings: Communication tab

Driver and OPC menu: Select the method used by all communication drivers and OPC Client
worksheets configured in the current project when writing values to the remote PLC/device:

Send every state: When the communication task is configured to write values upon a
change of tag value, all changes in the tag value are buffered in a queue and sent to the
device when the communication task (Driver or OPC) is executed.

Send last state: When the communication task is configured to write values upon a
change of tag value, only the current (last) value of the tag is sent to the device when the
communication task (Driver or OPC) is executed. When this method is selected, if the tag
changed value more than once while the communication task was not being executed, the
transient values of the tag are not sent to the device. This is the desired behavior for most
projects.

TCP area: Configure the communication settings for the TCP/IP Client and Server modules:

Port field: TCP Port used by the TCP/IP Client and TCP/IP Server modules running in the
current computer. When changing this value in the local project, be sure to change the
same value in the remote project that is communicating with the local one.

Note: This setting is required for all projects and cannot be left blank. Make sure that
your network configuration will allow connections to this port on whichever station will
be the project server.

Send Period (ms) field: Period (in milliseconds) used between two consecutive messages
sent by the TCP/IP Client or TCP/IP Server modules to update tag values in the remote
station. Typically, a lower number equals better performance and higher traffic in the
network.

Enable binary control checkbox: Check this option to enable binary control when the
TCP/IP Client or the TCP/IP Server module sends messages to the remote station. Binary
control increases the security of the system; however, it decreases the efficiency
(performance) of the communication. When connecting two stations via the TCP/IP Client
and TCP/IP Server module, make sure this setting is either enabled in both projects or
disabled in both.

Remote Management area: Configure the communication settings for the Remote Management
operation, which sends your project files to a target system:

Timeout (ms) field: Specifies the time (in milliseconds) that the project will wait to
communicate with the target system.

Enable File Compression checkbox: Select this option to compress the system and
project files before sending them to the target system. This may reduce the download time
if you have a slow connection between your server and the target system. (If you have a
fast connection, however, then selecting this option may actually decrease performance
because each compressed file must be decompressed on the target system before the next
file is sent. Select this option only if you have an extremely slow connection, such as dial-
up.) File compression is disabled by default.

Preloading tags from server area: To improve performance, the runtime viewer loads all of the
Server tags on a screen into memory before it displays that screen. Configure the timeout
settings for both remote and local viewers:

Timeout when executing on remote field: Specifies the time (in milliseconds) that a
Secure Viewer or Thin Client running on a remote station will wait to load the tags.

Timeout when executing on local field: Specifies the time (in milliseconds) that the
Viewer running on the local station (i.e., the Server) will wait to load the tags.

Parent topic: Configuring additional project settings

Related information
Information tab
Options tab
Viewer tab
Web tab
Preferences tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring additional project settings >

Web tab
Select the Web tab on the Project Settings dialog:

Figure 1. Project Settings: Web tab

Note: If you change any of these settings, then you should verify your project before resending
it to the target device.

Configure the parameters on this tab as follows:

Data Server IP field: Type the IP address (or host name) of your data server station. The data
server station is the computer or device where the TCP/IP server module of IWS is running. If
this field is left blank, then the Thin Client will assume that the Web server (i.e., the address
entered into the browser) is also the data server.

Tip: You can use the IP address 127.0.0.1 (localhost) to access the TCP/IP server on the
local computer, regardless of its actual address on the network. This option is useful for

local tests; however, you are not able to access the data server from remote computers
using this configuration.

Send Period field: Type a value to specify the send period (in milliseconds) used to exchange
data between the server and the Thin Client stations. It means that the Thin Client will send a
package with the new tag values to the server every n millisecond(s).

The Send Period of the server is configured in the project settings (Communication on the
Project tab of the ribbon). The default value is 1000 (milliseconds). You can set a lower value in
this field to increase the update rate between the server and the Thin Clients. Doing so may
result in higher traffic in the network (the network will be accessed more frequently) if the tags
are changing continuously (faster than 1 second).

Disable Remote Client Commands checkbox: Click to enable this box, to prevent a remote
client from issuing commands from your Thin Client to your server. When this option is enabled,
the Thin Client can read data from the server, but cannot send data (tag values, set-points) to
the data server. In this case, the Thin Client station becomes a Read Only station.

Enable ToolTips checkbox: Click to enable this box, to display the ToolTips configured on the
objects of the screens when viewing them on the Thin Client (web browser).

Auto Screen Scaling checkbox: Click to enable this box, to automatically scale screens
displayed in a web browser window. Using this option, the screen fits to the size of the web
browser window, regardless of its resolution.

Note: The Auto Screen Scaling option is not valid for Web browsers running under
Windows CE operating systems.

Enable File Compression checkbox: Click to enable this box to compress the files stored on
the Web sub-folder of your project folder. This option is useful for reducing download time,

particularly if you have a slow connection between your server and the Thin Client.

Log (Enable checkbox and FileName text field): Click to enable the checkbox, and type a file
name into the text field to generate a log file on the Thin Client station. You can use this log file
for debugging purposes.

Virtual Keyboard: When this option is checked, the Virtual Keyboard is enabled for your
project running Thin Clients. The keyboard allows the user to enter data during runtime on
touchscreen panels — that is, without typing on a physical keyboard. For example, a Text object
with the Text Data Link animation applied and the Input Enabled option checked.

You can establish a default configuration for the virtual keyboard:

Default: Select the default keyboard type to be used in your project, when no keyboard
type is specified by the calling object or function.

Scale: Using this option, you can shrink or enlarge the keyboard to fit the size of the
target display. A value of 100% represents the default size of each keyboard type.

Show Hint checkbox and field: When this option is checked, a hint is displayed in the title
bar of the keyboard. For objects, the hint is configured in the Object Properties dialog.
Otherwise, enter a string or string Tag in the Show Hint field to serve as a defaut hint.

Show Min/Max Fields option: When this option is checked, the minimum and maximum
allowed values are displayed at the bottom of the keyboard. For objects, these values are
configured in the Object Properties dialog. Otherwise, the Min and Max properties of the
associated Tag are used by default.

Note: The Min and Max fields are displayed only on the Keypad keyboard type, and
only when the associated Tag is defined as Integer or Real. If Min is greater than Max,
then input will be disabled. If Min/Max configured on the object is different from
Min/Max configured in the Tag properties, then your project will attempt to scale the
input accordingly.

IP Security Settings

IP Security button: Click this button to open the IP Security dialog.

Figure 2. IP Security dialog

Use the parameters on this dialog to specify the range of IP addresses for the computers that are
allowed to access your project as Thin Clients. This option is useful when you can control the IP
Address of the Thin Client computers allowed to connect to the Web server.

Click the Enable checkbox, and when the Edit pane parameters become active, type IP addesses in
the From and To fields to specify the IP address range. Use the Add and Remove buttons to move
the IP addresses into the IP Address Range list. When a Thin Client attempts to connect to the
server, it checks for an IP address for the Thin Client station that is within any range configured in
the IP Security dialog. If one is not found, the server refuses the connection request from the Thin
Client station.

Note: By default, IP security applies only to Thin Clients connecting to the Data Server. You can
also implement IP security for database synchronization between projects running on different
stations. To do this, insert the following parameter into your project file (project_name.app):

[TCP]

UseWebIPSecurity=1

Advanced Settings

Advanced button: Click this button to open a dialog where you can edit the Advanced Web settings.
For most cases, these settings do not need to be modified. However, depending on the architecture
used in your project, you have the flexibility to configure advanced settings.

Figure 3. Advanced dialog

Secondary Data Server IP Address field: Type the IP address (or host name) of the
secondary data server station. The data server station is the computer or device where the
TCP/IP server module of IWS is running. This field must be filled when you are using redundant
data servers from the Thin Clients. If the primary data server fails, the Thin Client will attempt
to connect to the secondary data server automatically.

BackUp URL field: Type the URL where the Web files are stored (files from the Web sub-folder

of your project folder). This URL is used to download the files from the secondary Web server
when the primary Web server is not available.

ISSymbol URL field: When the Thin Client connects to the server, it attempts to load the
ISSymbol control. If ISSymbol is not registered in the local computer (Thin Client), the browser
will attempt to download it from the URL specified in this field. The default URL is a web site
where InduSoft keeps the most updated version of ISSymbol available for download. You may
need to configure a different location, especially when the Thin Client computer is not connected
to the internet. The ISSymbolVM.cab (stored in the \BIN sub-folder of IWS) must be available in

the URL configured in this field.

Tip: When the Thin Client stations do not have access to the internet, it is recommended

that the ISSymbolVM.cab file be made available at the Web server station, and that the URL
be configured for it in this field.

Note: Web browsers running under the Windows CE operating system are not able to
download ISSymbol control (ISSymbolCE.ocx) automatically from a remote location.

ISSymbolCE.ocx must be manually registered in the Windows CE device to be used as a Thin
Client.

Web Tunneling Gateway checkbox: Check this option to enable the Web Tunneling Gateway.
Depending on the architecture of your project, you may need to use the Web Tunneling
Gateway to route the Thin Client computers to the data server.

TCP Port: Select this option when using HTTP with the Web server of Microsoft IIS. You can
specify the TCP port used by your HTTP Web server (80 is the default TCP port for HTTP
protocol).

SSL Port: Select this option when using SSL (Secure Socket Layer) with the Microsoft IIS Web
server. You can specify the TCP port used by your HTTPS Web server (443 is the default TCP
port for HTTPS protocol).

IP Address: IP address of the Web server computer where the Web Tunneling Gateway is
running. This must be the IP address of the Web server accessible from the Thin Client
station(s).

Secondary IP Address: IP address of the Web server computer where the secondary Web
Tunneling Gateway is running. This must be the IP address of the secondary Web server
accessible from the Thin Client station(s). This field must be configured when you are using
redundant Web servers.

Tip: Most of the Web settings can be modified dynamically by the SetWebConfig function.
It is especially useful when you want to create a project just once, and make sure that the
Web settings are automatically configured when you run your project on different stations
with different IP Addresses.

Parent topic: Configuring additional project settings

Related information
Information tab
Options tab
Viewer tab
Communication tab
Preferences tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring additional project settings >

Preferences tab
Use this tab to configure your preferences when building projects with the development
environement.

Figure 1. Project Settings: Preferences tab

Warning Messages

Display warning message before downloading screen to the target system option:
When this option is checked and IWS is connected to a remote station (Remote Management
dialog), you are prompted to download the updated screen to the remote station immediately
after saving a screen on the screen editor. If this option is not checked, the screen is
downloaded automatically, regardless of any confirmation.

Display confirmation message when renaming project tags option: When this option is
checked and you modify the name of any tag in the Project Tags worksheet, you are prompted
to replace the old tag name with the new tag name in the whole project. If this option is

checked, IWS will execute the global replace command to replace the old tag name with the
new tag name in all documents of your project (screens and worksheets).

Display confirmation message when changing the screen position and size option:
When this option is checked, you are prompted to update the screen attributes (Width, Height,
Top and Left) after modifying them on the Layout interface.

Display warning message after saving symbols option: When this option is checked, a
warning message is shown after saving symbols.

Quality Feedback Service

This section allows you to configure InduSoft Web Studio or CEView to generate log files and/or dump
files that can be used to diagnose hardware and software problems, such as memory leaks and
unexpected errors. These files are saved in the \Web\Dump sub-folder of the running project.

Generate a log file when an unexpected error happens option: When this option is
checked, the runtime modules append the Log File (\Web\Dump\Dump.txt) whenever an internal

exception (error) occurs. These exceptions may not necessarily crash the runtime modules, but
they can affect the stability of the system and should be investigated.

Note: The Log File is continually appended until it reaches its maximum size of 2MB. After
it reaches its maximum size, the existing file is deleted and a new file is created.

Generate a dump file when an unexpected error happens option: When this option is
checked, the runtime modules generate a new Dump File (\Web\Dump*.dmp) with useful

information about the conditions of the error. This is a binary file that can only be read by the
software vendor.

Note: Dump Files are named WinXXX.dmp — where XXX is an identifying number (in

hexadecimal format) automatically generated by the system — in order to prevent an
existing file from being overwritten when an new error occurs. Therefore, if more than one
error occurs, then you will find multiple Dump Files in the directory. The Log File indicates
the name of the Dump File associated with each error.

Enable log of memory option: When this option is checked, the runtime modules append the
Log File every 15 minutes with information about the current memory allocation. (The first log
entry is written out 15 minutes after the runtime module is started.) This information can be
used to identify memory leaks.

Even if none of these Quality Feedback options are checked, a post-mortem Dump File
(\Web\Dump\WinDump.dmp) will always be generated when the runtime module is terminated by a

fatal error. However, for debugging purposes, it is strongly recommend that you enable all options in
this section and then send the Log File and all Dump Files to your software vendor.

Other Preferences

Reset Tags Database when starting project option: When this option is checked, the
project tags are reset automatically whenever you run the project (Run on the Home tab of the

ribbon). See Reset Tags Database for additional details about this feature.

Enforce Web functionality equivalence in local project screens option: When this option
is checked, the development software will automatically warn you when you try to select
fuctions or features that are incompatible with the remote runtime modules (e.g., Thin Client
and Secure Viewer).

Note: This option is unchecked by default in order to maintain compatibility with previous
versions of InduSoft Web Studio.

Auto reload project on Viewer/Web Clients when it is changed option: When this option
is checked, remote stations (i.e., Thin Clients and Secure Viewers) will check the server to see if
they have the most recent version of the project. If they do not, then they will automatically
download the new version from the server.

Parent topic: Configuring additional project settings

Related information
Information tab
Options tab
Viewer tab
Communication tab
Web tab

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Graphics tab >

Mobile Access
Studio Mobile Access (SMA) enables your project to send Alarms and Process information to cell
phones, PDAs, and other mobile devices.

SMA is somewhat different from the traditional Thin Client solution, however. When you create your
project for an operator interface, you do not want to worry about details like creating additional
screens that would fit on a cell phone. SMA takes care of these details and provides an easy-to-use
interface for getting alarm notifications and tag values on almost any mobile device.

How It Works

When you enable the Mobile Access feature in your IWS project and then run your project, IWS
creates a Collaboration Data Object (CDO) on the server and periodically refreshes it with alarm
notifications and whatever tag values you choose to make available. (CDO is a Microsoft .NET
technology that is used to share data between programs. It was previously known as Active
Messaging.)

Once the SMA data object is in place, an ASP-powered Web application parses the data and builds
lightweight pages for mobile browsers. As long as the Web server — typically Microsoft IIS, because it
must support ASP — and network are properly configured to allow access, all you need to do is point
your browser to the Web application and log on.

The connection between your project and the SMA data object goes both ways, so you can also
acknowledge alarms and write new tag values through the Web application. These actions are
recorded by the SMA data object and then passed back to your project.

If you're an experienced ASP developer, then you can modify the default Web application or build
your own to access the SMA data object in new and creative ways. Doing so, however, is beyond the
scope of this documentation. Please contact Customer Support for help.

Licensing

One SMA Client is included with every IWS runtime license. That means the SMA Web application will
allow only one user to connect at a time. If you want the Web application to accept more users, then
you must upgrade your license to include additional SMA Clients. For more information, see License
Settings.

Enabling and Configuring Mobile Access

To enable Mobile Access and configure the data to be served:

In Graphics tab of the Project Explorer, open the Web Pages folder.

Figure 1. Opening the Web Pages folder

1.

1.

Double-click the Mobile Access icon.

The Mobile Access Settings dialog is displayed.

Figure 2. Mobile Access Settings dialog

2.

Select Enable Mobile Access.3.

In the LogOn Access Level text-box, type the user security level needed to log on to the Web
application. For more information about security levels, see Security.

4.

The Web application will show all active alarms to all logged-on users; there is currently no way
to show or hide specific alarms. You can set the user security level needed to acknowledge
alarms, however, and it may be different from the level needed to log on. In the Ack Access
Level text-box, type the required level.

5.

To have the Web application show tag values, select Enable in the Process group-box.6.

For each tag you want to show:

In the Tag Name column, type the name of tag or double-click to open the Object Finder
and select the tag.

a.

In the Description column, type a description of the tag. This description is displayed onlyb.

c.

7.

a.

in the Web application and it may be different from the tag's existing description in the
Project Tags datasheet.

b.

In the Write column, select the checkbox to make the tag writeable from the Web
application.

c.

In the Write Access Level text-box, type the user security level needed to write new tag
values. This applies to all tags that are made writeable.

8.

You may choose to decrease the data refresh rate to improve application performance,
especially in non-critical applications where alarms are uncommon and/or tag values do not
change frequently. The refresh rates for Alarms and for Process information can be adjusted
separately — in the corresponding Refresh Rate text-box, type the new rate in seconds.

9.

Click OK where you are done.10.

The following screenshot show Mobile Access enabled with a selection of tags:

Figure 3. Example of Mobile Access settings

Installing and Configuring IIS

Studio Mobile Access (SMA) uses Collaboration Data Objects (CDO) and Active Server Pages (ASP) to
build the Web application pages for mobile browsers. The mobile browser does not need to support
Java®, Flash™, or any other advanced features because the pages are built entirely on the server-

side and then sent to the browser as simple HTML. The Web server, however, must support CDO and
ASP, and that typically means it must be Microsoft IIS running on Windows. For more information
about installing and configuring IIS, see "Configuring a Web server to host your project pages" as
well as the Microsoft IIS documentation.

Accessing the Web Application

Once you've enabled Mobile Access, configured IIS, and run your project, you can access your
project by entering the URL in your mobile browser:

If the IIS home directory is set to the Web sub-folder in your project folder, then the URL is

http://server_address/SMA/LogOn.asp

If the IIS home directory is set to the \Web\SMA sub-folder in your project folder, then the URL is

http://server_address/LogOn.asp

The first page is a standard security login, similar to the LogOn dialog in your project. Log on with
your IWS username and password (not your Windows user account), and then SMA Main Menu is
displayed.

Main Menu

The main menu has three options:

Click Alarms to see and acknowledge alarms.

Click Process to see and write tags.

Click Log Off to log off from the Web application.

This menu is also displayed in the Alarms and Process pages described below.

http://
http://

Alarms

The Alarms table shows the currently active alarms in your project. To acknowledge an alarm from
your mobile browser, simply click on the alarm name.

Process

You can use the Process table to configure set points, turn pumps on and off, send messages to users
— anything that involves writing to tags. To write to a tag, simply click on the tag value.

Tip: By default, a user session will automatically expire after 10 minutes (600 seconds) of
inactivity. If you want a user to be able to stay logged on, then open the file \Web\SMA\config.inc
in your project folder and change the parameter logonExpiration to the desired period in seconds.

For example, if you want a user to stay logged on for up to four hours, then change the
parameter to:

logonExpiration = 14400

Please note that as long as a user is logged on, he counts against the number of SMA Clients in
the runtime license. If too many users stay logged on for extended periods, then you may run
out of available connections.

Parent topic: Graphics tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring your project's default
email settings
Some features in InduSoft Web Studio, such as alarms and certain functions, are able to send email
to designated recipients. To use these features, you must configure your project's email settings.

The email settings can be configured at any point during runtime by calling the CnfEmail function.
However, you can also configure default settings that are automatically used when the project is first
run and then restored as needed during runtime, overwriting any changes made by calling the
CnfEmail function.

On the Project tab of the ribbon, in the Web group, click Email/FTP. The Email/FTP
Configuration dialog is displayed.

1.

Click the Email tab.2.

3.

4.

In the Email box, type your email address / account.3.

In the Server and Port boxes, type the server address and port number. The default port for
SMTP is 25, but it depends on your server and network configuration. Please consult your server
administrator.

4.

If your outgoing mail server requires authentication, type your credentials in the User Name
and Password boxes. Most outgoing mail servers do require authentication, to prevent
spamming and other abuse from unknown users.

5.

In the Status box, type the name of a tag (Integer type) that will receive status codes when
the project sends email.

6.

In the Reload box, type a tag/expression. When the value of this tag/expression changes, the
project will reload these default email settings.

7.

Click OK to save your configuration and close the dialog.8.

Related tasks
Configuring your project's default FTP settings

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring your project's default
FTP settings
Some features in InduSoft Web Studio, such as certain functions, are able to transfer files between
computers using FTP. To use these features, you must configure your project's FTP settings.

The FTP settings can be configured at any point during runtime by calling the CnfFTP function.
However, you can also configure default settings that are automatically used when the project is first
run and then restored as needed during runtime, overwriting any changes made by calling the CnfFTP
function.

On the Project tab of the ribbon, in the Web group, click Email/FTP. The Email/FTP
Configuration dialog is displayed.

1.

Click the FTP tab.2.

3.

4.

In the User Name and Password boxes, type your credentials for the FTP server.3.

In the Server and Port boxes, type the server address and port number. The default port for
FTP is 21, but it depends on your server and network configuration. Please consult your server
administrator.

4.

Select Active or Passive mode, depending on the server's configuration. Passive FTP mode can
be used to bypass some network firewalls. Again, please consult your server administrator.

5.

In the Status box, type the name of a tag (Integer type) that will receive status codes when
the project transfers a file.

6.

In the Reload box, type a tag/expression. When the value of this tag/expression changes, the
project will reload these default FTP settings.

7.

Click OK to save your configuration and close the dialog.8.

Related tasks
Configuring your project's default email settings

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Execution Tasks dialog
The Execution Tasks dialog is used to configure which tasks must be automatically started when the
project is run, as well as to manually start/stop tasks during runtime.

The Execution Tasks tab displays the list of available tasks for the current project. Their status and
startup modes (Automatic or Manual) are also displayed.

Figure 1. Execution Tasks dialog – Execution Tasks

The following table lists the tasks that are not available for projects running on Windows Embedded
target systems:

Task Available for Windows Embedded

Background Task Yes

Database Client
Runtime

Yes

Task Available for Windows Embedded

Database Spy No

DDE Client Runtime No

DDE Server No

HDA OPC Server No

Driver Runtime Yes

LogWin No

ODBC Runtime No

OPC Client Runtime Yes

Studio Scada OPC
Server

Yes

TCP/IP Client
Runtime

Yes

TCP/IP Server Yes

Viewer Yes

You can configure tasks for automatic execution when the project is run by selecting the task in the
list, clicking Startup, and then selecting Automatic.

The tasks configured with Startup = Automatic are automatically executed when the project is run;
the tasks configured with Startup = Manual are not.

You can also Start/Stop each runtime task by clicking the name and then pressing the Start or Stop
button.

Tip: You can also start/stop each task during runtime by using the StartTask and EndTask built-
in functions. You can also use the IsTaskRunning function to check if each task is running during
runtime.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Database Spy No

DDE Client Runtime No

DDE Server No

HDA OPC Server No

Driver Runtime Yes

LogWin No

ODBC Runtime No

OPC Client Runtime Yes

Studio Scada OPC
Server

Yes

TCP/IP Client
Runtime

Yes

TCP/IP Server Yes

Viewer Yes

You can configure tasks for automatic execution when the project is run by selecting the task in the
list, clicking Startup, and then selecting Automatic.

The tasks configured with Startup = Automatic are automatically executed when the project is run;
the tasks configured with Startup = Manual are not.

You can also Start/Stop each runtime task by clicking the name and then pressing the Start or Stop
button.

Tip: You can also start/stop each task during runtime by using the StartTask and EndTask built-
in functions. You can also use the IsTaskRunning function to check if each task is running during
runtime.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Running a Project Under Windows
Services
Your IWS project can be configured to run under Windows services . Microsoft Windows services, formerly known as NT services, allow you to create long-running programs that run in their own Windows sessions. These sessions can be
automatically started when the computer boots, can be paused and restarted, and do not show any user interface. These features make services ideal for use on a server or whenever you need long-running functionality that does not
interfere with other users who are working on the same computer. You can also run services in the security context of a specific user account that is different from the logged-on user or the default computer account. For more
information about services, please refer to the Microsoft Developer Network (MSDN) Library .

Why would you want to run your project under Windows services?

To ensure that your project always runs with whatever system privileges it needs, regardless of the privileges of the user that is currently logged on to Windows;

To prevent the user from interfering with your project while it is running; or

To let your project keep running when there is no user logged on at all.

Creating and Configuring the Windows Service

Note: All of the procedures described below were tested using Microsoft Windows XP Service Pack 3.

Also, to perform these actions, you must be logged on as a user with administrative privileges and you should know how to use the Computer Management console. (To access the console, right-click the My Computer icon and
choose Manage from the shortcut menu.)

There are two ways to create and configure the Windows service for your project: you can use the Service Configuration tool in IWS itself, or you can use the command-line utility that is installed with IWS .

Service Configuration Tool

You can configure and run a new service from within the development application by clicking Service on the Project tab of the ribbon. This opens the Service Configuration dialog:

Figure 1. Service Configuration dialog

Project box

The location of the project file (project_name .app) that the service will load and run when it is started. This must be a complete file path.

User box

The Windows user account under which the service will run. This is an optional setting; if it's not used, then the service will run under Local System.

Note: Try to avoid running the service under Local System. That account has too much privilege to the file system and too little privilege to run the OPC Client and Server modules properly. The best alternative is to create a
user solely to run IWS and configure its privileges to fit the needs of your project. For more about this, see "Configuring User Privileges" below.

Password box

The password for the specified user account. This is an optional setting; it's not needed if no user is specified or if the specified user doesn't have a password.

Startup Type pane

How the Windows service will start. The following options are available:

Automatic : The service will start automatically when the computer boots.

Manual : The service can be started manually in the Computer Management console or by clicking Start , as described below.

Disabled : The service will be created and then disabled. It cannot run until an administrative user enables it in the Computer Management console.

Action pane

Start or stop the service. Please note that these buttons are not enabled until the service is actually created.

Creating a New Service

To create a new service:

1.

2.

3.

Next to the Project box, click … to open a standard Windows file browser. Use the browser to find and select your project file.1.

In the User and Password boxes, type the username and password (if any) for the Windows user account under which the service will run.2.

Select a Startup Type .3.

Click Apply . The service is created with the specified settings.4.

After the service has been created, it will appear in the Services console (Start > Control Panel > Administrative Tools > Services) under the name "InduSoft Web Studio ". You can use that console to quickly stop and restart the
service, if you don't want to run the IWS development environment.

Command-line Utility

You can also configure the service by using the command-line utility StdSvcInst.exe . It offers a few more options than the Service Configuration tool described above — such as specifying a name and description for the service — and it
can be used without launching the IWS development environment. The utility is located in the \Bin folder of your IWS program directory. To run the utility, open a command prompt, navigate to the \Bin folder, and enter the command

with the desired options.

The utility has the following command syntax:

StdSvcInst { -create -app filepath -startup { auto | manual | disabled } -user username -password password -name displayname -descr description | -start | -stop | -delete }

-create

Creates the Windows service.

-app filepath

Specifies which project file (project_name .app) the service will load and run when it is started. (This is the same as the Project box in the Service Configuration dialog.) You must include the complete file path, and it must be

enclosed in quotes.

This switch is required when you create a new service.

-startup { auto | manual | disabled }

Specifies how the service will start. (This is the same as the Startup Type in the Service Configuration box.) This switch is optional; if it's not used, then the default behavior for a new service is manual .

-user username

Specifies the Window user account under which the service will run. (This is the same as the User box in the Service Configuration dialog.) This is an optional switch; if it's not used, then the service will run under Local System.

-password password

Specifies the password for the given user account. (This is the same as the Password box in the Service Configuration dialog described above.) This is an optional parameter; it's not needed if no user is specified or if the specified
user doesn't have a password.

-name displayname

Defines the service name that is displayed in the Computer Management console. The name must be enclosed in quotes. This is an optional switch; the default name is "Studio".

-descr description

Defines the service description that is displayed in the Computer Management console. The description must be enclosed in quotes. This is an optional switch.

-start

Starts the service. This is the same as starting the service using the Computer Management console or by clicking Start in the Service Configuration dialog.

-stop

Stops the service. This is the same as stopping the service using the Computer Management console or by clicking Stop in the Service Configuration dialog.

-delete

Deletes the service.

Example: Creating the Service

In this example, we want to create a new Windows service with the following options:
IWS Project File
C:\Users\username \My Documents\InduSoft Web Studio v7.0 Projects\ project_name \project_name .app

Startup Mode
Automatic
User
IWS
Password
IWS
Service Name
"InduSoft Web Studio "
Service Description
"Starts a IWS project"

Note that the system must already have a user account named "Studio" with password "Studio".

So, to create the service with the desired options:

Make sure you're logged in as a user with administrative privileges.1.

Open a command prompt (Start > All Programs > Accessories > Command Prompt).2.

Navigate to the Bin folder:3.

cd C:\Program Files\InduSoft Web Studio v7.0\Bin

Enter the command:4.

StdSvcInst –create –app " C:\Users\username\My Documents\InduSoft Web Studio v7.0 Projects\project_name/project_name.app" -startup auto –user IWS -password IWS –name "InduSoft Web Studio" –descr "Starts a IWS project"

If the procedure is successful, then the system will display the message Service created . Otherwise, it will display an error message.

Example: Changing the Project File

After you create the service, you may want to change the IWS project file that it runs. You can do this by using the -app switch:

Make sure you're logged in as a user with administrative privileges.1.

Stop the service if it is running.2.

Open a command prompt.3.

Navigate to the Bin directory.4.

Enter the command — for example, to set NTDemo as the project file:5.

4.

5.

StdSvcInst –app "C:\Program Files\InduSoft Web Studio v7.0\Demos\NTDemo\NTDemo.app"

Example: Deleting the Service

To delete the service:

Make sure you're logged in as a user with administrative privileges.1.

Stop the service if it is running.2.

Open a command prompt.3.

Navigate to the Bin directory.4.

Enter the command:5.

StdSvcInst –delete

Configuring User Privileges

The service will run under the privileges of the user account specified in the User field of the Service Configuration tool (or by the -user switch of the command-line utility). If IWS needs some system resource to which that account
doesn't have privileges, it will fail. Therefore, you must configure the account to have the necessary privileges.

Note: The following actions can be performed only by a user with full administrator privileges.

Enabling the User Account to Log On as a Service

Before anything else, the specified user account must be enabled to log on to the computer as a service. To enable the account:

Open the Local Security Settings console (Start > Control Panel > Administrative Tools > Local Security Policy).1.

In the console window, select the folder "Security Settings\Local Policies\User Rights Assignment".2.

In the list of available policies, double-click Log on as a service .

Figure 2. Selecting the "Log on as a service" policy

3.

The Log on as a service properties page is displayed.

3.

Click Add User or Group .

The Select Users or Groups dialog is displayed.

4.

Type the name of the user account under which you want the service to run.5.

Click OK .6.

Giving the User Account Full Control Over the Program Directory

For your IWS project to run properly, the specified user account must have full control over the program directory and all of the files in it. To give the account those privileges:

Open Windows Explorer (Start > All Programs > Accessories > Windows Explorer).1.

Choose Tools > Folder Options .

The Folder Options dialog is displayed.

2.

Click the View tab.3.

Make sure the option Use simple file sharing is not selected.

Figure 3. Make sure simple file sharing is disabled

4.

4.

Click OK to close the Folder Options dialog.5.

Still in Windows Explorer , locate and select your IWS program directory, i.e., the folder that contains the file project_name .APP .

In this example, the folder is NTDemo .

6.

Right-click the folder and choose Properties from the shortcut menu.

The directory's property sheet is displayed.

7.

Click the Security tab.

Figure 4. Properties dialog for the program directory

8.

8.

Click Add and then add the user account you specified when you created the service.

In this example, the user is iws .

9.

Select this user and then set its "Full Control" permission to Allow .10.

Click OK to apply your changes and close the dialog.11.

Close Windows Explorer .12.

Allowing the User Account to Run the OPC Client/Server Module

As mentioned previously, normal users have too little privileges to properly run the OPC Client/Server module. Therefore, you must configure your user account to have those privileges:

Open the Component Services console (Start > Control Panel > Administrative Tools > Component Services).1.

In the console window, select the folder "Console Root\Component Services\Computers\My Computer\DCOM Config".

Figure 5. Selecting the OPC Server module in the Component Services console

2.

3.

4.

In the DCOM Config pane, right-click the Studio Scada OPC Server icon and then choose Properties from the shortcut menu.

The Studio SCADA OPC Server propety sheet is displayed.

3.

Click the Identity tab.4.

Click This user and then complete the fields with the same user and password that you specified when you created the service.

In this example, user is Studio and password is also Studio .

Figure 6. Entering the user name and password

5.

Click OK to apply your changes and close the property sheet.6.

Close the Component Services console.7.

Troubleshooting

When IWS runs under Windows services, it has no user interface. Therefore, if an error occurs, it will only be logged as a Windows application event. You can check the messages by using the Event Viewer console (Start > Control
Panel > Administrative Tools > Event Viewer).

Figure 7. IWS error messages in the Event Viewer

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

About Tags and the Project
Database
Tags are a core component of any IWS project. Simply put, tags are variables used by IWS to receive
and store data obtained from communication with plant floor devices, from the results of calculations
and functions, and from user input. In turn, tags can be used to display information on screens (and
Web pages), to manipulate screen objects, and to control runtime tasks.

But tags are more than simple variables. IWS includes a real-time database manager that provides a
number of sophisticated functions such as time-stamping of any value change, checking tag values
against runtime minimum and maximum values, comparing tag values to alarming limits, and so on.
A IWS tag has both a value and various properties that can be accessed, some at development and
others only at runtime.

All tags are organized into one of the following categories, which are represented by folders on the
Global tab of the Project Explorer:

Project Tags are tags that you create during project development. Places where project tags
are used include:

Screen tags

Tags that read from/write to field equipment

Control tags

Auxiliary tags used to perform mathematical calculations

Shared Database tags are created in a PC-based control program and then imported into
IWS's tags database.

For example you might create tags in SteepleChase and import them into IWS so IWS can
read/write data from a SteepleChase PC-based control product.

You cannot modify shared tags within IWS — you must modify the tags in the original PC-based

control program, and then re-import them into the Tags database.

System Tags are predefined tags with predetermined functions that are used for IWS
supervisory tasks. For example,

Date tags hold the current date in string format

Time tags hold the current time in string format

Most system tags are read-only, which means you cannot add, edit, or remove these tags from
the database.

To see a list of the system tags, select the Global tab in the Project Explorer, open the System
Tags folder, and open the Tag List subfolder. The above figure shows a partial list of system
tags.

After creating a tag, you can use it anywhere within the project, and you can use the same tag for
more than one object or attribute.

Project Tags Folder

Classes Folder

Shared Database Folder

System Tags Folder

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

About Tags and the Project Database >

Project Tags Folder
The Project Tags folder contains all tags created and customized by the user. You can create project
tags for displays, to read from and write to field equipment, for control, to perform mathematical
calculations, and so forth.

To update a list of project tags, right-click on the Project Tags folder (or Datasheet View icon)
and select the Refresh option.

Important: Before deleting a tag, we strongly recommend using the Object Finder tool
(on the Home tab of the ribbon) to verify that you are not using the tag in another part of the
project (screens, math sheets, so forth). If you delete a tag from the project database that is
being used in another part of the project, you will cause a compiling error and the project will
function poorly.

To create a new tag, right-click on the Project Tags folder, the Tag List sub-folder, or Datasheet
View icon and select Insert Tag from the shortcut menu. You also can click Tag on the Insert tab of
the ribbon.

The New Tag dialog displays, as shown in the following figure:

Figure 1. New Tag dialog

Use this dialog to specify the following parameters:

Name field: Type a name for the new tag. The first character must be a letter and you can use
up to 255 characters in the name.

Array Size field: Type a value to specify the size of the tag. Any size greater than 0 implies
that the tag is an array.

Type combo-box: Select a standard tag type from the list (Boolean, Integer, Real, or

String). You also can define new types as structures formed by the classes.

Description text box: Type a tag description for documentation purposes.

Scope combo-box: Click to select one of the following options:

Local: Select if you do not want to share the information in this tag over the Internet.

Server. Select if you want to share the information in this tag over the Internet.

These options have no affect on projects that do not have Web capabilities. If you select a Scope
option for a project with Web capabilities, then any object property using the Local tag will not work
properly over the Web.

Note: You must create unique tag names. You cannot create a tag that uses the name of an
existing tag.

You can view or edit the properties of a tag from either of the following dialoges:

Tag Property dialog: Click Properties on the Home tab of the ribbon when the tag name
displays in the Tag name field or double-click on the tag name in the Tag List subfolder located
in the Project Tags folder.

Project Tags dialog: Click the Datasheet View icon in the Project Tags folder.

The Project Tags datasheet contains five columns (see the following sample dialog).

Figure 2. Project Tags dialog

Use this dialog to create, modify, or delete tags or tag properties. You can right-click on a tag
property and use standard Windows commands to cut (Ctrl+X), copy (Ctrl+C), or paste (Ctrl+V), any
tag and its properties. You can also undo (Ctrl+Z) the last modification to a field.

Tip: You can sort the data in the Project Tags sheet and/or insert/remove additional columns
to/from the sheet by right-clicking on it and choosing the applicable option from the shortcut

menu.

Extending the Project Tags datasheet
The Project Tags worksheet can be extended up to 65,488 rows, if necessary.

Parent topic: About Tags and the Project Database
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

About Tags and the Project Database > Project Tags Folder >

Extending the Project Tags
datasheet
The Project Tags worksheet can be extended up to 65,488 rows, if necessary.

The datasheet is normally limited to a maximum of 32,721 rows. (This is separate from the
maximum size of the project database as a whole, as well as the runtime limit that is set when you
select a target platform for a new project.)

To extend the worksheet, edit your project file (project_name.app) to include the following entry:

[Options]

EnableExtendedTagCount=1

Doing so, however, brings the following restrictions:

Project tags in rows 32,722–65,488 of the worksheet cannot be used as array indices in
expressions. That is, in an expression like Abs(numArray[indexTag]), indexTag cannot be in that
range of rows. (This restriction does not apply to the VBScript interface.)

In a Class worksheet, only the first 32 class members can have alarms. For all class members
after the first 32, alarms will not work.

Generally speaking, extending the Project Tags datasheet stretches the capabilities of IWS and
should be done only when it's absolutely necessary. It is better to design your project to conserve
tags.

Parent topic: Project Tags Folder
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

About Tags and the Project Database >

Classes Folder
The Classes folder contains all of the project classes and their respective members. Classes are
compound tags consisting of user-defined data-type structures or tag types (Integer, Real, Boolean,
and String). Classes allow for high-level encapsulation in the project database. A class-type tag
provides a set of values for its members.

To define a class you must define the members and their types. Class members are variables that
hold values for an object with particular characteristics. Thus, the defining a class can be very useful
for projects with a repeating group of variables.

Note: When you create a class folder, a Class icon displays in the Tag List subfolder located
in the Project Tags folder.

To access the members of a class, use the following syntax with a period (.) as the separator:
TagName.MemberName. For example: tk.LEV or tk.TMP.

If the tk tag is an array, you use the following syntax:

ArrayTagName[ArrayIndex].MemberName

For example: tk[1].LEV or tk[n].TMP

A class-type tag contains a set of values (rather than a single value) associated with the class. You
create class-type tags by grouping simple tags, which become the members. The maximum number
of members for any class depends on the product specification. Class members can hold standard
Integer, Real, Boolean, and String values, as mentioned previously.

To create a new class, use one of the following methods to open the Insert Class dialog:

On the Insert tab of the ribbon, in the Global group, click Class;

Right-click on the Classes folder, the Members List sub-folder, or the Datasheet View icon in
the Classes folder; or

Create a new class tag in the Project Tags folder.

When the Insert Class dialog displays, enter a class name in the Name field, and then click OK to
close the dialog.

Figure 1. Insert Class dialog

Note: You must type a unique class name. You cannot create two classes with the same name.
In addition, you cannot configure shared tags and system tags as classes.

IWS saves class folders in the Tag List subfolder (located in the Project Tags folder). You can edit the
classes in this folder.

When the Class datasheet displays, you can use it to create, modify, or delete any class members
and their viewable properties. (You cannot edit classes from the Tag Property dialog.)

Figure 2. Class Datasheet

Note: The maximum number of members for each class is 512 as long as it does not exceed the
maximum number of tags supported by the license (Product Type) selected for the project.
When a tag is created from a class type, each member from the class counts as one tag for
licensing restrictions, because each member has an independent value.

To edit a class member or property, you can right-click on the item and use standard Windows
commands to cut (Ctrl+X), copy (Ctrl+C), or paste (Ctrl+V). You can also undo (Ctrl+Z) the last
modification to a field.

You also edit member properties as follows:

Name field: Type a name for the member or member property. The first character must be a
letter and you can use up to 255 characters in the name.

Type combo-box: Select a member type (Boolean, Integer, Real, or String).

Description field: Type a description of the member property for documentation purposes.

Note: Members of a class cannot be of another class type.

Also, you must create a unique class name. You cannot reuse the name of an existing class.

However, you can create members with the same name in different classes.

To delete a class and all its members, right-click on a class folder and select delete. IWS disables the
delete option if you are running any runtime tasks. In addition, you cannot delete a class if it is
associated with any tag.

Parent topic: About Tags and the Project Database
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

About Tags and the Project Database >

Shared Database Folder

The Shared database folder contains all tags shared between IWS and the selected PC-based Control
device. You must create and modify these tags in the PC-based Control software, and then they will
be imported automatically into IWS under the following conditions:

When you start IWS; or

When you right-click on the Shared Tags folder, which refreshes (updates) the database.

Note: Each PC-based Control software package has its own individual interface characteristics
and conditions that allow IWS to import its tags. For example, the PC-based Control software
application might have to be running for you to import database tags into IWS.

If there are no PC-based Control software products associated with the application, the Datasheet
View and Tag List subfolders (located in the Shared Database folder) will be empty.

You cannot edit shared tags in the IWS environment, but you can modify them in the PC-based
Control software. You can, however configure shared tags in any IWS task like any other tag. Shared
tags are read-only, and viewable on the Tag Property dialog and the Shared Tag datasheet.

Note: Right-click on the Shared Database folder (or click Datasheet View) and select the
Refresh option to update your last "version" of the PC-based Control software's tags database.
To change the Shared tags database (create a new tag, delete tags, or change tag properties),
you must activate this command update the IWS shared database.

To view the Tag Property dialog:

Click on the Tag Properties tool on the Tag Properties toolbar (the tag name must be in the
Tag name field); or

Double-click on the tag name located in the Tag List subfolder (Project Tags folder)

When the Shared Tag datasheet displays, it contains four columns (Name, Size, Type, and
Description). This datasheet is read-only, you can use it to view shared tags only.

Parent topic: About Tags and the Project Database
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

About Tags and the Project Database >

System Tags Folder
The System Tags folder contains predefined tags that have specific functions (time, date,
acknowledge alarms, storage of the logged user, and so forth). You cannot edit or delete these tags;
but you can access their values from any IWS task, copy them, and use them elsewhere.

Note: To update IWS's shared database with the system tags files, right-click on the System
Tags folder or Datasheet View icon, and then click the Refresh option.

For a list of system tags, including their properties and descriptions, see List of System Tags.

You can view the properties of a system tag using the System Tags datasheet, which contains four
columns (Name, Size, Type, and Description).

Important: Most system tags are read-only. To change the time, for example, you must use
the proper math function and set the system time rather than writing to the system time tag.

Parent topic: About Tags and the Project Database
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Understanding the Tag Name Syntax

Observe the following guidelines when naming a tag:

Your tag names must be unique — you cannot specify the same name for two different tags
(or functions). If you type an existing tag name, IWS recognizes that the name exists and will
not create the new tag.

You must begin each tag name with a letter. Otherwise, you can use letters, numbers, and the
underscore character (_) in your tag name.

You cannot use the following symbols in a tag name:

 ̀~ ! @ # $ % ̂ & * () - = \ + \ [] { } < > ?

You can use a maximum of 255 characters for a tag name or a class member name.You can use
uppercase and lowercase characters. Tag names are not case sensitive. Because IWS does not
differentiate between uppercase and lowercase characters, you can use both to make tag
names more readable. (For example: TankLevel instead of tanklevel.)

Tag names must be different from system tag names and math functions.

Note: Use the @ character at the beginning of a tag name to indicate that the tag will be used as
an indirect tag in the project.

Some valid tag examples include:

Temperature

pressure1

count

x

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Choosing the Tag Type

IWS allows you to create the following types of tags:

Basic tags hold a single value.

Array tags are a set of tags that use the same name with unique indexes.

Class tags are a set of compound tags that consist of user-defined data types (Boolean,
Integer, Real or String) or data-type structures.

Indirect tags are pointers that provide indirect access to another tag type, including class
tags.

A discussion of these tag types follows.

Basic Tags

A basic tag receives a single value. Typically, most tags defined for a project are basic tags. Some
examples of a basic tag include:

TankID (to identify different tanks in your project)

Temperature (to identify the current temperature of an object)

Status (to identify whether an object is open or closed)

Array Tags

An array tag consists of a set of tags that all have the same name, but use unique array indexes (a
matrix of n lines and one column) to differentiate between each tag. An array indexcan be a fixed
value, another tag or an expression. Maximum array sizes are determined by product specifications.

You can use array tags to:

Simplify configurations

Enable multiplexing in screens, recipes, and communication interfaces

Save development time during tag declaration

You specify array tags in one of two formats:

For a simple array tag, type:

ArrayTagName[ArrayIndex]

For a complex array tag (where the array index is an expression consisting of a tag and an
arithmetic operation), type:

ArrayTagName[ArrayIndex+c]

Where:

ArrayTagName is the tag name;

[ArrayIndex] is the unique index (fixed value or another tag);

+ is an arithmetic operation; and

c is a numerical constant.

Note:

You must specify a maximum index for each array tag by typing a value (n) in the Array
Size column of an Project Tags datasheet or in the Array Size field on a New Tag dialog.
(See "Creating project database Tags").

When you create an n-position array tag, IWS actually creates n+1 positions (from 0 to n).
For example, if you specify ArrayTag[15], the array will have 16 elements, where 0 is the
start position and 15 is the end position.

You must not use spaces in an array tag.

When IWS reads a tag it begins with the first character and continues until it finds the first
space or null character. Consequently, the system does not recognize any characters
following the space as part of the array tag.

For example, if you type a[second + 1] IWS regards a[second as the tag and considers it
invalid because IWS does not find (recognize) the closing bracket. However, if you type
a[second+1], this is a valid array tag.

You can specify an array tag wherever you would use a variable name. Also, because array tags
greatly simplify configuration tasks and can save development time, we suggest using them
whenever possible.

For example, suppose you want to monitor the temperature of four tanks. The conventional
configuration method is:

temperature1 — high temperature on tank 1

temperature2 — high temperature on tank 2

temperature3 — high temperature on tank 3

temperature4 — high temperature on tank 4

You can use array tags to simplify this task as follows (where [n] represents the tank number):

temperature[n] — high temperature on tank n

The following table contains some additional examples of an array tag:

Table 1. Array Tag Examples

Array Tag Example Description

Tank[1], Tank[2], Tank[500] Simple arrays, where the array indexes (1, 2, and 500) are
numerical constants. For example, tank numbers.

Tank[tk] A simple array, where the array index (tk) is a tag. For example,
a tag representing the tank number.

Tank[tk+1] A complex array, where the array index (tk+1) is an expression.
For example, the value of tk (tank number) plus 1.

Note: When using another tag to reference the index of an array, if the value of the tag is
outside the size of the array, then the following results are given:

If IndexTag is greater than the size of the array, then MyArray[IndexTag] will point to the end

position of the array; and

If IndexTag is less than 0, then MyArray[IndexTag] will point to the start position of the array

(i.e., MyArray[0]).

Indirect Tags

Indirect tags "point" to other database tags (including class-type tags). Using indirect tags can save
development time because they keep you from having to create duplicate tags (and the logic built
into them).

You create an indirect tag from any string-type tag simply by typing the @ symbol in front of the tag
name @TagName.

To reference a simple tag, assume the strX tag (a string tag) holds the value "Tank", which is
the name of another tag, then reading from or writing to @strX provides access to the value of
the Tank tag.

To reference a class-type tag and member, you simply create a string tag that points to the
class tag and the member. For example, if a tag strX (a string tag) holds the value "Tank.Level",
which is the name of the class tag, then reading from or writing to @strX provides access to the
value of the Tank.Level member.

You can also point directly to a class-type tag member; by identifying a class-type that points to
a class member. For example: to access the Tank.Level member of the class, you must store the
"Tank" value within the strX tag and use the syntax, @strX.Level.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Choosing the Tag Data Type

Another consideration when designing a tag is what type of data the tag will receive. IWS recognizes
the following, standard tag data types:

Boolean (one bit): Simple boolean with the possible values of 0 (false) and 1 (true). Equivalent
to the "bool" data type in C++. Typically used for turning objects off and on or for closing and
opening objects.

Integer (four bytes): Integer number (positive, negative, or zero) internally stored as a signed
32-bit. Equivalent to the "signed long int" data type in C++. Typically used for counting whole
numbers or setting whole number values. Examples: 0, 5, -200.

Real (floating point, eight bytes): Real number that is stored internally as a signed 64-bit.
Equivalent to the "double" data type in C++. Typically used for measurements or for decimal or
fractional values.

String (alphanumeric data, up to 1024 characters): Character string up to 1024 characters that
holds letters, numbers, or special characters. Supports both ASCII and UNICODE characters.
Examples: Recipe product X123, 01/01/90, *** On ***.

You can also make a tag into a compound tag by assigning it a Class. A Class is a template consisting
of two or more tag definitions, each with its own data type. You can use Classes in projects that have
items (e.g., tanks of liquid) with multiple attributes (e.g., fill level, temperature, pressure) to be
monitored or controlled.

You can find these tag types (and their respective icons) in the Global tab of the Project Explorer.

See also: Understanding Tag Properties and Parameters

Changing How Boolean Tags Receive Numeric Values

By default, if any numeric value other than 0 (i.e., 0) is written to a Boolean tag, then the tag
automatically assumes a value of 1. You can change this behavior, if necessary, by editing the
project_name.app file to change the following setting:

[Options]

BooleanTrueAboveZero=value

If BooleanTrueAboveZero is set to the default 0, then the project will behave as described above. If
BooleanTrueAboveZero is set to 1, then the project will behave as follows:

When you write any numeric value less than or equal to 0 (i.e., =0) to a Boolean tag, the tag
assumes a value of 0 (false).

When you write any numeric value greater than 0 (i.e., >0) to a Boolean tag, the tag assumes
a value of 1 (true).

CAUTION:

This is a global runtime setting. If you only want to change how certain tags are
handled, then you should not change this setting.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Choosing the Tag Scope

IWS allows you to decide whether a tag "lives" on the project server or on each local station:

Server (default): The tag is maintained on the project server and it's shared by all connected
clients (e.g., Thin Client, Secure Viewer). A change to the tag value affects the entire project.

Local: A virtual copy of the tag is maintained separately on each local station (server +
clients), and a change to the tag value affects only the station on which the change was made.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Adding Tags to the Datasheet

Use the following steps to create tags from the Project Tags datasheet:

Select the Global tab and open the Project Tags folder.1.

Double-click the Datasheet View icon to open the Project Tags datasheet:

Figure 1. Project Tags datasheet

2.

Locate an empty line in the datasheet and configure the following fields.

Tip: You can use the keyboard Tab key to move to the next column.

Name field: Type a name using the proper syntax. (For more information, see "Tag
Syntax".)

Array Size field:

For an array tag, type a value to specify the maximum index of the array.

For any other tag type, type zero (0).

Type combo-box: Click the arrow to select a tag data type (Boolean, Integer, Real, or
String) from the list. (If necessary, review "Choosing a Tag Data Type.")

Description field (optional): Type a description for documentation purposes only.

Scope combo-box: Click the arrow to specify whether the tag value will be shared with
(displayed on) Thin Client stations. (For more information, see "Choosing the Tag Scope".)

3.

Click in a new line to create another tag, or if you have no other tags to create, then save and
close the Project Tags datasheet.

4.

The following example shows a variety of tags configured in an Project Tags datasheet.

Figure 2. Example Project Tags Datasheet

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Creating Tags "On-the-Fly"

Instead of opening the Project Tags datasheet every time you want to create a new tag, you can
create individual tags "on-the-fly" by performing any of the following actions:

On the Insert tab of the ribbon, in the Global group, click Tag;

In the Project Explorer, right-click on the Project Tags folder, the Datasheet View icon, or
the Tag List subfolder and then select Insert Tag from the shortcut menu; or

Figure 1. Inserting a Tag

Type a new tag name into any Tag/Expression text field (available from Object Properties
dialogs, worksheets, and so forth). When the Question dialog asks if you want to create a new
tag, click Yes.

Figure 2. Creating a New Tag

Any of these actions causes a New Tag dialog to display, which you can then complete as needed. For
more information, see "Configuring a New Tag".

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Editing Tags
You can change the properties of a tag at any time during development or runtime. This section
describes two methods you can use to edit tags.

Note: You can right-click on a tag property and use standard Windows commands to cut
(Ctrl+X), copy (Ctrl+C), or paste (Ctrl+V) any tag and its properties. You can also Undo (Ctrl+Z)
the last modification to a field.

From the Project Tags Datasheet

Use the following steps to edit one or more tags in the Project Tags datasheet:

Select the Global tab, open the Project Tags folder, and double-click on the Datasheet View
button.

1.

When the Project Tags datasheet opens, locate your tag.2.

Double-click in the column containing the information to be changed, and type the new
information into the datasheet.

3.

When you are finished editing, save your changes to the tags database.

Tip: You can sort the data in the Project Tags sheet and/or insert/remove additional
columns to/from the sheet by right-clicking on it and choosing the applicable option from
the shortcut menu.

4.

From the Tag List Folder

Use the following steps to edit one or more tags from the Tag List folder:

Select the Global tab, open the Project Tags folder, and double-click on the the Tag List folder
to view a list of all your tags.

1.

Locate your tag and double-click on the tag name to open a Properties dialog.

Note: You also can right-click on the tag's icon and choose Properties from the shortcut
menu.

Figure 1. Properties dialog

2.

The Properties dialog contains fields and combo-boxes that correspond in name and function to
the columns on the Project Tags datasheet.

Make your changes in the Properties dialog as follows:

To change the current Type or Scope properties, click the arrow button and select the
new information from the list.

To change the Size or Description, highlight the existing text and type the new
information into the text box.

3.

Click OK to save your changes to the tags database and close the Properties dialog.

Tip: You can sort the data in the Project Tags sheet and/or insert/remove additional
columns to/from the sheet by right-clicking on it and choosing the applicable option from
the shortcut menu.

4.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Creating Classes

To create a new class tag:

From the Global tab, right-click the Classes folder and then select Insert Class from the
resulting shortcut menu.

1.

When the Insert Class dialog displays, type a name into the Name text box using the design
guidelines and tag name syntax.

Figure 1. Insert Class dialog

2.

Click OK to close the Insert Class dialog. The Class: worksheet is displayed automatically.

Configure the columns in this worksheet as follows:

Name field: Type a class member name.

Type drop-down list: Click the arrow to select the class member's data type (Boolean,
Integer, Real, or String) from the list.

Description field (optional): Type a description of the class member (for documentation
purposes only).

Figure 2. Sample CTank worksheet

3.

Click in the next blank line and provide the information for the next class member you want to
include in this class. Or, if you are finished adding members, you can close the Class worksheet.

You can expand the Classes folder and subfolders to see the data structure:

Figure 3. Expanded Classes folder

4.

Next, use the instructions provided in "Adding Tags to the Datasheet" to create and associate a
tag with the new class.

Note that when you click the arrow button to view the Type list, your new class name (CTank) is
included (see line 5 in the following figure). Select the class name from this list.

Figure 4. Creating the Tank Class Tag

5.

When you are done, save your work and close the worksheet.6.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Understanding Tag Properties and
Parameters

Each tag type has the following properties:

Parameters

Alarms Properties

History Properties

To configure these properties for a tag, click Properties on the Home tab of the ribbon. A Tag
Properties dialog displays, similiar to the following:

Figure 1. Tag Properties dialog for Boolean tag

Use the parameters on this dialog to configure the different tag properties. Instructions for
configuring each type of tag follows.

String-Type Tag Parameters

From the Tag Properties dialog, specify string-type parameter properties as follows:

Retentive Value checkbox: Click (check) to save the tag value continuously in case the system
unexpectedly shuts down, so that it restarts from the last saved value.

Retentive Parameters checkbox: Click (check) to save runtime changes in the tag's
properties. Only certain properties can be saved; for a complete list of which can and cannot,
see List of Tag Properties.

CAUTION:

Enabling either of the Retentive options for tags that frequently change values
can cause heavy disk access, which slows performance.

Startup Value field: Type a tag value for the system load. The tag assumes this value if you
disable the Retentive Value option.

Unit field: Type any string (up to 9 characters) as a brief description or reference. This tag is
accessible during runtime.

Note: IWS will not accept writing values that fall outside the ranges defined in the Min and Max
fields. In addition, IWS generates a message in the Output window to indicate that the system
tried to write a value outside the defined range.

Integer and Real-Type Tag Parameters

Note: For descriptions of the Retentive Value, Retentive Parameters, Startup Value, and
Unit parameters, see String-Type Tag Parameters above.

From the Tag Properties dialog, specify integer and real-type parameter properties as follows:

Engineering Units area

Min field: Specify a minimum value for the tag in engineering units. This tag is accessible
during runtime.

Max field: Specify maximum value for the tag in engineering units. This tag is accessible
during runtime.

Unit field: Type any string (up to 9 characters) as a brief description or reference of the
tag. This tag is accessible during runtime.

Signal Conditioning area

Dead Band checkbox: Click (check) to insert the dead band value of a tag. Dead band
value is a variation around a central value of the tag, which is not recognized for alarms.

Smoothing checkbox: Click (check) to reduce the rate of change for the tag's values. Use
only for integers and real tags. For example, if you select the Smoothing option for the
LEVEL1 tag containing the value = 50. Then in the next search, if the LEVEL1 changes to 60,
the system will store the average of 50 + 60 in the database, so the new value = 55.

Boolean-Type Tag Parameters

Note: For descriptions of these parameters, see String-Type Tag Parameters above.

See also: Using Tag Properties: Alarms, Using Tag Properties: History

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Using Tag Properties: Alarms
Use the Tag Properties dialog to view the configured alarms for a selected tag. IWS disables this
command if there are open alarm worksheets. Before using these dialogs, you should have already
created the alarm groups.

ALARM TYPES:

HiHi: A Very High alarm is present.

Hi: A High alarm is present.

Lo: A Low alarm is present.

LoLo: A Very Low alarm is present.

Rate: An alarm based on rate of change is present.

Deviation: An alarm based on deviation from a given set point is present. Example:

If SetPoint = 50, Deviation + = 5, Deviation - = 5, and Deviation Dead Band = 0.5;

IWS generates an alarm when the temp = 55 or temp = 45; and

A return to the normal occurs when temp = 54.5 or temp = 45.5.

ALARM LIMITS:

HiHiLimit: When creating Very High alarms in the Tag Properties dialog, use this field to
specify the limits. You can access this field during runtime and use it during modifications on the
fly.

HiLimit: When creating High alarms in the Tag Properties dialog, use this field to specify the
limits. You can access this field during runtime and use it during modifications on the fly.

LoLimit: When creating Low alarms in the Tag Properties dialog, use this field to specify the
limits. You can access this field during runtime and use it during modifications on the fly.

LoLoLimit: When creating Very Low alarms in the Tag Properties dialog, use this field to
specify the limits. You can access this field during runtime and use it during modifications on the
fly.

DevSetpoint: Reference point for a tag value deviation that triggers an alarm. Define the
alarm message in the Tag Properties dialog or on an Alarm worksheet. You can access this field
during runtime.

Dev+Limit: Limit deviation to a value higher than the DevSetpoint in a tag value that triggers
an alarm. Define the alarm message in the Tag Properties dialog or on an Alarm worksheet. You
can access this field during runtime.

Dev+Limit: Limit deviation to a value lower than the DevSetpoint in a tag value that triggers
an alarm. Define the alarm message in the Tag Properties dialog or on an Alarm worksheet. You
can access this field during runtime.

RateLimit: Limit of rate variation in a tag value that triggers an alarm. Define the alarm
message in the Tag Properties dialog or on an Alarm worksheet. You can access this field during
runtime.

Alarms for Integer and Real Type Tags

From the Tag Properties dialog, specify an alarm for integer and real-type tags as follows:

Alarms Enabled checkbox: Click (check) to enable checking according to configuration.

Remote Ack tag field: Type a tag to acknowledge this alarm.

Dead Band Value field: Type a value of the filter for alarms normalization. For example: if the
TEMP1 tag is configured with an alarm with Hi Limit = 90 and Dead Band = 5, then IWS
generates an alarm when TEMP1 = 90. The return to normal occurs when TEMP1 = 85.

Translation Enabled checkbox: Click (check) to enable the translation of messages defined on
the Options tab in the Project Settings dialog. For additional information about translations, see
Translation Tools.

Note: IWS saves Alarm messages with the Translation Enabled attribute enabled in a file
called Alarm.TXT located in your project's \DATABASE\ directory.

HiHi (HiHiLimit) checkbox: Click (check) to indicate a Very High alarm is present. Accessible
during runtime.

Hi (HiLimit) checkbox: Click (check) to indicate a High alarm is present. Accessible during
runtime.

Lo (LoLimit) checkbox: Click (check) to indicate a Low alarm is present. Accessible during
runtime.

LoLo (LoLoLimit) checkbox: Click (check) to indicate a Very Low alarm is present. Accessible
during runtime.

Rate (RateLimit) checkbox: Click (check) to indicate a Rate alarm is present. Accessible
during runtime.

Deviation+ checkbox: Click (check) to indicate a Deviation alarm is present. Accessible during
runtime.

Deviation- checkbox: Click (check) to indicate a Deviation alarm is present. Accessible during
runtime.

Deviation SetPoint field: Specify a reference point for the deviation. Accessible during
runtime.

Deviation Dead Band field: Specify a reference value for the deviation.

Alarms for Boolean-Type Tags

Use the Alarms-Bool Type tab on the Tag Properties dialog to specify alarm properties for Boolean-
type tags.

Figure 1. Alarms-Bool Type Tab

Configure the parameters as follows:

Alarms Enabled checkbox: Click (check) to enable checking according to configuration.

Remote Ack tag field: Type a tag to enable remote alarm acknowlegement, which occurs when
the tag values change.

Translation Enabled checkbox: Click (check) to enable the translation of messages defined on
the Options tab in the Project Settings dialog. For additional information about translations, see
Translation Tools.

Note: IWS saves Alarm messages with the Translation Enabled attribute enabled in a file
called Alarm.TXT located in your project's \DATABASE\ directory.

Off checkbox: Click (enable) to generate an alarm message always when the tag value is zero.

On checkbox: Click (enable) to generate an alarm message always when the tag value is one.

Changed checkbox: Click (enable) to generate an alarm message always when the tag value
changes.

Text value pane: Use the Off, On, and Ack fields to configure mnemonics (for example,
Closed or Open) for the Off, On, and Ack alarm states (Boolean tags only). During runtime, the
Alarm Control object will display this text in the Value column of the alarm message. You can
also access this text using the tag fields.

Note: If you do not configure a mnemonic, the Alarm Control object displays the tag value
(0 or 1) in the Value column.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Using Tag Properties: History
Use the Tag Properties dialog to view the history for a selected tag. IWS disables this command if
there are open trend worksheets. Before using this dialog, you should have already created the trend
groups.

Note: History does not support string-type tags. See Recipes folder for information about storing
string values.

Integer and Real Type History

From the Tag Properties dialog, enable history for integer and real-type tags as follows:

History Enabled checkbox: Click (check) to enable storage of the selected tag value samples.

Group Number field: Specify the group number to which this tag is associated.

Log Dead Band field: Specify a value sample taken when the variation value is equal to, or
greater than, the Log Dead Band.

Boolean Type History

From the Tag Properties dialog, enable history for Boolean-type tags as follows:

History Enabled checkbox: Click (check) to enable storage of the selected tag value samples.

Group Number field: Specify the group number to which this tag is associated.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

List of Tag Properties
Tag properties (also known as "tag fields") are metadata attached to each tag in the database. Most
of these properties can be set using the Tag Properties dialog, which you can open by clicking the
Tag Properties button on the Tag Properties toolbar.

To access a tag property during runtime, use the following syntax (without spaces) anywhere that
you would normally specify a tag:

tag_name->property_name

You can access the following tag properties during runtime:
Name
The name of the tag, as configured in the Project Tags database.
R
String, up to 32 chars
Y
Y
Y
Y
n/a
MemberName
The name of the class member, in a properly configured Class . NOTE: The syntax must be:

Class.Member->MemberName

Example: Tank.Lvl->MemberName = Lvl

R
String, up to 32 chars
Y
Y
Y
Y
n/a
Size
Array Size. If the tag is not an array tag, it returns the value 0
R
Integer
Y
Y
Y
Y
n/a
Index
The index number of an element in an Array . (An Array is any Tag of size greater than 0.) NOTE:

The syntax must be:

Tag[Index]->Index

Example: Tag[1]->Index = 1

R
Integer
Y
Y
Y
Y
n/a
Description
The description of the tag, configured in the Tags datasheet.
R
String
Y
Y
Y
Y
Y
Quality
Tag quality (192=GOOD; 0=BAD). IWS updates this field every time the tag receives the result of an
expression or a value from a communication task (such as driver or OPC).

If the expression is invalid (such as, division by zero) or if there is a reading communication error
associated with the tag, IWS sets the quality to BAD.

R
Integer
Y
Y
Y
Y
N
TimeStamp
Time and date when the value of the tag last changed.
R
String
Y
Y
Y
Y
N
Blocked
This property can have two values:

0: The tag is blocked and all runtime tasks will ignore it. It is effectively removed from the
project database.

1: The tag is unblocked and all runtime tasks can access it normally.

This is useful when you want to dynamically disable all actions associated with a specific tag. Even
when a tag is blocked, however, it still counts towards the total number of tags used for licensing
purposes.

R/W
Boolean
Y
Y
Y
Y
N
Unit
A brief description (up to 9 characters) of the Engineering Unit (i.e., the unit of measurement) for the
Tag value. For example, Kg , BTU , psi .
R/W
String, up to 9 chars
Y
Y
Y
Y
Y
Max
The maximum value that can be written to the tag during runtime.
R/W
Real
N
Y
Y
N
Y
Min
The minimum value that can be written to the tag during runtime
R/W
Real
N
Y
Y
N
Y
B0 … B31
Value (0 or 1) of any of the 32 bits (b0, b1, b2, … b31) of an Integer tag. (B0: LSB B31: MSB)
R/W
Boolean
N
Y
N
N
N
DisplayValue
A converted Tag value that is only displayed on-screen:

DisplayValue = (Value / UnitDiv) + UnitAdd

This is used when the actual Tag values have one Engineering Unit (see Unit above) but need to be
displayed on-screen in another Engineering Unit (see DisplayUnit below). For example, Celsius
degrees and Farenheit degrees.

If user input changes DisplayValue during runtime, then the conversion is reversed before the
change is actually written to the Tag:

Value = (DisplayValue - UnitAdd) * UnitDiv

R/W
Real
N
Y
Y
N
n/a
DisplayUnit
A brief description (up to 9 characters) of the Engineering Unit for DisplayValue .

NOTE: This property can only be set by using the SetDisplayUnit() and SetTagDisplayUnit() functions.

R
String, up to 9 chars
N
Y
Y
N
N
UnitDiv
Number by which the Tag value is divided to get DisplayValue . To perform no division, UnitDiv
should be 1.

NOTE: This property can only be set by using the SetDisplayUnit() and SetTagDisplayUnit() functions.

R
Real
N
Y
Y
N
N
UnitAdd
Number added to the Tag value to get DisplayValue . To perform no addition, UnitAdd should be 0.

NOTE: This property can only be set by using the SetDisplayUnit() and SetTagDisplayUnit() functions.

R
Real
N
Y
Y
N

N
DisplayMax
The maximum value that can be input to DisplayValue during runtime:

DisplayMax = (Max / UnitDiv) + UnitAdd

If DisplayMax is changed during runtime, then Max is also changed as follows:

Max = (DisplayMax - UnitAdd) * UnitDiv

R/W
Real
N
Y
Y
N
N
DisplayMin
The minimum value that can be input to DisplayValue during runtime:

DisplayMin = (Min / UnitDiv) + UnitAdd

If DisplayMin is changed during runtime, then Min is also changed as follows:

Min = (DisplayMin - UnitAdd) * UnitDiv

R/W
Real
N
Y
Y
N
N
HiHiLimit
Limit value for the HiHi alarm.
R/W
Real
N
Y
Y
N
Y
HiLimit
Limit value for the Hi alarm.
R/W
Real
N
Y
Y
N
Y
LoLimit
Limit value for the Lo alarm.

R/W
Real
N
Y
Y
N
Y
LoLoLimit
Limit value for the LoLo alarm.
R/W
Real
N
Y
Y
N
Y
RateLimit
Limit value for the Rate alarm.
R/W
Real
N
Y
Y
N
Y
DevSetpoint
Setpoint value for Deviation alarms.
R/W
Real
N
Y
Y
N
n/a
DevPLimit
Limit value for the Deviation+ alarm.
R/W
Real
N
Y
Y
N
Y
DevMLimit
Limit value for the Deviation- alarm.
R/W
Real
N
Y
Y
N
Y

HiHi
If 0, the HiHi alarm is not active. If 1, the HiHi alarm is active.
R
Boolean
Y
Y
Y
N
n/a
Hi
If 0, the Hi alarm is not active. If 1, the Hi alarm is active.
R
Boolean
Y
Y
Y
N
n/a
Lo
If 0, the Lo alarm is not active. If 1, the Lo alarm is active.
R
Boolean
Y
Y
Y
N
n/a
LoLo
If 0, the LoLo alarm is not active. If 1, the LoLo alarm is active.
R
Boolean
Y
Y
Y
N
n/a
Rate
If 0, the Rate alarm is not active. If 1, the Rate alarm is active.
R
Boolean
Y
Y
Y
N
n/a
DevP
If 0, the Deviation+ alarm is not active. If 1, the DevP alarm is active.
R
Boolean
N
Y
Y

N
n/a
DevM
If 0, the Deviation- alarm is not active. If 1, the DevM alarm is active.
R
Boolean
N
Y
Y
N
n/a
AlrStatus
Integer value with the status of the current active alarms associated to the tag. Each bit of this
integer value indicates a specific status:

Bit 0 (LSB): HiHi Alarm active

Bit 1: Hi Alarm active

Bit 2: Lo Alarm active

Bit 3: LoLo Alarm active

Bit 4: Rate Alarm active

Bit 5: Deviation+ Alarm active

Bit 6: Deviation- Alarm active

Examples: If Tag->AlrStatus returns the value 2, it means that "Hi" alarm is active. If it returns the
value 3, it means that the "HiHi" and the "Hi" alarm are active simultaneously.

If this property returns the value 0, it means that there are no active alarms associated to this tag.

For Boolean tags, only the values 1 (bit 1), 4 (bit 2) or 16 (bit 4) can be returned.

R
Integer
Y
Y
Y
N
N
Ack
This property can have two values:

0: There are no alarms associated with this tag that require acknowledgment.

1: There is at least one alarm associated with this tag that requires acknowledgment.

This works as a global acknowledge for the tag and goes to 0 only when all alarms for the tag have
been acknowledged.

R
Boolean
Y
Y

Y
N
N
UnAck
This property can have two values:

0: There is at least one alarm associated with this tag that requires acknowledgment.

1: There are no alarms associated with this tag that require acknowledgment.

If you manually set this value to 1, then the active alarms (if any) are acknowledged. The value of
this property is always the opposite of the Ack property.

R/W
Boolean
Y
Y
Y
N
N
AlrAckValue
Text associated with the Acknowledged state of a Boolean tag. This text is displayed in the Value
column of an Alarm/Event Control .

You can also edit this text in the Tag Properties dialog (Alarms – Bool Type).

R/W
String, up to 32 chars
Y
N
N
N
Y
AlrOffValue
Text associated with the Normalized state of a Boolean tag. This text is displayed in the Value column
of an Alarm/Event Control .

You can also edit this text in the Tag Properties dialog (Alarms – Bool Type).

R/W
String, up to 32 chars
Y
N
N
N
Y
AlrOnValue
Text associated with the Active state of a Boolean tag. This text is displayed in the Value column of
an Alarm/Event Control .

You can also edit this text in the Tag Properties dialog (Alarms – Bool Type).

R/W
String, up to 32 chars

Y
N
N
N
Y
AlrDisable
This property can have two values:

0: The alarms associated with this tag are enabled. This means that when an alarm condition
occurs, the alarm will become active.

1: The alarms associated to this tag are disabled. This means that even if an alarm condition
occurs, the alarm will not become active.

R/W
Boolean
Y
Y
Y
N
N

Tag
Property

Description R or
R/W

Data
Type

Available on Data Type… Retentive

Boolean Integer Real String

Note:

If a property is marked "n/a" with regards to being retentive, it's because the property is
inherent in the tag definition (e.g., Name, Size) or the value of the property is continuously
derived during runtime (e.g., alarm activation, DisplayValue). To enable retention for a tag,
select the Retentive Parameters option in the Tag Properties dialog .

If the project attempts to write a value outside of the range specified in the Min and Max
properties, the Tags Database will not accept the new value and a warning message is
written in the Output window. If both Min and Max properties are configured with the
value 0 (zero), it means that any value applied to the tag type will can be written to the
tag.

You cannot use tag properties (such as Bit fields) to configure Alarm or Trend worksheets.

Although you can apply tag properties to System Tags , those properties will not persist
when you download your project to a CE device.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Using Tags in Your Project
Once you have added a tag to the project database, you can use that tag in your project by
associating it to objects on a screen.

The basic process for associating tag to screen objects consists of the following steps:

In the project screen, select the object to which you want to apply the tag.1.

Click one of the buttons in the Animations group to apply that animation to the object.2.

Double-click on the object to open its Object Properties dialog.3.

Locate the Tag text box for that property and type the tag name into the field.

Tag text box names and locations will vary, depending on the type of property you are using.
For example:

Figure 1. Applying Tags to an Object

4.

Comprehensive instructions for applying tags to screen objects are provided throughout the
documentation where appropriate.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Deleting a tag from the project
database
Delete a tag that's no longer in use by deleting its line in the Project Tags datasheet.

Before you delete a tag, we strongly recommend that you use the Cross-Reference tool to make
sure the tag is not being used anywhere in your project. (If you delete a tag that is still being used,
then you will not be able to verify and run your project.) Fix any screens or worksheets where the tag
is being used before you proceed.

Stop the project if it is running.1.

Open the Project Tags datasheet.2.

Right-click anywhere in the datasheet and then select Disable Sort from the shortcut menu.
Tags cannot be deleted when the datasheet is sorted in any way. The tags revert to their
default order — that is, the order in which they were created.

3.

In the datasheet, find the line for the tag you want to delete.4.

Right-click the line and then select Delete Line from the shortcut menu. (If the option is
disabled, then you still need to disable sorting as described above.) An alert dialog is displayed
asking you to confirm the action.

5.

Click Yes. The line is deleted from the datasheet.6.

Save and close the datasheet.7.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Using the Tags Toolbar
The Tags toolbar provides a text box and several tools (shortcuts) that enable you to create, locate,
and access different tags, functions, and tag properties.

Figure 1. Tags tools

Global Replace Tool

Replacing project tags in a document or screen object

Removing unused tags from the project database
The Remove unused tags tool is used to scan the project database for unused tags, which
you can then select and remove.

Reset Tags Database

Tagname Text Box

Object Finder Tool

Cross Reference Tool

Tag Properties Tool

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Using the Tags Toolbar >

Global Replace Tool

When clicking on the Global Replace tool from the Tag Properties Toolbar, the following window
displays:

Figure 1. Global Replace dialog

From the Global Replace dialog, you can replace any tag(s) from all documents (screens and
worksheets) of the whole project. You can edit both the From and the To column.

When replacing composed tags (array size > 0 and/or Type = Class), you can configure a specific
array position (for example, TagA[1]) or class member (for example, TagB.MemberX) or both (for
example, TagC[3].MemberY). If you configure only the Main Tag Name (for example, TagC) in the From
column, all tags from this main tag will be modified for the tag configured in the To column.

If an invalid replacement is configured (for example, replace the Main Tag tag from a class type tag
for a simple tag (not a class tag), the OK button will be disabled. When the OK button is pressed, the
tags configured on the Global Replace dialog will be replaced in the order that they were configured
on the dialog interface.

Note: You must close all documents (screens and worksheets) before executing this command.

When changing the tag name on the Project Tags database worksheet, IWS will ask you if you intend
to replace this tag through the whole project.

The Replace option will be created in the Edit menu. By using this option, the Global Replace dialog
is prompted, however, the changes are applied only the current screen or worksheet in focus.

Parent topic: Using the Tags Toolbar
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment >
Using the Tags Toolbar >
Screens and Graphics > Editing >

Replacing project tags in a
document or screen object

To replace all occurences of a tag in the current document, do one of the following:

On the Home tab of the ribbon, in the Tags group, click Replace; or

On the Graphics tab of the ribbon, in the Editing group, click Replace.

To replace all occurences of a tag in a screen object, double-click the object to open its Object
Properties dialog and then click Replace.

All of these methods will open the Replace dialog, which is descibed below.

You can replace one or more tags by clicking the Whole Tag Name tab. Current tags used are
displayed. The original tag names are shown in the From column on the left, and you can enter your
new tag names in the To column on the right.

Figure 1. Whole Tag Name tab

Note that this does not rename or delete any tag — it only replaces the tags used in the object with
other tags from the database.

You can also replace one or more strings (e.g., button captions, descriptive text) by clicking the
String Value tab.

Figure 2. String Value tab

When you are done, click OK.

Parent topic: The Development Environment
Parent topic: Using the Tags Toolbar
Parent topic: Editing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Using the Tags Toolbar >

Removing unused tags from the
project database
The Remove unused tags tool is used to scan the project database for unused tags, which you can
then select and remove.

"Unused tags" are tags that you have defined in the project database but have not used in any
screen or task worksheet. Since your project has a limited number of available tags (as determined
by your product/license type), you may want to remove some or all of these unused tags to decrease
your project's tag count.

Save and close all open project screens and worksheets.1.

On the Home tab of the ribbon, in the Tags group, click Remove unused tags. The
development application automatically verifies your project. If it finds unused tags, then it lists
them in the Remove Unused Tags dialog.

Figure 1. Unused tags listed in Remove Unused Tags dialog

2.

Determine which tags you want to remove, if any.

If you want to remove all of the listed tags, click Remove.

3.

If you want to keep some of the listed tags, clear the Remove options for these tags and
then click Remove.

Note: The listed tags may include some that are accessed during runtime using
indirect syntax (e.g., GetTagValue(TagName) or @TagName, where the value of TagName is
the name of an unused tag).

If you do not want to remove any of the listed tags, click Close.
The development application removes the selected tags and then asks if you want to verify the
project again.

3.

Click Yes to verify the project again.4.

Parent topic: Using the Tags Toolbar
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Using the Tags Toolbar >

Reset Tags Database
Select Reset Tags Database to "reload" the tags database on the local station. This command
affects all tags stored in the Project Tags folder. This option is useful for resetting the project tags
and restoring the values they had when the project was loaded for the first time. When you stop the
project but leave the development environment open, the tags are not reset by default when the
project is run again. Therefore, you can execute this command to reset them before the project runs
again.

When this command is executed, the Startup Value configured for each tag (Tags Properties dialog)
is written to the respective tag. If you did not configure any Startup Value for a numeric tag
(Boolean, Integer or Real), the value 0 (zero) is written to the tag. If you did not configure any
Startup Value for a string tag, the empty value ("") is written to the tag.

This command is disabled (in gray) if there is at least one runtime task running on the local station.
You must close all runtime tasks (Stop on the Home tab of the ribbon) before this command can be
executed.

Note: The tags stored in the System Tags folder and in the Shared Tags folder (if any) are not
affected by this command.

Tip: If you want to reset the project tags automatically whenever you run the project (Run on
the Home tab of the ribbon), you can check the option Reset Tags Database when starting
project on the Preferences tab of the Project Settings dialog.

Parent topic: Using the Tags Toolbar
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Using the Tags Toolbar >

Tagname Text Box

Type a name into the Tagname text box to create a new tag for your project. The Cross
Reference and Tag Properties tools will reference this tag name for their actions.

Parent topic: Using the Tags Toolbar
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Using the Tags Toolbar >

Object Finder Tool

Click the Object Finder tool to open the Object Finder dialog, which lists all Tags and
Functions currently configured for the project.

Figure 1. Object Finder dialog

To select an existing tag/function, double-click on the tag/function name, and then click OK to close
the box. The selected name displays in the Tagname text box.

To select a specific array index, click the Index button after specifying the array tag name.

To select a specific member name, click the Member button after specifying the class tag
name.

To create a new tag, click the New button.

When the New Tag dialog displays, enter the following information, then click OK to close the
box:

Name

Array Size

Type (Boolean, Integer, Real, String, Class:Control, Class:msgonline, or Class:Alr)

Description

Scope (local or server)

Parent topic: Using the Tags Toolbar
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Using the Tags Toolbar >

Cross Reference Tool

Click the Cross Reference tool to search all project screens and worksheets for the tag noted in
the Tagname text box. This function writes a log, detailing all the occurrences of the tag, to the
XRef tab in the Output window. For example, the results of searching for a BlinkFast tag are as
follows:

Figure 1. XRef Results

Parent topic: Using the Tags Toolbar
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Using the Tags Toolbar >

Tag Properties Tool

Click the Tag Properties tool to configure parameters for each tag. The Tag Properties dialog
displays so you can specify these parameters. (For more information about specifying tag properties,
see Understanding Tag Properties and Parameters.)

Figure 1. Sample Tag Properties dialog

Note: The Tag Properties dialog that displays for Boolean, Integer, Real, and String tags will
differ in content.

Parent topic: Using the Tags Toolbar
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Import Wizard
The Import Wizard is a powerful tool that reduces engineering time during project development.
Using the Import Wizard, you can import tags from different data sources directly to the project tags
database. Depending on the data source, you can import not only the tag names, but also the
communication interface (the link between the tags and the PLC addresses).

When you click Import Wizard on the Home tab of the ribbon, an Import Database Wizard dialog
displays to step you through the process of importing tags. There are three steps for importing tags
from these data source types:

InduSoft Web Studio Project Database

OPC Server Database

CSV Database

ODBC Database

RSLogix™ 5000 CSV Database

PanelBuilder32™ Database

OMRON™ CX Programmer Database

TwinCAT™ PLC Database

PanelMate Plus™ Database

Step1: Select the Source Type

Figure 1. Import Wizard

Click the data Source Type, which is where the tags are being imported from. Click Next.

Continue to the appropriate section for the instructions you need to complete the import database
procedure:

Importing from Other project databases

Importing from OPC Server Databases

Importing from CSV Databases

Importing from ODBC Databases

Importing from PanelBuilder32 Databases

Importing from RSLogix 5000 CSV Databases

Importing from OMRON CX Programmer Databases

Importing from TwinCAT PLC Databases

Importing from PanelMate Plus Databases

Step 2: Configure the Source Type Settings

Figure 2. Import OPC Server dialog

Most of the settings in the second window depend on the data Source Type selected in the first step.
The screenshot above is an example of one data Source Type (OPC Server Database). The settings
that are common for any data Source Type are described below:

Options box: Select Do not import duplicated tags if you do not want imported tags to
overwrite tags with the same name that already exist in the Tags Database of the current
project. Select Replace duplicates with tags imported to overwrite tags in the Tags
Database with imported tags of the same name.

Use Prefix: Check to specify a prefix (up to 4 characters) to be concatenated to the name of
the imported tags. It is useful to use a prefix to differentiate the imported tags from the tags
created manually.

Note: The other settings vary according to the data source selected in the first step, and they
are described in the specific sections for each data Source Type.

After configuring the settings in this dialog, click Next.

Step 3: Filter the tags

Figure 3. Import OPC Server dialog

The screenshot above is an example of one data Source Type (OPC Server Database). The fields and
settings that are common for all data Source Types include the following:

Grid: Displays the list of tags found on the data source.

checkbox: Check to import the tag from the data source to the Tags Database of the
current project.

TagName: Name of the tag

Size: Array size of the tag

Type: Data type of the tag (Boolean, Integer, Real, String or Class:<ClassName>)

Description: Description of the tag

Check button: Click to select/import all tags in the grid

Uncheck button: Click to uncheck all tags in the grid

Filter button: Click to filter the tags. The Filter dialog will display, allowing you to specify a
mask for each column in the grid. Wild cards (* and ?) can be used to filter data.

Clear Filter button: Click to reset the filter.

Import Filtered Tags Only checkbox: Check this option to import only the tags that are
visible in the grid (filtered).

Status box: Displays a message describing the status of the tag currently selected in the grid.
This information is especially useful to indicate why a tag cannot be imported.

Legend box: Describes the meaning of the colors that represent tag status:

(Red) Error:Tag cannot be imported because it is not supported by IWS. See the Status
box for a detailed description of the error.

(Blue) Tag will be imported:Tag will be imported after you click the Finish button.

(Gray) Tag can be imported:Tag can be imported but it has not been checked.

Database size box: Displays summary information regarding the current Import Wizard:

Current: Indicates the number of tags configured in the Project Tags database of the
current project

Importing: Indicates the number of tags selected to be imported

Replacing: Indicates the number of tags configured in the Project Tags database of the
current project that will be replaced by an imported tag with the same name.

After selecting the tags to import, click the Finish button, or click Cancel to abort the operation.

Note: The other settings vary according to the data source selected in the first step, and they
are described in the specific sections for each data Source Type (see below).

Data Source Types

Continue to the appropriate section for the instructions you need to complete the import database
procedure:

Importing from Other project databases

Importing from OPC Server Databases

Importing from CSV Databases

Importing from ODBC Databases

Importing from PanelBuilder Database Wizard

Importing from RSLogix 5000 CSV Database Wizard

Importing from OMRON CX Programmer Databases

Importing from TwinCAT PLC Databases

Importing from PanelMate Wizard

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Importing from Other Project
Databases
This wizard allows you to import the interfaces (tags and worksheets) of other IWS projects. When
you import only the tags (rather than the whole project) from a remote computer, the TCP/IP Client
worksheet can be automatically created to link the tags between both stations (the local and the
remote), and to share the value of these tags between both stations during runtime.

Figure 1. Import Project Database Wizard dialog

Import tags only: When this option is selected, the tags from the other project will be
imported to the current project. The other interfaces of the project (worksheets) will not be
imported.

Import the whole project: When this option is selected, the following interfaces from the
other project will be imported to the current project:

Tags Database

Global Procedures

Screens

Screen Groups

Web Pages

Alarms

Trends

Recipes

Reports

ODBC

Math

Scripts

Scheduler

Drivers

OPC

TCP/IP

DDE

This option is useful for merging projects and importing template projects.

Note: When you select the option to Import the whole project, the following worksheets
will always be imported, regardless of existing worksheets with the same number in the
current project: ODBC, Math, Script, Scheduler, Drivers, OPC, TCP/IP and DDE. If there are
worksheets with the same number in the current project, worksheets imported from the
other project will be inserted as additional worksheets in the current project, and the
number of each worksheet will be automatically increased to avoid replacing files on the
current project.

Do not import duplicated: When this option is selected, the following interfaces are not
imported in case there is already an equivalent interface in the current project:

Tags Database (tags with the same name will not be imported)

Global Procedures (the global procedures will not be imported at all)

Screens (screens with the same name will not be imported)

Screen Groups (screen groups with the same name will not be imported)

Web Pages (Web pages with the same name will not be imported)

Alarms (alarms assigned to tags with the same name will not be imported)

Trend (trend logs assigned to tags with the same name will not be imported)

Recipes (recipes with the same name will not be imported)

Reports (reports with the same name will not be imported)

Script (the startup script will not be imported at all)

Application: Click Browse and select the project_name.APP file that has the tags you want to

import.

Generate TCP/IP Client worksheet: If you want your project to share tags with another IWS
project running on a remote server, select this option and enter the IP address of that server.
IWS will automatically configure the TCP/IP Client worksheet to exchange data with the remote
project.

Use prefix: Select this option to specify a prefix (up to 4 characters) that will be prepended to
the names of the imported tags. It is useful to differentiate the imported tags from the tags
created manually.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Importing from OPC Server
Databases
This wizard allows you to import tags from either a local OPC Server or a remote one. When you
import tags from the OPC Server, the OPC Client worksheet is automatically created to link the tags,
eliminating the need to configure the communication interface between the OPC Client from IWS and
the external OPC Server.

Figure 1. Import OPC Server Database Wizard

Local/Remote: Provide the following options:

Local:Select this option to import tags from an OPC Server installed in the local computer.

Remote:Select this option to import tags from an OPC Server installed in a remote
computer. Type the IP Address (or the host name) of the remote computer where IWS is
running in the Remote field.

Merge Local and Remote OPC Servers checkbox: If you selected a Remote server, check
this option to display the list of OPC Servers installed in the local computer and also in the
remote computer. Uncheck this checkbox to display only the list of OPC Servers installed in the
remote computer.

Identifier combo-box: Displays the list of available OPC Servers.

Branch: Click on the Browse button (…) to select the branch of the OPC Server from which the
tags (items) will be imported. Leave this field blank if you want to import tags from all branches
configured in the OPC Server.

Use the item path for the tagname checkbox: Check this option to concatenate the path
name to the item name when importing tags from the OPC Server. Uncheck this option to use
only the item names configured in the OPC Server.

In the grid displayed in Step 3 (Import Wizard on the Home tab of the ribbon) for this Data Source
Type, there is an additional field with the label OPC, which displays the name of the items from the
OPC Server.

Note: See Steps 1, 2 and 3 of Import Wizard for the settings and fields that are common for
all Source Types.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Importing from CSV Databases
This wizard allows you to import tags from a text file in the CSV (Comma Separated Values) format,
or any similar format.

Figure 1. Import CSV Database Wizard

File Name: Press the Browse button to select the text file from which the tags will be imported.

Data Column box: Select a number for each tag property that corresponds to its column
number in the import file. For example, if the Tag, Array Size and Type are listed in the second,
third and first columns in the import file, respectively, select 2 in Tag, 3 in Array Size and 1 in
Type. The Tag property (tag name) is mandatory, but the other properties are optional.

For properties that are not included in the text file, select the option Not used. IWS will insert
defaults or leave the field blank, according to the following list:

Array Size:0

Type:Integer

Description:<Blank>

Web Data:Local

Delimiters checkbox: Select the delimiter(s) used in the text file to divide one column from

another. For a CSV file, the delimiter is Comma (the default). You can select more than one
delimiter at a time, and you can use the Other option to enter a custom delimiter.

Note: See Steps 1, 2 and 3 of Import Wizard for the settings and fields that are common for
all Source Types.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Importing from ODBC Databases
This wizard allows you to import tags from an external SQL Relational Database such as Microsoft
Access, SQL Server, Oracle, My SQL, Sybase and others, through the ODBC interface.

Figure 1. Import ODBC Database Wizard

Select Data Source button: Click to select the ODBC Data Source Name (DSN) linked to the
database from which the tags will be imported. The DSN must have previously been created
with the Data Sources (ODBC) window (Control Panel > Administrative Tools > Data
Sources [ODBC]). After you select a DSN, the other fields in this window will be populated
automatically with information from the selected database.

Table combo-box: Select the table that holds the tags in the import database.

Tag combo-box: Select the name of the column that holds the tags in the import database.

Array Size combo-box: Select the name of the column that holds the array size for the tags in
the import database.

Type combo-box: Select the name of the column that holds the tag type in the import
database.

Description combo-box: Select the name of the column that holds the tag description in the
import database.

Web Data combo-box: Select the name of the column that holds the Web Data for the tags in
the import database.

Note: See Steps 1, 2 and 3 of Import Wizard for the settings and fields that are common for
all Source Types.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Importing from PanelBuilder32
Databases

Note: This wizard is sold as an add-on and requires a license to be enabled. Consult your
software for further information.

This wizard allows you to import not only the tags, but also the screens, alarm configuration and
communication interface from a text file (report) exported by the PanelBuilder32™ software. Using
this wizard, you can convert PanelView™ program (developed with PanelBuilder32™) into the IWS
format and run them under any platform supported by IWS.

Figure 1.

Import Screens: Check this option to import the graphical screens (including their objects and
animations) to IWS.

Import Comm. Configuration: Check this option to import the communication interface (tags
linked to PLC addresses) to IWS.

Report File: Press the Browse button to select the name of the text file exported from
PanelBuilder32™ (report printed to a text file).

ControlLogix Only: When importing a program that was configured to exchange data with
ControlLogix PLCs, IWS can convert the communication interface to Ethernet/IP (ABCIP driver).
To do so, type the IP Address of the PLC and its slot number. This information will be used to
create the communication interface for the imported program. If the original program was
already configured to use the Ethernet/IP interface, these fields can be left blank, because the
IP Address and CPU Slot Number are retrieved from the program file itself.

In the grid displayed in Step 3 for this Data Source Type, there is an additional field with the label
Address, which displays the tag addresses from the PanelBuilder project.

Tip: Please consult the documentation for this import wizard for detailed information about how
to export an program from the *.PBA format to the text (*.TXT) format, using PanelBuilder32™,
and import it into IWS.

Note: See Steps 1, 2 and 3 of Import Wizard for the settings and fields that are common for
all Source Types.

Note: IWS does not support some special characters (e.g., [] . –) in tag names. When you
import your PaneBuilder database into IWS, these special characters will be converted into
underscores (_).

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Importing from RSLogix 5000 CSV
Databases
This wizard allows you to import tags from a program for ControlLogix/FlexiLogix PLC developed with
RSLogix™ 5000 and exported to a CSV file. When you import tags from the RSLogix™ 5000 CSV file,
the ABCIP driver worksheet is automatically created to link the tags imported with the PLC,
eliminating the need to configure the communication interface between IWS and the PLC manually.

Figure 1.

PLC Options box: Provides the following options:

Use Full Scope: Select to import the tags using the full scope configured in the PLC
program.

Do Not Use Scope:Select to ignore the scope of the tags configured in the PLC program.

Use Limited Scope:Select to set the number of characters from the Scope that must be
used when importing the tags from the PLC program.

PLC IP Address:Type the IP Address of the PLC. This information will be used to
configure the communication driver worksheets automatically.

CSV File: Click the Browse button to select the CSV file exported by the RSLogix™ 5000 with

the list of tags configured in the PLC program.

L5K File: Click the Browse button to select the L5K file saved by the RSLogix™ 5000 with the
list of UDT (User Defined Type) tags configured in the PLC program. This file is optional for the
wizard. However, if this file is not selected, the UDT tags will not be imported.

Create class tags when suitable: Check this checkbox to create tags and classes for UDT
tags imported from the PLC program. Uncheck this checkbox to import tags as single tags
(rather than class type) from the PLC program.

In the grid displayed in Step 3 (Importing a Database) for this Data Source Type, there is an
additional field with the label Address, which displays the name of the items from the RSLogix™
program.

Note: See Steps 1, 2 and 3 of Import Wizard for the settings and fields that are common for
all Source Types.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Importing from OMRON CX
Programmer Databases

Note: This import wizard creates the communication driver for the OMRON communication
driver, which is enabled only for customers that purchase the product directly from OMRON.
Consult your software vendor for further details. Moreover, the OMRON communication driver
communicates with the OMRON PLCs by the FINS Gateway, which is supported for the Windows
2000/XP operating systems. Therefore, the FINS Gateway must be installed on the computer to
enable communication between IWS and the PLCs through the OMRON driver.

This wizard allows you to import tags from a program for OMRON PLCs developed with CX
Programmer and exported to a CXT file. When importing tags from the CX Programmer CXT file, the
OMRON driver worksheet is automatically created to link the tags imported with the PLC, eliminating
the need to configure the communication interface between IWS and the PLC manually.

Figure 1.

Prefix: This box allows you to concatenate one of the following types of prefixes to the tags
imported from the CX Programmer program:

Custom: Check this option to concatenate a custom prefix with up to 8 characters to the
name of the imported tags.

PLC: Check this option to concatenate either the PLC name or the PLC Number to the
name of the imported tags.

Program: Check this option to concatenate either the Program name or the Program
Number to the name of the imported tags.

Serial Auto Address: This area allows you to configure the Network Address and the Initial
Node Address for the PLCs configured in the product with Serial communication (if any):

Network Address: This setting will be applied to all PLCs configured in the project with
Serial communication.

Node Address: This setting will be applied to the first PLC configured in the project with
Serial communication. This setting will be incremented and applied to subsequent PLCs
configured in the product with Serial communication.

CXT File: Click the Browse button to select the CXT file, exported by CX Programmer, from
which the tags will be imported.

In the grid displayed in Step 3 for this Data Source Type, there is an additional field with the label
Address, which displays the name of the tags from the CX Programmer program.

Note: See Steps 1, 2 and 3 of Import Wizard for the settings and fields that are common for
all Source Types.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Importing from TwinCAT PLC
Databases
This wizard allows you to import database variables from a TwinCAT PLC program that has been
developed with Beckhoff's TwinCAT software. Also, when you run the import, IWS automatically
creates and configures a TWCAT driver worksheet, eliminating the need to manually configure the
communication between IWS and TwinCAT.

Note: Please refer to Step 2 of the Import Wizard instructions for settings that are common to
all sources.

Figure 1. Import TwinCAT PLC Database Wizard

The Import TwinCAT PLC Database Wizard dialog allows you to configure the following settings:

AMS Net ID: Enter the AMS Net ID of the TwinCAT PLC that you want to communicate with.
For example: 5.0.112.206.1.1

TCP Port: Select the port on which the PLC's runtime system has been configured to run. You
can select one of the standard ports (e.g., 801, 811, 821 or 831), or enter a custom port
number.

Symbol File: Click the Browse button to select the TwinCAT symbol file (.SYM or .TPY) that
contains the variables to be imported. For more information, please see "Exporting the Symbol
File from TwinCAT" below.

You are now ready to import the variables into IWS. Return to Step 3 of the Import Wizard.

Exporting the Symbol File from TwinCAT

The TwinCAT development software automatically exports the program database to a "symbol file"
every time you rebuild your TwinCAT project. However, TwinCAT exports the entire database by
default, including many system and library variables that IWS cannot import. Before you run the
import wizard, you must reconfigure your TwinCAT project options to export only the POUs and
Global Variables and then rebuild your TwinCAT project to generate a fresh symbol file.

Note: As of version 2.8, the TwinCAT development software exports the symbol file in both .SYM
and .TPY formats:

.SYM is a legacy format that is included for backward compatibility. Beckhoff recommends
that it be used only with TwinCAT OPC Server.

.TPY is a new, XML-based format that should be used in all other situations, including
importing into IWS.

To reconfigure your project options and generate a fresh symbol file:

Open your TwinCAT project using the TwinCAT development software.1.

Choose Project > Options from the menu bar. The Options window is displayed.2.

Select Symbol configuration from the Category list:

Figure 2. Selecting "Symbol configuration"

3.

3.

Click (check) the Dump symbol entries option.4.

Click the Configure symbol file… button. The Set object attributes dialog is displayed.5.

For the sake of expediency, you should first disable the export of all objects and then reenable
only the objects that you want to export to IWS — typically, the POUs and Global Variables.
Select all of the objects in the tree and uncheck all options for them at the bottom of the dialog.
For example:

Figure 3. Configuring the symbol file

6.

Note: You may need to check Export variables of object in order to activate the other
checkboxes and then uncheck them.

Reselect only the POUs and Global Variables that you want to export to IWS. Do not select
libraries. With the objects selected, check all of the options at the bottom of the dialog. For
example:

Figure 4.

7.

Click OK to close the Set object attributes dialog, and then click OK again to close the Options
window.

8.

Choose Project > Rebuild All from the menu bar. The system will rebuild the project,
generating a symbol file that contains the desired POUs and Global Variables .

9.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Importing from PanelMate Plus
Databases

Note: This wizard is sold as an add-on and requires a license to be enabled. Consult your
software vendor for further information.

This wizard allows you to import not only the tags, but also the screens, alarm configuration and
communication interface from a project created with PanelMate Plus™ software. Using this wizard,
you can convert a PanelMate™ program (developed with PanelMate Plus™) into the IWS format and
run it under any platform supported by IWS.

Figure 1.

Import Screens: Check this option to import the graphical screens (including their objects and
animations) to IWS.

PanelMate Model: Press the Browse button to select the directory where the database files of
the PanelMate Plus project that you intend to import are stored.

Application: After selecting the correct path on the PanelMate Model field, the programs
available in this directory will be available in this combo-box. Select the program that you intend
to import before pressing the Next button.

Tip: Please consult the documentation for this import wizard for detailed information about how
to export an program from the PanelMate Plus™ software into IWS.

Note: See Steps 1, 2 and 3 of Import Wizard for the settings and fields that are common for
all Source Types.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Integrating the project database
with a TwinCAT PLC
More than simply importing the tags and interface from a TwinCAT program, you can fully integrate
your project database with a running TwinCAT PLC so that tags are synchronized between the
systems, without the extra configuration required by an OPC Client worksheet.

Before you can integrate with a TwinCAT PLC, you must do the following:

Make sure the PLC is running and available on your network, and then note its AMS Net ID and
runtime system port number; and

Export a new symbol file (*.TPY) from the TwinCAT development application containing only the

program variables that your project can use, and then copy the file to a location where the IWS
development application can access it. (Typically, you should copy the symbol file to your
project folder.) For more infomation, see Exporting the Symbol File from TwinCAT.

On the Project tab of the ribbon, in the Settings group, click Communication. The Project
Settings dialog is displayed, with the Communication tab selected.

1.

In the Tag Integration area, click Add. The Tag Integration Source dialog is displayed.

Figure 1. Tag Integration Source dialog

2.

In the Type list, select Integrated if it's not already selected.3.

In the Provider list, select TwinCAT if it's not already selected.4.

In the Name box, type a name for the source. This name will be used as a prefix for all tags
received from the source. For example, a TwinCAT PLC tag named switch1 would subsequently
be named DEV_switch1 in your project.

5.

Click Add. The TwinCAT Interface Configuration dialog is displayed.6.

Figure 2. TwinCAT Interface Configuration dialog

6.

In the AMS Net ID box, type the AMS Net ID of the TwinCAT PLC that you want to
communicate with. For example: 5.0.112.206.1.1.

7.

Select the port number on which the TwinCAT runtime system has been configured to run.8.

To the right of the Symbol File box, click Browse. A standard Open dialog is displayed.9.

Use the Open dialog to locate and select the TwinCAT symbol file (*.TPY).10.

Click OK to close the Open dialog.11.

Click OK to close the TwinCAT Interface Configuration dialog.12.

The integrated tags are listed in the Shared Database folder. They can be used in your project like
normal tags, and they will be synchronized between the systems during project runtime.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics
The most basic function performed by IWS is to provide a window into the process. The ability to
display the status of the process by interacting with instrumentation (or computers), is described as
the Human-Machine Interface (HMI).

IWS allows you to create projects that can monitor processes using high-resolution color screens.

The IWS graphic tools consist of two modules:

The Screen/Worksheet Editor in the IWS development environment (used to create or import
graphics); and

The runtime project Viewer.

You can use animations to create dynamic graphic objects or symbols. Animations cause objects and
symbols to change appearance to reflect changes in the value of a tag or an expression. Each screen
is an association of static and animated objects.

Screens can have an optional bitmap that acts as a background in the object window. On the
following screen for example, the static images can be part of a bitmap in the background object and
objects with animation in the animation object layer can reflect the changes in the plant, giving the
illusion that the screen is three-dimensional.

Figure 1. Sample CEView Emulation Screen

All IWS configuration tasks require a Windows-compatible pointing device, such as a mouse or touch
pad. You can run a project in the Viewer without a pointing device if you configure keypad or
keyboard keys for all commands.

Graphics tab
The Graphics tab of the Project Explorer contains all of the screens, screen groups, and

symbols in your project.

Format tab
The Format tab of the ribbon is used to format and arrange objects in a project screen.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Graphics tab >

Screens folder
The Screens folder is located in the Graphics tab of the Project Explorer. It contains all of your
Screen worksheets, both completed and still in development.

To create a new Screen worksheet, do one of the following:

On the Insert tab of the ribbon, in the Graphics group, click Screen;

Right-click the Screens folder in the Project Explorer, and the click Insert on the shortcut
menu; or

Click the Application button, click New on the Application menu, click the File tab in the New
dialog, select Screen from the list of worksheet types, and then click OK.

When a Screen worksheet is opened for the first time, the Screen Attributes dialog for that worksheet
is automatically displayed. For more information, see Screen Attributes dialog.

To open an existing Screen worksheet, expand the Screens folder and then double-click the
worksheet.

Screen Attributes dialog
The Screen Attributes dialog is used to configure runtime settings — such as size, location, title
bar, security level, and screen logic — for a specific project screen.

Modifying a screen's background color or image
A project screen can have either a solid background color or an editable background image.

Parent topic: Graphics tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Graphics tab > Screens folder >

Screen Attributes dialog
The Screen Attributes dialog is used to configure runtime settings — such as size, location, title bar,
security level, and screen logic — for a specific project screen.

Accessing the dialog

The Screen Attributes dialog is automatically displayed when you add a new Screen worksheet.

You can also access the dialog for an existing Screen worksheet (assuming the worksheet is open for
editing) by doing one of the following:

On the Graphics tab of the ribbon, in the Screen group, click Attributes; or

Right-click anywhere in the Screen worksheet and then click Screen Attributes on the shortcut
menu.

The dialog in detail

Figure 1. Screen Attributes dialog

Table 1. Elements in Screen Attributes dialog

Area / Element Name Description

Description A brief description of the project screen. This is not
shown anywhere during runtime.

Background Picture Enable Background Enables the background picture layer and specifies
the file type of the picture.

When this option is selected, a new BMP file with the
same name as the screen is automatically saved in
the Screen sub-folder of your project folder (e.g.,
\project_name\Screen\screen_name.BMP). You can

then edit this image using a third-party image editor.
For more information, see Changing a screen's
background color or image.

Shared Image Uses the specified image file located in the Screen
sub-folder of your project folder.

If you want to specify a tag/expression that provides
this value, so that you can programmatically change
the value during runtime, then the tag/expression
must be enclosed in curly brackets. For example:
{myTag}

Do not include the extension in the file name. If the
file format is not BMP, then use the list to the right of
the Enable Background option above to select the
correct format.

Note: Only BMP files are supported in projects
developed for Windows Embedded target systems.

Size Width The default width of the screen (in pixels) when it is
initially displayed.

The user can change the size during runtime if the
screen is set to be resizable; see Border below.

Height The default height of the screen (in pixels) when it is
initially displayed.

The user can change the size during runtime if the
screen is set to be resizable; see Border below.

Location Top The default distance (in pixels) between the top of
the computer display and the top of the screen when
the screen is initially displayed.

The user can change the location during runtime if
the screen is set to have a border and title bar; see
Border below.

Left The default distance (in pixels) between the left side

Area / Element Name Description Left The default distance (in pixels) between the left side
of the computer display and the left side of the
screen when the screen is initially displayed.

The user can change the location during runtime if
the screen is set to have a border and title bar; see
Border below.

Security The minimum security level that a user must have to
access this screen.

Hide Keeps the screen loaded in memory after it is called
the first time, so that it opens more quickly every
time thereafter. Any user action or system process
that would close the screen in fact only hides it.

CAUTION:
This option should be selected only for critical
screens that must open quickly. If too many
screens are kept in memory, then overall
project performance will be affected.

Runtime Properties Style The general runtime behavior of the screen:

Overlapped

Opens the screen without closing any other
screens.

Popup

Forces the screen in front of all other screens
but does not close them.

Replace (Partial)

Opens the screen and closes all other Replace
and Popup screens.

This is the default.

Dialog

Similar to Popup except that the other screens
are also disabled until the dialog is closed.

Replace (Complete)

Similar to Replace (Partial) except that it
also closes Overlapped and Dialog screens.

Border The type of border around the screen:

None

No border; the screen is a flat, immovable
rectangle on the computer display.

Left The default distance (in pixels) between the left side
of the computer display and the left side of the
screen when the screen is initially displayed.

The user can change the location during runtime if
the screen is set to have a border and title bar; see
Border below.

Security The minimum security level that a user must have to
access this screen.

Hide Keeps the screen loaded in memory after it is called
the first time, so that it opens more quickly every
time thereafter. Any user action or system process
that would close the screen in fact only hides it.

CAUTION:
This option should be selected only for critical
screens that must open quickly. If too many
screens are kept in memory, then overall
project performance will be affected.

Runtime Properties Style The general runtime behavior of the screen:

Overlapped

Opens the screen without closing any other
screens.

Popup

Forces the screen in front of all other screens
but does not close them.

Replace (Partial)

Opens the screen and closes all other Replace
and Popup screens.

This is the default.

Dialog

Similar to Popup except that the other screens
are also disabled until the dialog is closed.

Replace (Complete)

Similar to Replace (Partial) except that it
also closes Overlapped and Dialog screens.

Border The type of border around the screen:

None

No border; the screen is a flat, immovable
rectangle on the computer display.

Area / Element Name Description

This is the default.

Thin

A thin border that makes the screen a movable
window. Includes title bar.

Resizing

A thick border that makes the screen a
movable, resizable window. Includes title bar.

Titlebar Shows the window's title bar with the specified
window name.

If you want to specify a tag/expression that provides
this value, so that you can programmatically change
the value during runtime, then the tag/expression
must be enclosed in curly brackets. For example:
{myTag}

Tip: It is useful to specify a window name even when
the title bar is not shown, because when the screen is
printed, the window name is included in the page
header.

System Menu Provides a menu of basic window commands at the
left end of the title bar.

Maximize Box Shows the Maximize button at the right end of the
title bar.

Minimize Box Shows the Minimize button at the right end of the
title bar.

Don't Redraw While this tag/expression evaluates as TRUE, the
screen's graphics are not updated.

Disable Commands While this tag/expression evaluates as TRUE, the
screen is locked against user interaction but the
graphics continue to be updated.

Screen Logic On Open Lists expressions to be evaluated once when the
screen is opened, similar to a Math worksheet.

While Open Lists expressions to be continuously evaluated while
the screen is open, similar to a Math worksheet.

If you also configure a tag/expression in Trigger,
then instead of being continuously evaluated, the
listed expressions will be evaluated once each time
the value of the trigger changes while the screen is
open.

This is the default.

Thin

A thin border that makes the screen a movable
window. Includes title bar.

Resizing

A thick border that makes the screen a
movable, resizable window. Includes title bar.

Titlebar Shows the window's title bar with the specified
window name.

If you want to specify a tag/expression that provides
this value, so that you can programmatically change
the value during runtime, then the tag/expression
must be enclosed in curly brackets. For example:
{myTag}

Tip: It is useful to specify a window name even when
the title bar is not shown, because when the screen is
printed, the window name is included in the page
header.

System Menu Provides a menu of basic window commands at the
left end of the title bar.

Maximize Box Shows the Maximize button at the right end of the
title bar.

Minimize Box Shows the Minimize button at the right end of the
title bar.

Don't Redraw While this tag/expression evaluates as TRUE, the
screen's graphics are not updated.

Disable Commands While this tag/expression evaluates as TRUE, the
screen is locked against user interaction but the
graphics continue to be updated.

Screen Logic On Open Lists expressions to be evaluated once when the
screen is opened, similar to a Math worksheet.

While Open Lists expressions to be continuously evaluated while
the screen is open, similar to a Math worksheet.

If you also configure a tag/expression in Trigger,
then instead of being continuously evaluated, the
listed expressions will be evaluated once each time
the value of the trigger changes while the screen is
open.

Area / Element Name Description

On Close Lists expressions to be evaluated once when the
screen is closed, similar to a Math worksheet.

Focus Receive Focus on
Open

When the screen is opened, the focus will
automatically go to the first object in the screen
(according to Object ID) that can receive focus, as if
the user tabbed into the screen.

Share Tab Order
with Other Screens

When the user tabs through the last object in the
screen, the focus will go to the next open screen
(according to Tab Order below) rather than back to
the first object in the current screen.

Tab Order Similar to Object ID for screen objects, this
determines the tab order between screens when
multiple screens are open. When the user tabs
through the last object in a screen, the focus will go
to the open screen with the next higher Tab Order
number.

Each screen should have a unique Tab Order number
between 0 and 32767.

Parent topic: Screens folder
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

On Close Lists expressions to be evaluated once when the
screen is closed, similar to a Math worksheet.

Focus Receive Focus on
Open

When the screen is opened, the focus will
automatically go to the first object in the screen
(according to Object ID) that can receive focus, as if
the user tabbed into the screen.

Share Tab Order
with Other Screens

When the user tabs through the last object in the
screen, the focus will go to the next open screen
(according to Tab Order below) rather than back to
the first object in the current screen.

Tab Order Similar to Object ID for screen objects, this
determines the tab order between screens when
multiple screens are open. When the user tabs
through the last object in a screen, the focus will go
to the open screen with the next higher Tab Order
number.

Each screen should have a unique Tab Order number
between 0 and 32767.

Parent topic: Screens folder
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Graphics tab > Screens folder >

Modifying a screen's background
color or image
A project screen can have either a solid background color or an editable background image.

Selecting a screen's background color

By default, a newly created project screen has a solid white background. To change this background
color:

Make sure the screen file is open for editing.1.

On the Graphics tab of the ribbon, in the Screen group, click Background Color. A standard
color picker is displayed as a shortcut menu.

2.

Use the color picker to select a color. The color is applied to the entire project screen.3.

Tip: If you want to set a background color for only part of a screen, draw a shape object and
then send it to the back.

Enabling a screen's background image

To enable the background image for a screen and then edit it:

Make sure the screen file is open for editing.1.

On the Graphics tab of the ribbon, in the Screen group, click Attributes.The Screen Attributes
dialog is displayed.

2.

Select the Enable Background option. A new BMP file with the same name as the screen is
automatically saved in the Screen sub-folder of your project folder (e.g.,
\project_name\Screen\screen_name.BMP).

3.

Click OK to close the Screen Attributes dialog.4.

On the Graphics tab of the ribbon, in the Screen group, click Background Image. Microsoft
Paint is started and the BMP file is opened for editing.

5.

Use Paint to edit the background image as needed.6.

Specifying an existing image file as the background

To select an existing image file, especially if it's in a format other than BMP:

Copy the image file that you want to use to the Screen sub-folder of your project folder.1.

In the development application, make sure the screen file is open for editing.2.

3.

1.

2.

On the Graphics tab of the ribbon, in the Screen group, click Attributes.The Screen Attributes
dialog is displayed.

3.

Select the Enable Background option.4.

Select the Shared Image option, and in the box, type the name of the image file. Do not
include the file extension.

5.

In the list to the right of the Enable Background option, select the graphics format of the
image file.

Note: Only BMP files are supported in projects developed for Windows Embedded target
systems.

6.

Click OK to close the Screen Attributes dialog. If the development application can find and load
the specified file, then it will be shown in the screen. If not, then a warning message will be
displayed.

7.

Parent topic: Screens folder
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Graphics tab >

Screen Group Folder
The Screen Group folder combines individual screens from the Screens folder into more manageable
groups.

To open a specific screen group, open the Screen Group folder and right-click on the subfolder.

To remove a specific screen group, right-click on its subfolder and click the prompt screen to delete.

To create a new screen group:

On the Insert tab of the ribbon, in the Graphics group, click Screen Group to open the Insert
Screen Group dialog:

Figure 1. Insert a Screen Group dialog

1.

Type a name for the new folder into the Name field.2.

Create a group of screens for this folder by selecting screens from the List of screens list. To
select multiple screens press the Ctrl key as you click on the screen names. Release the Ctrl
key when you finish.

This list contains only those screens currently located in Screens folder.

3.

Click OK to close the Insert Screen Group dialog.4.

Parent topic: Graphics tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Graphics tab >

Web Pages Folder
IWS also enables you to save screens in the HTML format. You cannot create the HTML pages contained in the
Web folder directly; instead they are generated from pre-existing screens.

To create an HTML page, you must first create a screen. Configure a screen as you usually would (create objects,
add properties, and so on) but keep in mind that this screen will become a Web page. Save the screen as usual
when you finish. Then, with the screen still open, click Save As HTML on the Application menu.

CAUTION:

The Web pages that are generated when you click Save As HTML are independent of the screen
files from which they were generated. Consequently, if you change that screen, the changes will
not appear on the Web page until you click Save As HTML again.

To view your Web pages during runtime, you must first configure the project settings (Thin Client on the Project
tab of the ribbon).

Figure 1. Project Settings dialog — Web tab

1.

2.

Open the dialog and type the IP address (from which to run the project) in the Data Server IP Address
field.

1.

Type a value in the Send Period (ms) field to specify the send period (in milliseconds) used to exchange
data between the Server and the Thin Client stations.

2.

In the URL field, enter the address of the project file using the following format:3.

http://IP address of the server /path from the server root to the directory containing your Web pages /project name.app

You can also enter a local file path using the following format:

file:///volume name/path to the directory containing your Web pages /project name.app

Click (enable) the following checkboxes if applicable:

Disable Remote Client Commandscheckbox: Click (enable) this box to prevent a remote client from
issuing commands from your Thin Client to your Server.

Enable ToolTipscheckbox: Click (enable) this box to see Windows ToolTips when viewing the project
screens on the Thin Client (browser).

Auto Screen Scalingcheckbox: Click (enable) this box to automatically scale screens displayed in a
Browser window.

Enable this parameter if you are running remotely on a Thin Client, and you want IWS to scale screens
automatically when you resize the Browser window.

Enable File Compressioncheckbox: Click (enable) this box to compress the files stored in the Web

sub-folder of your project folder. This option is useful for reducing download time, particularly if you
have a slow connection between your Server and the Thin Client.

4.

Click the IP Security button to open the IP Security dialog (see figure). Use the parameters on this dialog to
specify the range of IP addresses for the computers that are allowed to access the project as Thin Clients.

Figure 2. IP Security dialog

5.

http://

When the Edit pane parameters become active, type IP addesses in the From and To fields to specify the IP
address range. Use the Add and Remove buttons to move the IP addresses into the IP Address Range
list. IWS permits the computers listed in this pane to access the project as Thin Clients

To enable logging for the Thin Client, move to the Log pane and click (enable) the Enable checkbox and type
a file name into the Filename field to generate a log file on the Thin Client station. You can use this log file
for debugging purposes.

6.

Click OK to close the Project Settings dialog.7.

Note: If you change any of the Web information on the Project Settings dialog, you must re-verify the project
for the new setting to take effect. To verify the project, click Verify on the Home tab of the ribbon. (If you
have any windows open in the development system, IWS prompts you close them before you verify the
project).

Also, because the Web pages display information from the project through the Web server, you must be
running the runtime system, Web server, and the TCP/IP server to view your Web pages.

Parent topic: Graphics tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Graphics tab >

Layout Tool

Click the Layout tool to open the Layout tab.

This interface displays all screens currently open in the Screen Editor and allows you to:

Modify the Screen Attributes: Right-click on the screen displayed on the Layout tab and use
the alignment options or the Screen Attributes link to modify the screen position. You can also
click and drag the screen to change its position (Top and Left) or resize it (Width and Height).

Visualize how the screens fit together during runtime. This option is especially useful
when creating pop-up/dialog screens or groups of screens.

Note: The screens open in the Layout tab according to the order that they are open in the
development environment. When you change the position of the screen tabs in the development
environment (to the left or to the right), you will change the order in which these screens will be
displayed in the Layout tab.

Tip: Right-click on the title of the Layout tab to display the option to enable/disable the Auto
Scale. If you enable this option, the screens will be auto-scaled automatically to fit in the Layout
tab.

Parent topic: Graphics tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics >

Editing
The Editing group (see figure on the left) provides tools for general screen editing.

Figure 1. Editing group

Selection

Disabling drag in a screen
You can disable the dragging of objects in the screen editor, to prevent accidental moves after
you've layed out the screen exactly as you want it.

Replacing project tags in a document or screen object

Object Properties dialog
This dialog shows the configurable properties of a screen object or animation. Each type of
screen object and animation has its specific properties, but all types have a few properties in
common.

Grid Settings

Undo

Format tab
The Format tab of the ribbon is used to format and arrange objects in a project screen.

Parent topic: Screens and Graphics
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Editing >

Selection
On the Graphics tab of the ribbon, in the Editing group, click Selection to display a mouse cursor
that you can use to select and move objects on the screen.

Parent topic: Editing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Editing >

Disabling drag in a screen
You can disable the dragging of objects in the screen editor, to prevent accidental moves after you've
layed out the screen exactly as you want it.

On the Graphics tab of the ribbon, in the Editing group, click Disable Drag.
Parent topic: Editing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Development Environment >
Screens and Graphics > Editing >

Object Properties dialog
This dialog shows the configurable properties of a screen object or animation. Each type of screen
object and animation has its specific properties, but all types have a few properties in common.

Accessing the dialog

To access the Object Properties dialog for a specific screen object, do one of the following:

Select the screen object, and then on the Graphics tab, in the Editing group, click
Properties;

Select the screen object, and then press Alt+Enter;

Right-click the screen object, and then click Properties on the shortcut menu; or

Double-click the screen object.

The dialog in detail

All Object Properties dialogs contain the following elements:

Area / Element Name Description

Pushpin
When the pin button is released, the focus is passed to the object
on the screen as soon as that object is selected. When the pin
button is pressed, the focus is kept on the Object Properties
window even when you click the objects on the screen.

Replace Launches the Replace dialog, where you can replace strings, tags
or properties for the selected object or group of objects.

Hint Tooltip displayed during runtime, when the user hovers the mouse
cursor over the object. This can be used to provide quick-help to
the user.

The text in the Hint field is also temporarily written to the Hint
system tag, so that you can trigger actions based on the value of
this tag when the mouse cursor is moved over a specific object.

To show hints/tooltips during runtime, the Enable Tooltip option
must be selected in the Project Settings dialog. You can
enable/disable this feature separately for full project viewers
(Viewer on the Project tab of the ribbon) and for thin clients
(Thin Client on the Project tab of the viewer).

Area / Element Name Description

The combo-box at the right side of the dialog allows you to select
the specific object, group of objects, or animation that must be
edited.

Parent topic: The Development Environment
Parent topic: Editing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The combo-box at the right side of the dialog allows you to select
the specific object, group of objects, or animation that must be
edited.

Parent topic: The Development Environment
Parent topic: Editing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Editing >

Grid Settings
To show/hide the grid in the screen editor, click Grid Settings on the Graphics tab of the ribbon and
then click View Gridlines on the shortcut menu.

To edit the grid settings, do one of the following:

Click Grid Settings on the Graphics tab of the ribbon and then click Grid Settings on the
shortcut menu; or

Right-click anywhere in the screen editor and then click Grid Settings on the shortcut menu.

Either method will open the Grid Settings dialog:

Figure 1. Grid Settings dialog

Parent topic: Editing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Editing >

Undo
Select Undo to cancel the last action performed (and up to 20 actions taken prior to the last action)
while working on a screen. (Object Properties actions do not increase Undo steps.)

Note: Using the Undo menu option is the same as using Undo tool located on the Standard
toolbar.

Parent topic: Editing
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics >

Shapes
The Shapes group provides the following tools, which you can use to create polygons, rectangles,
lines, and other objects for your screen.

Figure 1. Shapes group

Line object

Open Polygon object

Closed Polygon object

Rectangle object

Rounded Rectangle object

Ellipse object

Parent topic: Screens and Graphics
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Shapes >

Line object

On the Graphics tab, in the Shapes group, click Line to draw an orthogonal line in the drawing
area, as follows:

Click the left mouse button to set the starting point of the line.1.

Drag the cursor to adjust the line size.2.

Click again to place the object.3.

To view the object properties, double-click on the object. The Object Properties dialog displays
as follows.

Figure 1. Object Properties: Line

4.

Use the Object Properties dialog to specify the following parameters for the orthogonal line:

Line: Specify a line style by clicking the No Line, Solid Line, or Dashed Line button.

Color: Specify a line color by clicking the Color button. When the Color dialog opens, click a
color to select it and then close the dialog.

Weight: Specify the line width (in pixels) by typing a number representing the line width into
the text box.

Parent topic: Shapes

Related information
Open Polygon object
Closed Polygon object
Rectangle object
Rounded Rectangle object
Ellipse object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Shapes >

Open Polygon object
On the Graphics tab, in the Shapes group, click Open Polygon to draw an open polygon with a
border in the specified foreground color.

To draw an open polygon in the drawing area:

Click the left mouse button to set the starting point of the polygon.1.

Move the cursor to a new location and click again to place the second vertex.2.

Repeat this process until you create the desired polygon shape.3.

Double-click to stop drawing the polygon.

To change the shape of a polygon after you've drawn it, select it and drag any of its points.

Tip: If a polygon's individual points are not draggable, they may be grouped. To ungroup
the points, right-click on the polygon and choose Ungroup from the shortcut menu.

To view the object properties, double-click on the polygon object and the Object Properties
dialog is displays as follows.

Figure 1. Object Properties: Open Polygon

4.

Use the Object Properties dialog to specify the following parameters for the polygon:

Line: Specify a border line style by clicking the No Line, Solid Line, or Dashed Line button.

Color: Specify a border line color by clicking the Color button. When the Color dialog opens,
click on a color to select it and then close the dialog.

Weight: Specify the borderline width (in pixels) by typing a number representing the line width
into the text box.

Parent topic: Shapes

Related information
Line object

Closed Polygon object
Rectangle object
Rounded Rectangle object
Ellipse object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Shapes >

Closed Polygon object
On the Graphics tab, in the Shapes group, click Closed Polygon to draw a closed polygon, using a
border in the specified foreground color.

To draw a closed polygon in the drawing area:

Click the left mouse button to set the starting point of the polygon.1.

Move the cursor to a new location and click again to place the second point.2.

Repeat this process until you create the desired polygon shape.3.

Double-click or right-click to stop drawing the polygon.4.

To view the object properties, double-click on the polygon object.

To change the shape of a polygon after you've drawn it, select it and drag any of its points.

Tip: If a polygon's individual points are not draggable, they may be grouped. To ungroup
the points, right-click on the polygon and choose Ungroup from the shortcut menu.

The Object Properties dialog is displays as follows.

Figure 1. Object Properties Dialog: Closed Polygon

5.

Use the Object Properties dialog to specify the following parameters for the polygon:

Line: Specify a border line style by clicking the No Line, Solid Line, or Dashed Line button.

Color: Specify a border line color by clicking the Color button. When the Color dialog opens,
click a color to select it and then close the dialog.

Weight: Specify the borderline width (in pixels) by typing a number representing the line width
into the text box.

Fill: To specify whether the polygon is filled, click No Fill or Fill.

If you enable the Fill option, you can specify a fill Color by clicking on the Color button. When
the Color dialog displays, click a color to select it and close the dialog.

Parent topic: Shapes

Related information
Line object
Open Polygon object
Rectangle object
Rounded Rectangle object
Ellipse object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Shapes >

Rectangle object

On the Graphics tab, in the Shapes group, click Rectangle to create rectangles, as follows:

Click in the drawing area and drag the mouse/cursor to draw the rectangle.1.

Release the mouse button when the rectangle is the size you want.2.

Double-click on the object to view the Object Properties dialog.

Figure 1. Object Properties: Rectangle

3.

Use the Object Properties dialog to specify the following parameters for the orthogonal line:

Type: Specify a border line style by clicking on None, Solid, Dashed, Etched, Raised or
Sunken.

Color: Specify a border line color by clicking the Color button to open the Color dialog. Click
the color to select it, and then close the dialog.

Weight: Specify a border line width by typing a number representing the line width (in pixels)
into the text box provided.

Fill: Specify whether to fill the rectangle by clicking No Fill or Fill.

If you select the Fill option, specify a fill color by clicking on the Color rectangle. When the Color
dialog displays, click a color to select it and close the dialog.

Color: Specify a fill color by clicking the Color button to open the Color dialog. Click a color to
select it, then close the dialog.

Caption: Press this button to open the Caption dialog where you can edit the text that can be
written inside the rectangle object:

Figure 2. Caption dialog

Caption: Enter the text that you want to display inside the rectangle object. You can
include a tag by enclosing it in curly brackets (e.g., {tagname}).

Fonts: Specify a font style for the caption by clicking the Fonts button.

Align: Specify the alignment for the caption of the rectangle.

Multiline: Allow the caption of the rectangle to be shown in more than one line, when
checked.

Auto Format: When checked, if the caption includes a decimal value enclosed by curly
brackets (e.g., {1.2345}) or a tag of Real type (see Caption above), then the value will be
formatted according to the virtual table created by the SetDecimalPoints function.

Wrap Text: When checked, the object automatically wraps the text when necessary.

Auto gray out: Turns the caption of the rectangle to gray when the Command animation
applied to the rectangle is disabled by the Disable field or due to the Security System.

Enable translation: Click (check) to enable translation during runtime using the
Translation Tool.

Parent topic: Shapes

Related information
Line object
Open Polygon object
Closed Polygon object
Rounded Rectangle object
Ellipse object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Shapes >

Rounded Rectangle object

On the Graphics tab, in the Shapes group, click Rounded Rectangle to draw rounded rectangles
(empty or filled), as follows:

Click in the drawing area and drag the mouse/cursor to create the rectangle.1.

Release the mouse button to stop drawing the object.2.

Double-click on the object to view the Object Properties dialog.

Figure 1. Object Properties: Rounded Rectangle

3.

Note: You cannot use the rounded rectangle tool to create a bar graph for projects running on
Windows Embedded target systems.

Tip: A rounded rectangle has one extra handle in the bottom-right corner, which enables you to
modify the arc angle.

Use the Object Properties dialog to specify the following parameters for the orthogonal line:

Line: Specify a borderline style by clicking the No Line, Solid Line, or Dashed Line button.

Color: Specify a borderline color by clicking the Color button to open the Color dialog. Click the
color to select it and then close the dialog.

Weight: Specify a borderline width by typing a number representing the line width (in pixels)
into the text box provided.

Fill: Specify whether the rectangle is filled by clicking No Fill or Fill.

If you select the Fill option, specify a fill color by clicking on the Color button. When the Color
dialog displays, click a color to select it and close the dialog.

Color: Specify a fill color by clicking the Color button to open the Color dialog. Click a color to
select it, then close the dialog.

Caption: This option is not enabled for this object.

Parent topic: Shapes

Related information
Line object
Open Polygon object
Closed Polygon object
Rectangle object
Ellipse object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Shapes >

Ellipse object

On the Graphics tab, in the Shapes group, click Ellipse to draw ellipses, chords, arcs, and rings
(see the following figures).

Figure 1. Ellipse, Chord, Arc, and Ring

Tip: The Ring style is particularly useful when you are creating plumbing drawings.

To create an ellipse, use the following steps:

Click in the drawing area and drag the mouse/cursor to create an ellipse shape.1.

Release the mouse button to stop drawing the ellipse.2.

Use the Object Properties dialog to change the shape to a chord, arc, or ring.3.

Double-click on the object to view the Object Properties dialog.

Figure 2. Object Properties: Ellipse

4.

Use the Object Properties dialog to specify the following parameters for the ellipse:

Style: Specify the object style by selecting Ellipse, Arc, Chord, or Ring from the drop-down
list. Next, select Left-Bottom, Left-Top, Right-Bottom, or Right-Top from the Style list to
choose the quadrant into which the ellipse is drawn.

For example to represent a half-circle pipe, create two Ring objects. Specify one as Left-

Bottom and the other as Right-Bottom then join the two objects to create a half-pipe.

Fill: To specify whether the ellipse is filled, click No Fill or Fill.

If you select the Fill option, specify a fill color by clicking on the Color button. When the Color
dialog displays, click on a color to select it and close the dialog.

Line: Specify a line style for the ellipse border by clicking the No Line, Solid Line, or Dashed
Line button.

Color: Specify the ellipse borderline color by clicking the Color button to open the Color dialog.
Click the color to select it, then close the dialog.

Weight: Specify a line width for the ellipse border by typing a number representing the line
width (in pixels) into the text box provided.

Parent topic: Shapes

Related information
Line object
Open Polygon object
Closed Polygon object
Rectangle object
Rounded Rectangle object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics >

Active Objects
The Active Objects toolbar provides the following tools, which you can use to create interactive
objects. Active objects typically require more parameters than simple shapes.

Figure 1. Active Objects group

Text object

Button object
The Button object

Pushbutton object

Check Box object
The Check Box object is useful to create interfaces where the users can enable/disable an option
on the display.

Radio Button object
The radio button object is useful to create interfaces where the users can chose one option from
multiple options on the display.

Combo Box object

List Box object

Smart Message object

Parent topic: Screens and Graphics
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Active Objects >

Text object

On the Graphics tab, in the Active Objects group, click Text to create text objects, as follows:

Click in the drawing area. When a cursor displays, you can type a line of text.1.

After entering the text string, double-click on the new text object to view the Object Properties
dialog.

Figure 1. Object Properties: Text

2.

Use the Object Properties dialog to specify the following properties:

Caption: Specify a text string by typing a caption in the text box.

Text data link button: Click to apply the Text Data Link animation to the Text object.

If the caption doesn't include any placeholder characters (###) for the text-data link, then
clicking this button also automatically appends those characters.

Align: Align the text by selecting Left, Center, or Right from the combo-box.

Fonts: Specify a font style for the text by clicking the Fonts button. When the Fonts dialog
displays, you can specify the following parameters:

Font (typeface)

Font style

Size

Effects

Color

Script

Border: Specify a text border by clicking the Border box.

To select a border color, click the Color rectangle. When the Color dialog displays, click a color
to select it, then close the dialog.

Background: Specify a background color by clicking the Color button. When the Color dialog

displays, click a color to select it, then close the dialog.

Enable translation (optional): Specify an external translation file for the text by clicking
(checking) this box.

Parent topic: Active Objects

Related information
Button object
Pushbutton object
Check Box object
Radio Button object
Combo Box object
List Box object
Smart Message object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Active Objects >

Button object
The Button object

On the Graphics tab, in the Active Objects group, click Button to create custom-sized buttons, as
follows:

Click in the drawing area and drag the mouse/cursor to create the button shape.1.

Release the mouse button when the button is the size you want.2.

Double-click on the object to view the Object Properties dialog.

Figure 1. Object Properties: Button

3.

Use the Object Properties dialog to specify the following parameters for the button:

Caption: Specify a caption by typing the text into the text box. You can include a tag by
enclosing it in curly brackets (e.g., {tagname}).

Style: Select a style for the button:

3D Sharp: A raised, rounded button with somewhat sharpened corners, suitable for
touchscreen displays.

3D Soft: A raised, rounded button with softened corners, suitable for touchscreen
displays.

OS Like: A button styled to match the operating system on which the project client is
running, suitable for Windows desktops running the Web Thin Client or Secure Viewer.

Standard: The standard, flat button from the previous versions of IWS.

Figure 2. Examples of button styles

Background color: Select a background color for the button.

Align: Select the alignment for the caption of the button.

Fonts: Specify a font style for the caption by clicking the Fonts.

When the Fonts dialog is displayed, specify the following parameters:

Font (typeface)

Font style

Size

Effects

Color

Script style

Images: Insert an image file into the button button by clicking the Images button.

When the Images dialog is displayed, specify the following parameters:

File: Type the file path to the image file. You can also click the browse button to the right
of the box, to open a standard Windows file browser.

By default, the image is automatically resized to fit the button. To change this, in the Size
list, select Custom, and then configure the desired Width and Height (in pixels) of the
image.

Alignment: Select which side of the button that the image should be aligned with.

Gap: Specify the gap (in pixels) between the image and the side of the button.

Transparent Color: Select which color in the image should be transparent. The
background color (see above) will show through these areas.

Advanced: Specify advanced settings for the button by clicking the Advanced button.

When the Advanced dialog is displayed, specify the following parameters:

Enable translation (optional): Specify an external translation file for the button label by

clicking (checking) the box.

Multiline: Allow the caption of the button to be shown in more than one line, when
checked.

Wrap Text: When checked, the object automatically wraps the text when necessary.

Auto gray out: Turns the caption of the button to gray when the Command animation
applied to the button is disabled by the Disable field or due to the Security System.

Auto Format: When checked, if the caption includes a decimal value enclosed by curly
brackets (e,g, {1.2345}) or a tag of Real type (see Caption above), then the value will be
formatted according to the virtual table created by the SetDecimalPoints() function.

Command: Click to automatically apply a Command animation to the button and then switch to
the animation's properties.

Parent topic: Active Objects

Related information
Text object
Pushbutton object
Check Box object
Radio Button object
Combo Box object
List Box object
Smart Message object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Active Objects >

Pushbutton object
On the Graphics tab, in the Active Objects group, click Pushbutton to create a Pushbutton object
using the Command animation with an object or pre-configured pushbuttons.

IWS provides the following pre-configured button types, all of which mimic the standard panel
buttons of the same name:

Momentary (default): Changes state (Open or Closed) when you press the button and reverts
to its initial state when you release the button. This button type always displays in its normal
position when you open the screen.

Maintained: Changes state (Open or Closed) when you press the button but does not revert
to its initial state when you release the button. You must press the button again to change its
present state. This button type maintains its state across screen changes.

Latched: Changes state (Open or Closed) when you press the button and remains in this
state until you release it by changing the Reset tag.

IWS also provides the following button styles:

Rectangular with a faceplate and indicator light

Rectangular without a faceplate or indicator light (default)

Rectangular with a 3-D

Rectangular with a floating appearance

To add one or more pre-configured buttons to a screen:

Click the Pushbutton tool, and position the mouse (pointer) on the screen.1.

Click and drag to create/adjust the size of the rectangular button.

The button size and text font characteristics determine how much text you can display and how
much area you can touch on a touch screen. You can resize the button and change the font
characteristics later to permit longer messages to be shown in a given space.

2.

Double-click on the object to open the Object Properties dialog.

Tip: Alternatively, you can right-click on the pushbutton object or highlight the object,
press Alt+Enter, and select Properties from the resulting shortcut menu to open the
Object Properties dialog.

3.

Object Properties: Pushbutton

Figure 1. Object Properties: Pushbutton

You can use this dialog to specify the following parameters:

Type drop-down list: Click to select the pushbutton type (Momentary (default), Maintained,
or Latched).

State drop-down list: Click to specify a default state for the pushbutton (Normally Open
(default) or Normally Closed).

Click the button to toggle between its default and non-default state (according to its specified
Type). For example, in the button's initial state, it may conform to characteristics specified in
the Open area of the Configuration dialog (see below). Click the button again to toggle to the
opposite state, which in this example is Closed, and conform to characteristics specified in the
Closed area.

Tag/Exp text box: Type a tag or an expression to accomplish the following:

Type in a tag to receive the Write Value from the appropriate state (Open or Closed)
area in the Configuration dialog.

Type an expression to execute On Down, when you press the pushbutton down.

Note: IWS does not write the result of any expression in the Tag/Exp field into a tag.

Indicator text box: Type a tag to define an indicator that causes the button to change to a
specified color when the tag value matches one of two specified values. You must define both
the colors and tag values in the Configuration dialog. If you leave this field blank, the indicator
changes color automatically when you press the button.

E-Sign checkbox: When this option is checked, the user will be prompted to enter the Electronic
Signature before executing the animation.

Reset text box (active for Latched pushbutton type only): Type a tag to control the button's
latched state, as follows:

Type a zero and the button will remain in a latched state after you press it.

Type a nonzero value and a latched button will become unlatched after you press it. You
must reset the tag value to zero before you can press the button again.

Key area: Specify a keyboard key or create a key combination to toggle a pushbutton when you
have no pointing device (mouse or touch screen) or if you want to create shortcut keys in
addition to pushbuttons.

Key drop-down list: Type a key in the text box or select a non-alphanumeric key from the drop-
down list. Enter a single character or key only. Numbers are not valid entries for this field.

Click (check) the Shift, Ctrl, or Alt box to create a combination key, meaning the Shift, Ctrl, or
Alt key must be pressed with the key specified in the drop-down list.

Click the browse button … to open the Key Modifier dialog, which enables you to modify your
combination keys. You can choose Left, Right or Left or Right to specify the position on the
keyboard of the Shift, Ctrl or Alt key in the combination key. If you choose Left or Right, the
command will be executed any time either of these keys is pressed in combination with the key
specified in the drop-down list.

Disable text box: Type a tag using a nonzero value to disable this pushbutton so that pressing
the button has no effect. This box is empty by default, which also enables the Command
animation.

Ext Trans. checkbox: Click (check) to translate the text automatically using pre-configured
translation worksheets. (See the Translation Tool for more information.)

Security text box: Type a value to specify a security level (0 to 255) for this button. If the user
does not have the specified security level, the button becomes inactive. If the user has the
appropriate security level, or you leave this field blank, the button remains active.

Config button: Click to open the Configuration dialog, which allows you to specify style and
state parameters for the pushbutton:

Figure 2. Configuration dialog

This dialog provides the following parameters:

Style combo-box: Click the combo-box button to select a pushbutton style (Rectangle
(default) or Rectangle with Indicator).

Effect combo-box: Click to select a 3-D effect for the pushbutton.

Floating (default): Buttons resemble a flat object with a shadow

3D: Buttons have beveled edges and appear to "depress" into the screen when pressed.

You can use the Style and Effect parameters in combination to create four different buttons, as

shown in the following figures:

Figure 3. Pushbutton Styles

Align: Specify the alignment for the caption of the pushbutton.

Button Color box: Click to specify a default color for the button area of a pushbutton object
that includes an indicator and a faceplate. When the Color dialog displays, click on a color to
select it, and close the dialog.

Legend Plate Color box: Click to specify or change a default color for the legend plate area of
a pushbutton object that includes an indicator. When the Color dialog displays, click on a color
to select it, and close the dialog.

A legend plate encloses a button and indicator light. This field becomes inactive if the
pushbutton Style does not include an indicator.

Open and Closed areas: The following parameters are used to configure the appearance of a
pushbutton object in its open and closed states.

Color box: Click to specify a default color for an indicator in each State. When the Color
dialog displays, click on a color to select it, and close the dialog.

If you selected a pushbutton style that does not include an indicator, you can use this field
to specify a button color for each State.

Blink combo-box: Click to specify whether the color you specified in the Color box blinks
and how fast it blinks for each state (None (no blinking, default), Slow, and Fast).

If you set the color to blink, it alternates between the color specified in the Color box and
the Legend Plate Color (if an indicator) or the Button Color (if a button).

Caption text box: Use this text box to enter the caption of the button. Alternatively, if the
button style includes an indicator, the legend plate. You can include a tag by enclosing it in
curly brackets (e.g., {tagname}).

Fonts button: Click to open the Font dialog, which you can use to specify or change the
message font characteristics for each state.

Text Blink combo-box: Click to specify whether the text you specified blinks and how fast
it blinks for each state (None (no blinking, default), Slow, and Fast). Unlike a blinking
color, blinking text appears and disappears.

Write Value combo-box: Click to select a value in either field. When the pushbutton is in
the appropriate state (Open or Closed), IWS writes this value to the tag specified in the
Tag/Exp field (Object Properties dialog).

Auto Format: When checked, if the caption includes a decimal value enclosed by curly brackets
(e,g, {1.2345}) or a tag of Real type (see Caption above), then the value will be formatted
according to the virtual table created by the SetDecimalPoints() function.

Parent topic: Active Objects

Related information

Text object
Button object
Check Box object
Radio Button object
Combo Box object
List Box object
Smart Message object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Active Objects >

Check Box object
The Check Box object is useful to create interfaces where the users can enable/disable an option on
the display.

On the Graphics tab, in the Active Objects group, click Check Box to create a Check Box object
on your screen:

Click in the drawing area and drag the mouse/cursor to draw the check box and its label.1.

Release the mouse button when the object is the size you want.2.

Double-click on the object to view the Object Properties dialog.3.

Figure 1. Object Properties: Check Box

Tip: To change the default size of the check box, edit your project file (project_name.app) to

add the following setting:

[Objects]

CheckBoxSize=height_in_pixels

Doing this will change the size of all check boxes in your project, so be careful. Also, this only
works for projects running in the project viewer (Viewer.exe); it does not work for projects
running in CEView or the Web thin client.

Use the Object Properties dialog to specify the following parameters for the Check Box object:

Caption: Specify a caption by typing the text into the text box. You can include a tag by
enclosing it in curly brackets (e.g., {tagname}).

Fonts: Specify a font style for the caption by clicking the Fonts button.

E-Sign: When this option is checked, the user will be prompted to enter the Electronic
Signature before executing the command.

Confirm check box: Click (check) this box to ensure IWS prompts you to confirm the action at
runtime.

Key drop-down list: Select a key from the list to associate that keyboard key with the object or
group of objects. You can then press this key to check/uncheck the check box.

Click (check) the Shift, Ctrl, or Alt box to create a combination key, meaning the Shift,
Ctrl, or Alt key must be pressed with the key specified in the drop-down list.

Click the browse button … to open the Key Modifier dialog, which enables you to modify
your combination keys. You can choose Left, Right or Left or Right to specify the
position on the keyboard of the Shift, Ctrl or Alt key in the combination key. If you choose
Left or Right, the command will be executed any time either of these keys is pressed in
combination with the key specified in the drop-down list.

Disable field: Type a tag or expression into this field to enable and disable the object. You
disable the Check Box object when you enter a value different from 0.

Security field: Type a value in this field to specify a security level for the object, as defined
under Security. When a user logs on, and does not have the specified security level, IWS
disables the object.

Tag field: When the user clicks on the check box during runtime, the value of this tag is
updated. If no Feedback was specified, the value of this tag is also used to indicate the current
status of the object.

True Value field: Specify a value that will be used to change the control to TRUE state and to
indicate that the control is in TRUE state. For more information about states, please refer to the
states table.

Advanced button: Press this button to open the Advanced dialog:

Figure 2. Advanced dialog

Tri-State: If enabled the control has a third state. The third state will be displayed when
the tag configured in the Feedback field assumes the value specified in the Tri-State
field. If the Feedback field is left in blank, the third state will be displayed when the tag
configured in the Tag field assumes the value specified in the Tri-State field.

CAUTION:

The Tri-State field must not be configured with the same value as the True
Value field, nor with an empty string value.

Feedback:Value that indicates the state of the object (FALSE, TRUE, or TRI-STATE).

When the value of the tag configured in Feedback is equal to the value of the tag
configured in True Value, the state is set to TRUE. When the value of the tag configured
in Feedback is equal to the value of the tag configured in Tri-State, the state is set to
TRI-STATE. When none of these conditions are satisfied, the state is set to FALSE. If the
Feedback field is left in blank, then the tag configured in the Tag field will be used as the
Feedback tag.

Ext Trans.: When this option is checked, the caption of the object supports the
translation.

Auto gray out: Turns the caption of the object to gray when it is disabled by the Disable
field or due to the Security System.

Force: Click (check) this box to force the Tag Database to recognize a tag change when
the user clicks on the object, even if the value of the tag in question does not change.

Enable Focus: When this option is checked, the object can receive the focus during
runtime by the navigation keys.

Push Like: When this option is checked the control is displayed as a button, instead of the
standard check box standard shape.

Fill Color: Specify the fill color for the button. This option is enabled only when the Push
Like option is checked.

Auto Format: When checked, if the caption includes a decimal value enclosed by curly
brackets (e,g, {1.2345}) or a tag of Real type (see Caption above), then the value will be
formatted according to the virtual table created by the SetDecimalPoints function.

Modes of Operation

The Check Box object can operate in two different modes: Normal and Tri-State. For more
information, see Modes of operation for Check Box and Radio Button objects.

Parent topic: Active Objects

Related information
Text object
Button object
Pushbutton object
Radio Button object
Combo Box object
List Box object
Smart Message object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Active Objects >

Radio Button object
The radio button object is useful to create interfaces where the users can chose one option from
multiple options on the display.

On the Graphics tab, in the Active Objects group, click Radio Button to create a radio button
object on your screen:

Click in the drawing area and drag the mouse/cursor to draw the radio button and its label.1.

Release the mouse button when the object is the size you want.2.

Double-click on the object to view the Object Properties dialog.

Figure 1. Object Properties: Radio Button

3.

Tip: To change the default size of the radio button, edit your project file (project_name.app) to

add the following setting:

[Objects]

RadioButtonSize=height_in_pixels

Doing this will change the size of all radio buttons in your project, so be careful. Also, this only
works for projects running in the project viewer (Viewer.exe); it does not work for projects
running in CEView or the Web thin client.

Use the Object Properties dialog to specify the following parameters for the radio button object:

Caption: Specify a caption by typing the text into the text box. You can include a tag by
enclosing it in curly brackets (e.g., {tagname}).

Fonts: Specify a font style for the caption by clicking the Fonts button.

E-Sign: When this option is checked, the user will be prompted to enter the Electronic
Signature before executing the command.

Confirm checkbox: Click (check) this box to ensure IWS prompts you to confirm the action at

runtime.

Key drop-down list: Select a key from the list to associate that keyboard key with the object or
group of objects. You can then press this key to check/uncheck the radio button.

Click (check) the Shift, Ctrl, and/or Alt boxes to create a combination key, meaning the Shift,
Ctrl, and/or Alt key must be pressed with the key specified in the drop-down list.

Click the browse button … to open the Key Modifier dialog, which enables you to further modify
your combination keys. You can choose Left, Right or Left or Right to specify the position on
the keyboard of the Shift, Ctrl, or Alt key in the combination key. If you choose Left or Right,
the command will be executed any time either of these keys is pressed in combination with the
key specified in the drop-down list.

Disable field: Type a tag or expression into this field to enable and disable the object. You
disable the radio button object when you enter a value different from 0.

Security field: Type a value in this field to specify a security level for the object, as defined
under Security. When a user logs on, and does not have the specified security level, IWS
disables the object.

Tag field: When the user clicks on the radio button during runtime, the value of this tag is
updated. If no Feedback was specified, the value of this tag is also used to indicate the current
status of the object.

True Value: Specify a value that will be used to change the control to TRUE state and to
indicate that the control is in TRUE state. For more information about states, please refer to the
states table.

Advanced: Press this button to open the Advanced dialog:

Figure 2. Advanced dialog

Tri-State: If enabled the control has a third state. The third state will be displayed when
the tag configured in the Feedback field assumes the value specified in the Tri-State
field. If the Feedback field is left in blank, the third state will be displayed when the tag
configured in the Tag field assumes the value specified in the Tri-State field.

CAUTION:

The Tri-State field must not be configured with the same value as the True
Value field, nor with an empty string value.

Feedback: Value that indicates the state of the object (FALSE, TRUE, or TRI-STATE).

When the value of the tag configured in Feedback is equal to the value of the tag
configured in True Value, the state is set to TRUE. When the value of the tag configured
in Feedback is equal to the value of the tag configured in Tri-State, the state is set to
TRI-STATE. When none of these conditions are satisfied, the state is set to FALSE. If the
Feedback field is left in blank, then the tag configured in the Tag field will be used as the
Feedback tag.

Ext Trans.: When this option is checked, the caption of the object supports the
translation.

Auto gray out: Turns the caption of the object to gray when it is disabled by the Disable
field or due to the Security System.

Force: Click (check) this box to force the Tag Database to recognize a tag change when
the user clicks on the object, even if the value of the tag in question does not change.

Enable Focus: When this option is checked, the object can receive the focus during
runtime by the navigation keys.

Push Like: When this option is checked the control is displayed as a button, instead of the
standard radio button standard shape.

Fill Color: Specify the fill color for the button. This option is enabled only when the Push
Like option is checked.

Auto Format: When checked, if the caption includes a decimal value enclosed by curly
brackets (e,g, {1.2345}) or a tag of Real type (see Caption above), then the value will be
formatted according to the virtual table created by the SetDecimalPoints() function.

Modes of Operation

The Radio Button object can operate in two different modes: Normal and Tri-State. For more
information, see Modes of operation for Check Box and Radio Button objects.

Parent topic: Active Objects

Related information
Text object
Button object
Pushbutton object
Check Box object
Combo Box object
List Box object
Smart Message object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Active Objects >

Combo Box object
On the Graphics tab, in the Active Objects group, click Combo Box to select a single label from a
combo-box list of labels.

If the list is longer that the space allotted, a scroll bar is enabled for the list. During runtime, if you
select a label from the list, the combo-box hides itself and the selected label displays in the combo
box.

Double-click on the combo-box object to open the Object Properties dialog.

Figure 1. Object Properties: Combo Box

You can use this dialog to set the following parameters:

Data Sources button: Click to open the Data Sources dialog.

Fonts button: Click to open a standard Font dialog. Use this dialog to change the characteristics
of a message font.

Label text box: Type a string tag to receive the value of the label currently displayed in the
combo box.

Position text box: Type an integer tag, which corresponds to the label currently displayed in
the combo box. Changing this tag value changes the label being displayed.

Input Enabled checkbox: Click (check) to allow an operator to select a label by typing the
contents of that label into a tag in the Label field.

Sort checkbox: Click (check) to display the contents of your array of labels in alphabetical
order. This parameter is available only when you select the Array Tag type.

Enable translation checkbox: Click (check) to enable automatic translation of the combo box
labels using the Translation Tool.

Confirm checkbox: Click (check) to prompt an operator to confirm a command during runtime.

E-Sign checkbox: When this option is checked, the user will be prompted to enter the Electronic
Signature before executing the animation.

VK: Virtual Keyboard type used for this object. You need to select the Virtual Keyboard option

in the Viewer settings (Viewer on the Project tab of the ribbon) before configuring the Virtual
Keyboard for this interface.

Disable text box: Type a tag with a nonzero value to disable this combo box. Type a zero, or
leave the field blank (default) to enable the Command animation. If you disable the combo box,
it appears grayed out during runtime.

Security text box: Type a security level for the command (0 to 255). If an operator logs on and
does not have the specified security level, the command becomes inactive. If an operator logs
on and does have the specified security level, or you leave this field blank, the Command
animation remains active.

Advanced button: Click to open the Combo Box - Advanced dialog:

Figure 2. Combo Box - Advanced

Align combo-box: Click to specify the label alignment (Left, Center, or Right) which
affects the alignment in both the combo box and its list.

Color box: Click to specify a background color for the combo box. When the Color dialog
opens, click a color to select it, then click OK to close the dialog.

Drop List Size (Items) field: Enter an integer (or a tag of Integer type) to specify the
number of items that should be displayed at one time when the user clicks on the combo
box. The higher the number of items, the longer the drop list will appear.

Note: If this number is less than the total number of items in the list, then the drop
list will also scroll.

Decimal Points: Select how decimal values will be displayed on-screen:

Auto Format: Decimal values will be formatted according to the virtual table created
by the SetDecimalPoints() function.

Custom: Enter the number of decimal places to display (e.g., 2) for all decimal
values.

Data Sources

Use the Data Sources dialog to configure the items/labels that will be displayed in the Combo Box
object.

Figure 3. Data Sources dialog

Type combo box: Select the type of data source that you want to use, and the click the
Settings… button to configure the source. Each type of source is described in detail below.

Field field (for Text File and Database only): Specify which field/column of the data source to
read from.

Reload field (for Text File and Database only): Enter a tag name. When the value of the
specified tag changes, the combo box will reload the labels from the data source.

Type: Static Labels

When Type is set to Static Labels, you can configure the following settings:

Figure 4. Static Labels dialog

Enter your labels — with one label per line — just as if you were editing a plain text file. You can
include tags or expressions in a label by enclosing them in curly brackets. For example: Tank #1 in
area {AreaNameTag}.

The labels are not sorted in any way, so be sure to put them in the order you want them displayed
during runtime. The first line is position 0, the second line is position 1, and so on.

Click OK when you're done.

Type: Array Tag

When the Type is set to Array Tag, you can configure the following settings:

Figure 5. Array Tag dialog

Array Tag: Enter the name of an array tag of String type that contains the items for the combo
box.

Number of Items: Specify how much of the array should be displayed in the combo box.
Keeping in mind that the combo box counts array index 0 as the first item, if you enter a value
of 4, then the combo box will display array index 0 through array index 3.

Click OK when you're done.

Type: Text File

When the Type is set to Text File, you can configure the following settings:

Figure 6. Grid Data – Text File dialog

File: Enter the name of the text file source. You can either type the file name and its path or
click the … button to browse for it. (If the file is stored in your project folder, then you can omit
the path in the name.)

Tip: You can configure tag names between curly brackets (e.g., {TagName}) in the File field.

Delimiters: Set the delimiter(s) used in the data source file. For instance, if the data will be
read from a CSV (comma separated values) file, you would select the Comma option. You can
even choose a custom delimiter by checking the Other option and typing the custom delimiter
in the field beside it.

Click OK when you're done.

Type: Database

When the Type is set to Database, you can configure the following settings:

Figure 7. Database Configuration dialog

Please refer to the Database Configuration dialog for further information about this dialog.

Parent topic: Active Objects

Related information
Text object
Button object
Pushbutton object
Check Box object
Radio Button object
List Box object
Smart Message object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Active Objects >

List Box object
On the Graphics tab, in the Active Objects group, click List Box to create a List Box object on
your screen. Generally, when you run a project, the active List Box object displays a list of messages.

On a screen containing only one List Box object and no text input boxes, the List Box object will be
active automatically.

On a screen containing multiple List Box objects and text input boxes, you can use a cursor (pointing
device) or the Tab key to select and activate a List Box object.

You can select a message from the active list box during runtime and write the message value to a
tag. (If a list is too long to fit within the viewable area of a List Box object, the object provides scroll
bars.)

Use the Enter Reqd box on the Object Properties dialog to configure selected messages as follows:

Check (enable) the Enter Reqd box and use the keyboard/keypad keys, list control objects
from the Library, pointing devices, or user-defined keys containing the PostKeys() function to
scroll through the message list. Then, use the Enter key to select the message and write its
value to the write tag. You can use the Esc and Tab keys to return to the previously selected
message at any time prior to pressing the Enter key.

Uncheck (disable) the Enter Reqd field to write the value of a selected (highlighted) message
the write tag automatically.

To add List Box objects to a screen:

On the Graphics tab of the ribbon, in the Active Objects group, click List Box.1.

Click in the screen and drag to create/adjust an expanding rectangle.

Height and the font size determine how many messages are visible.

Width determines how much of the message length is visible.

After creating a rectangle, you can adjust the size and font characteristics to allow more
messages to display in the given space.

2.

Double-click on the object to open the Object Properties dialog.3.

Figure 1. Object Properties: List Box

Tip: You also can open the Object Properties dialog, by right-clicking on the List Box object or by
highlighting the object, pressing the Alt+Enter keys, and selecting Properties from the resulting
shortcut menu.

You can use this dialog to specify the following parameters:

Value drop-down list (located below the Replace button): Click to select one of the following
the tag values used to index the message list.

Boolean

Integer (default)

LSB (Least Significant Bit)

Note: For more information, see the discussion about the State field on the Messages
Configuration dialog.

Messages button: Click to open the Messages Configuration dialog.

User Enable text box: Type a tag, expression, or a (nonzero) number to select a message in
the runtime project. The default is1 (true or enabled).

Control Enable text box: Type a tag, expression, or a (nonzero) number to select a message
in the runtime project — depending on the current value of the Read/Search Tag. The default
is1 (true or enabled).

IWS bases this parameter on the Value field (in the Messages Configuration dialog) that you
associate with the selected message. Enabling this field allows tag changes triggered by the
process to affect which messages you can select.

Read/Search Tag text box: Type an integer or a Boolean tag to point to a selected message
based on the message Value field (in the Messages Configuration dialog). You can use the
Control Enable and User Enable fields to control whether the operator or a process can alter
this tag.

Write Tag text box (optional): Type a string tag to receive the Message value of the last-
selected message. When you close and reopen the screen containing a List Box object, IWS
uses this tag value to determine the last message selected in the list box.

E-Sign checkbox: When this option is checked, the user will be prompted to enter the Electronic
Signature before executing the animation.

Row checkbox: Click (check) to include set up and set down arrows in the List Box object scroll
bar.

Page checkbox: Click (check) to include page up and page down arrows in the List Box object
scroll bar.

Start/End checkbox: Click (check) to include home and end arrows in the List Box object scroll
bar.

List wrap checkbox: Click (check) to continue displaying and scrolling the message list
(starting at the opposite end) after you scroll to the beginning or end of the list.

Enter Reqd checkbox: Clicking (checking) this box allows you to select messages using the
Enter key only. It prevents the Tab key from selecting messages.

Color boxes: Click a color box to open the Color dialog or the 16-color Color Selection dialog.
Either dialog allows you to specify or change colors for the List Box object. Click a color to select
it and then click OK to close the dialog.

Highlight Color box: Specify a color for highlighting messages (default is blue).

Text Color box: Specify a color for highlighting message text (default is black).

Win Color box: Specify a color for the list box background (default is white).

Border Color box: Specify a color for the list box border (default is black).

Messages Configuration Dialog

Figure 2. Message Configuration dialog

Use the parameters on this dialog as follows:

State field (read-only): Use this field to view the indexed individual messages. IWS numbers
this field based on the Read/Search Tag type you selected:

Boolean: Provides two valid states, labeled 0 and 1

Integer: Provides 255 valid states, labeled 1 to 255

LSB: Provides 32 valid states (32 bits in an integer value) labeled 0 to 31

Message field: Enter the string to be displayed in the List Box object. You can include tags in a
message by enclosing them in curly brackets (e.g., {tagname}).

Value field: Type a message value matching the specified Read/Search Tagvalue. (Also, the
same value written to the write tag.)

If you specify LSB for the Value field, IWS uses the value specified in the State field for both
the Read/Search Tagand the write tag.

Text Foreground color field: Click to specify a color for the message text foreground. When
the Color dialog displays, click on a color to select it, and close the dialog.

Text Blink checkbox: Click (check) to cause a selected message to blink, once per second,
when it displays.

Fonts button: Click to open the Font dialog, which allows you to change the characteristics
(style, size, and so forth) of the message font.

Enable translation: Click (check) to enable translation during runtime using the Translation
Tool.

Auto Format: When checked, if a message includes a decimal value enclosed by curly brackets
(e,g, {1.2345}) or a tag of Real type (see Message above), then the value will be formatted
according to the virtual table created by the SetDecimalPoints() function.

Parent topic: Active Objects

Related information
Text object
Button object
Pushbutton object
Check Box object
Radio Button object
Combo Box object
Smart Message object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Active Objects >

Smart Message object

On the Graphics tab, in the Active Objects group, click Smart Message to create one or more
smart message objects, which you can use to display messages and graphics based on tag values
when you run your project. IWS provides the following smart message object types:

Message Display: Enables you to display any one of multiple messages within a single screen
object.

Multistate Indicator: Enables you to display any one of multiple messages within a single
screen object, and also has the ability to display bitmap images with the messages.

Multistate Pushbutton: Enables you to display messages and bitmap images. This object also
resembles a multi-position switch in that it allows you to switch (toggle between) messages by
clicking on the object during runtime.

These smart message object types vary in their ability to display messages and graphics, write to a
tag, and control how many messages and graphics display on the screen. However, all of the object
types can receive process input (Read Tag value) to determine which message to display.

To add a smart message object to the screen:

Click the Smart Message button and position the mouse on the screen.1.

Click and drag to create (and adjust the size of) a rectangle.

You use the rectangle's size and font size to determine how much text and how large a bitmap
image you can display on the screen. Later, you can change the rectangle's size and font
characteristics to allow longer messages to display in a given space.

2.

Double-click on the object to open the Object Properties dialog.3.

Figure 1. Object Properties: Smart Message

You can use this dialog to specify the following parameters:

Type combo-box: Click to select the smart message object type. The object type sets the

behavior of the object during runtime and the features supported by it:

Message Display (default)

Multistate Indicator

Multistate Pushbutton

Value drop-down list: Select the type of values used to index the message list:

Boolean: Provides two valid states. Use this selection when you want to display either one
of two different messages, based on a boolean value (0 or 1).

Integer (default): Provides 500 valid states. Use this selection when you want to display
different messages based on specific values from an Integer tag.

LSB (least significant bit): Provides 32 valid states (32 bits in an integer value). Use this
selection when you want to display different messages based on which bit from an integer
tag is set. If more than one bit from the Integer tag is set simultaneously, the message
associated with the least significant bit that is set (value 1) will be displayed.

Note: If Multistate Pushbutton is the Smart Message type, only 16 different messages
can be associated with the object, even for Integer or LSB values.

Read Tag/Expr text box: Enter the name of an integer or a Boolean tag. The value of this tag
will determine which message will displayed by the object during runtime.

Write Tag text box (optional and available for Multistate Pushbutton only): Enter the name
of an integer or a Boolean tag. The value associated with the message currently displayed by
the object is written to this tag.

Align: Select the alignment of the text displayed by the Smart Message object.

Key area (optional and available for Multistate Pushbutton only): Shortcut used to go to the
next message (step) using a keyboard when the Multistate Pushbutton type is selected. This
option is especially useful when creating projects for runtime devices that do not provide a
mouse or touch-screen interface, when the keyboard is the only physical interface available to
interact with your project during runtime.

Event drop-down list (available for Multistate Pushbutton only): Select one of the following
options to specify when the message is changed:

On Down: Switch to the next message when you click on the object (default).

While Down: Switch to the next message continuously while you hold the mouse button
down on the object.

On Up: Switch to the next message when you release the mouse button on the object.

E-Sign (available for Multistate Pushbutton only): When this option is checked, the user will
be prompted to enter the Electronic Signature before executing the animation.

Security (available for Multistate Pushbutton only): System Access Level required for the
object/animation.

No line: When this option is checked, the line border of the object is not visible.

Line Weight: Defines the thickness of the line drawn around the object (the border).

Fonts: Launches the Fonts dialog, where you can configure the font settings for the text
displayed in the object.

Config…: Launches the Configuration dialog, where you can configure the messages for the
object, as follows:

Figure 2. Smart Message Configuration Dialog

Data Source: The messages displayed by the object can be either configured directly on
the object (Data Source = Static) or can be read from an external text file (Data
Source = Text File). When the Data Source = Static, the Configuration dialog is
displayed as pictured above, and you can configure all the settings on the grid. When the
Data Source = Text File, the Configuration dialog displays a field for entering the path
and name of the file from which the messages will be read (the source file). See "Source
File Format" below for more information about the format of the text file supported by the
Smart Message object when the Data Source = Text File.

Enable translation: Click (check) to enable translation during runtime using the
Translation Tool.

Auto Format: When checked, if a message includes a decimal value enclosed by curly
brackets (e,g, {1.2345}) or a tag of Real type (see Text/Message below), then the value
will be formatted according to the virtual table created by the SetDecimalPoints function.

The following table describes the meaning of the properties associated with each message, regardless
of the Data Source:

Property Description

Text/Message Message (text) that will be displayed when selected during runtime. You can
include tags in a message by enclosing them in curly brackets (e.g., {tagname}).

Value You must associate a unique value with each message. during runtime, the
object will display the message associated with the value that matches the
value of the tag configured in the Read Tag field. If there is no such message,
the message configured in the first row (State = Error) displays during
runtime. When the object Type is set as Multistate Pushbutton, the value
associated with the current message is also written to the tag configured in the
Write Tag field (if any).

Text (FG) Foreground color for the messages displayed during runtime.

Text (BG) Background color for the messages displayed during runtime.

Text Blink If checked, the message text will blink during runtime.

Property Description

Rec (FG) Line color (Border) for the rectangle behind the message.

Rec (BG) Background (Fill) color for the rectangle behind the message.

Rec Blink If checked, the rectangle behind the message will blink during runtime.

Graphic File Path and name of the bitmap file (*.BMP) (if any) that will be displayed when
the message associated with it is selected during runtime. If you do not specify
the path, the bitmap file must be stored in your project folder.

Transparent Select the color that will be transparent in the graphic file, if the En.
Transparent checkbox is checked.

En. Transparent If checked, the color selected in the Transparent field will be set as
transparent in the graphic file.

Note: The properties Graphic File, Transparent and En. Transparent are not available for
the Message Display type.

Tip: You can copy data from this dialog and paste it into an Excel worksheet, and vice versa.

Source File Format

This section describes the format of the text file supported by the Smart Message object when the
Data Source = Text File. The main advantage of using an external text file instead of static values
is that it gives you the flexibility to change the messages during runtime, by pointing to a different
text file, or even by changing the content of the text file dynamically.

The text file must be created in the CSV format (comma separated values), where the comma
character (,) is used to divide the columns (data) in each line (row) of the file. Therefore, you can
use any CSV editor such as Microsoft Notepad and Microsoft Excel to create the CSV file with the
messages and their properties for the Smart Message object.

The description of each property associated with the messages is provided in the Smart Message
section. The order of the data in the CSV file is described in the following table:

Column
#

Property Default Value

1 Text/Message -

2 Value -

3 Text (FG) 0

4 Text (BG) 16777215

5 Text Blink 0

6 Rec (FG) 8421376

Rec (FG) Line color (Border) for the rectangle behind the message.

Rec (BG) Background (Fill) color for the rectangle behind the message.

Rec Blink If checked, the rectangle behind the message will blink during runtime.

Graphic File Path and name of the bitmap file (*.BMP) (if any) that will be displayed when
the message associated with it is selected during runtime. If you do not specify
the path, the bitmap file must be stored in your project folder.

Transparent Select the color that will be transparent in the graphic file, if the En.
Transparent checkbox is checked.

En. Transparent If checked, the color selected in the Transparent field will be set as
transparent in the graphic file.

Note: The properties Graphic File, Transparent and En. Transparent are not available for
the Message Display type.

Tip: You can copy data from this dialog and paste it into an Excel worksheet, and vice versa.

Source File Format

This section describes the format of the text file supported by the Smart Message object when the
Data Source = Text File. The main advantage of using an external text file instead of static values
is that it gives you the flexibility to change the messages during runtime, by pointing to a different
text file, or even by changing the content of the text file dynamically.

The text file must be created in the CSV format (comma separated values), where the comma
character (,) is used to divide the columns (data) in each line (row) of the file. Therefore, you can
use any CSV editor such as Microsoft Notepad and Microsoft Excel to create the CSV file with the
messages and their properties for the Smart Message object.

The description of each property associated with the messages is provided in the Smart Message
section. The order of the data in the CSV file is described in the following table:

Column
#

Property Default Value

1 Text/Message -

2 Value -

3 Text (FG) 0

4 Text (BG) 16777215

5 Text Blink 0

Column
#

Property Default Value

6 Rec (FG) 8421376

7 Rec (BG) 16777215

8 Rec Blink 0

9 Graphic File -

10 Transparent 0

11 En. Transparent 0

When configuring text messages that have the comma character as part of the message, you must
configure the whole message between quotes (e.g., "Warning, Turn the motor Off"); otherwise, the
comma will be interpreted as a data separator instead of as part of the message.

The first line of this file is equivalent to the State = Error. In other words, if there is no
message associated with the current value of the tag configured in the Read Tag field, the
message configured in the first row (State = Error) is displayed during runtime.

The data configured in the Value column of the first row from this file is irrelevant. This row
must always be configured, regardless of the object type (even for Multistate Pushbutton).

Only the Text/Message and Value columns are mandatory. The other columns are optional,
and the default values will be used if you do not specify any value for them (see table).

The fields Text(FG), Text(BG), Rec(FG), Rec(BG) and Transparent can be configured with
the code of the color associated with it. The code can be entered directly in decimal format
(e.g., 255) or in hexadecimal format using the syntax #value (e.g., #0000FF).

The fields Text Blink, Rec Blink and En. Transparent can be configured with Boolean values
0 or 1 (0 = Unchecked; 1 = Checked), or with the keywords FALSE or TRUE (FALSE =
Unchecked; TRUE = Checked).

Example:

Error Message,,0,16777215,1,8421376,16777215,1,error.bmp,0,0

Message Zero,0,0,16777215,0,8421376,16777215,0,open.bmp,65280,1

Message Ten,10,0,16777215,0,8421376,16777215,0,closed.bmp,65280,1

Message Twenty,20,0,16777215,0,8421376,16777215,0,,0,0

Message Thirty,30,0,16777215,0,8421376,16777215,0,,0,0

Tip: You can use the Smart Message editor (Data Source = Static) to configure the messages,
values and colors. To do so, select the configuration, copy it and paste it into an Excel
worksheet. Then, you can save the Excel worksheet as a CSV file (File > Save As). This
procedure provides you with a user friendly interface for configuring the color codes.

Parent topic: Active Objects

6 Rec (FG) 8421376

7 Rec (BG) 16777215

8 Rec Blink 0

9 Graphic File -

10 Transparent 0

11 En. Transparent 0

When configuring text messages that have the comma character as part of the message, you must
configure the whole message between quotes (e.g., "Warning, Turn the motor Off"); otherwise, the
comma will be interpreted as a data separator instead of as part of the message.

The first line of this file is equivalent to the State = Error. In other words, if there is no
message associated with the current value of the tag configured in the Read Tag field, the
message configured in the first row (State = Error) is displayed during runtime.

The data configured in the Value column of the first row from this file is irrelevant. This row
must always be configured, regardless of the object type (even for Multistate Pushbutton).

Only the Text/Message and Value columns are mandatory. The other columns are optional,
and the default values will be used if you do not specify any value for them (see table).

The fields Text(FG), Text(BG), Rec(FG), Rec(BG) and Transparent can be configured with
the code of the color associated with it. The code can be entered directly in decimal format
(e.g., 255) or in hexadecimal format using the syntax #value (e.g., #0000FF).

The fields Text Blink, Rec Blink and En. Transparent can be configured with Boolean values
0 or 1 (0 = Unchecked; 1 = Checked), or with the keywords FALSE or TRUE (FALSE =
Unchecked; TRUE = Checked).

Example:

Error Message,,0,16777215,1,8421376,16777215,1,error.bmp,0,0

Message Zero,0,0,16777215,0,8421376,16777215,0,open.bmp,65280,1

Message Ten,10,0,16777215,0,8421376,16777215,0,closed.bmp,65280,1

Message Twenty,20,0,16777215,0,8421376,16777215,0,,0,0

Message Thirty,30,0,16777215,0,8421376,16777215,0,,0,0

Tip: You can use the Smart Message editor (Data Source = Static) to configure the messages,
values and colors. To do so, select the configuration, copy it and paste it into an Excel
worksheet. Then, you can save the Excel worksheet as a CSV file (File > Save As). This
procedure provides you with a user friendly interface for configuring the color codes.

Parent topic: Active Objects

Related information
Text object
Button object
Pushbutton object
Check Box object
Radio Button object
Combo Box object
List Box object

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics >

Symbols

The Library is a visual browser for all of the Symbols that are available to be inserted in a project
screen. To open the Library window, do one of the following:

On the Graphics tab of the ribbon, in the Libraries group, click Symbols; or

In the Graphics tab of the Project Explorer, double-click Symbols.

Figure 1. Symbols Library window

The Library is divided into two main directories: the Project Symbols directory contains the same
user-made Symbols that are saved in the Symbols folder of the current project; and the System
Symbols folder contains all of the premade Symbols that are installed with IWS, sorted by category
(e.g., Buttons, Meters, Tanks).

To select a Symbol and place it in a project screen:

Find the Symbol you want in the Library and then double-click it. The Library window will
automatically close and the mouse cursor will change to indicate that you have a Symbol
waiting to be placed.

1.

Return to the project screen where you want to place the Symbol.2.

Click anywhere in the project screen to place the selected Symbol.3.

Edit the Symbol's Object Properties as needed, including any Custom Properties.4.

For more information, please see Inserting a Symbol in a Screen.

4.

Making a User-Made Symbol Available to Other Projects

User-made Symbols are normally available only in the project where they were initially created and
saved — that is, the Project Symbols directory of the Library is specific to each project. However, you
can send a user-made Symbol to the System Symbols directory, to make it available to all projects:

Right-click on the Symbol file (.sym) in the Symbols folder and choose Send to System
Symbols from the shortcut menu. A standard Save As dialog is displayed, pointing to the
\Symbol directory of IWS (instead of the \Symbols directory of the current project).

Figure 2. Saving a Symbol

1.

Choose a location to save the Symbol file. You can choose one of the existing
categories/directories, or you can create a new one.

2.

Click Save. The Symbol file is saved chosen location and the Symbol is displayed in System
Symbols directory of the Library.

Figure 3. Saving a Symbol

3.

Saving your own project symbols

Parent topic: Screens and Graphics
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Symbols >

Saving your own project symbols
A Symbol is a set of one or more Objects that is saved to the Symbols folder (in the Graphics tab of
the Project Explorer), so that you can reuse it again and again in your projects.

Every time you reuse a Symbol, you actually make a copy that is linked to the master Symbol file in
the Symbols folder. (These linked copies are also called "instances" of the Symbol.) Thereafter, if you
make any changes to the Master Symbol, then those changes automatically propagate to every
linked copy in every project.

You can customize each linked copy of the Master Symbol by defining Custom Properties. For
example, when you create a gauge that displays tank levels and then save that gauge as a Master
Symbol, you can define Custom Properties on the Symbol that will allow each linked copy to display
the level of a different tank.

Figure 1. Symbols Folder in the Graphics Tab

Creating a Master Symbol

To create a master Symbol and save it to the Symbols folder:

Design your Symbol just as you would normally draw a project screen, using any combination of
Static and Active Objects. For example, three check boxes in a rectangular pane:

Figure 2. Drawing Objects in a Screen

1.

Select the Object(s) or Group that you want to save as a Symbol.

Figure 3. Selecting the Objects

Note: It is not necessary to make a Group out of two or more Objects before saving them
as a Symbol. Saving the Objects together as a Symbol effectively groups them.

There is a situation, however, where you may want to group the Objects first. A Symbol can
have only one Hint. If more than one Object has a Hint configured on it (in the Object
Properties), those Hints are not shown when the Objects are saved together as a Symbol. To
specify a Hint for the Symbol as a whole, you must first group the Objects and then configure
the Hint on the Group. That Hint will carry through when you save the Group as a Symbol.

2.

Right-click on the selection, and then click Create Linked Symbol on the shortcut menu.

Figure 4. Creating a Linked Symbol

3.

3.

A standard Save As dialog is displayed, and you are prompted to give the new Symbol a file
name. Symbol files (.sym) are saved in the \Symbol folder of your project.

Figure 5. Saving the Symbol File

4.

Click Save to save the file. The Symbol appears in the Symbols folder, in the Graphics tab of the
Project Explorer.

Figure 6. Symbol File in the Project Explorer

5.

The Symbol also appears in the Project Symbols folder of the Library.

The Symbol is now ready to be reused in your project, but the way it is currently saved, every copy
will have identical properties. You must now define Custom Properties on the Symbol — that is, the
properties you want to be able to customize each time you reuse the Symbol.

Editing the Master Symbol

You can edit a master Symbol after you've initially saved it, to add or delete Objects in the Symbol or
to define Custom Properties on it. Remember that any changes you make to the master Symbol will
automatically propagate to every linked copy in every project.

Note: There is one exception. If you change the Hint on a Symbol — as described in "Creating a
Master Symbol" — then the change will appear only on new instances of the Symbol. Existing
instances will be unchanged.

To edit a Symbol:

Right-click on the Symbol file in the Symbols folder, and then choose Edit from the shortcut
menu.

Figure 7. Editing the Symbol File

Tip: You can also right-click on any instance of the Symbol and choose Edit Linked

1.

Symbol from the shortcut menu.

The Symbol file is opened for editing in its own window. This Symbol Editor works in the same
way as a regular Screen Editor, except that every Object in the window is part of the Symbol. If
you add, move or delete Objects in the Symbol Editor, then you may change the size or shape
of the Symbol and disrupt the layout of any Screens where it is used.

Figure 8. Symbol File Opened for Editing

Besides adding, moving or deleting Objects in the Symbol, you can also edit the Object
Properties as you normally would. You may want some properties to be the same in every
instance of the Symbol, but other properties need to be customized according to where and how
the Symbol is used. In this example, you probably want to customize the captions for the three
check boxes, the tags with which the check boxes are associated, and the caption for the pane
itself.

Select the first Object in the Symbol and open its Object Properties. For example, the first check
box:

Figure 9. Object Properties for the First Check Box

2.

In any field where you would normally configure a tag, expression, or value, you can instead
define a Custom Property using the sytax…

3.

#[Category.]Property:[Value]

…where:

Category is an optional name for a collection of related properties, such as all captions or all
Check Box values. If you do not specify Category for a property, then it will be automatically

listed under the "Main" category.

4.

Property is a label to identify the specific property. Property is required for each property, and it

must always be followed by a colon (:).

5.

6.

5.

Value is an optional default value for the property.

Note: All Tag/Expression syntax rules apply to Value, including tag names, pointers,
arrays, strings, numerical and boolean values, and scripting functions.

6.

In the following example, we want to be able to customize which tag will be set when the Check Box
is selected or cleared. So, in the Tag field, type #Option1.Tag: as shown.

Figure 10. Defining a Custom Property for the Tag Field

When you go to complete the properties on an instance of the Symbol, #Option1.Tag: will appear like
this:

Figure 11. Custom Properties on a Symbol

But more about that later…

Depending on the context, some Object properties require a specific type of value like a String, a
Boolean or a numerical value. For these properties, you must enclose the Custom Property
declaration in curly brackets ({}).

In this example, the Caption field requires a String, so type {#Option1.Caption:"Option 1"} as
shown.

Figure 12. Defining a Custom Property for the Caption Field

Again, when you go to complete the properties on an instance of the Symbol, they will appear like
this:

Figure 13. Custom Properties on a Symbol

Repeat steps 2 through 4 as needed, to define the rest of the Custom Properties on the Symbol.

In this example, the finished Symbol has all of the following properties:

Figure 14. Custom Properties on a Symbol

Save the Symbol and close the Symbol Editor.

On the Home tab of the ribbon, in the Tools group, click Verify. This will update all existing
instances of the Symbol in your project.

Adding Tooltips to Custom Properties

You can configure a description for each Custom Property available in the Symbol. After creating a
Symbol, open it with the Symbol Editor, right-click in the Symbol Editor (not on the Symbol itself)
and choose Edit Symbol Properties from the shortcut menu.

Figure 15.

When assigning values to the Custom Properties of the Symbol on the screens, the user can read the
description as Tooltips just by moving the mouse cursor on the property name, as illustrated on the
following picture:

Figure 16. Tooltip Showing Description of the Property

Making a User-Made Symbol Available to Other Projects

User-made Symbols are normally available only in the project where they were initially created and
saved. However, you can send a user-made Symbol to the System Symbols folder of the Library, to
make it available to all of your projects:

In the Symbols folder of the Project Explorer, right-click the desired Symbol file (.sym) and
then choose Send to System Symbols from the shortcut menu. A standard Save As dialog is

1.

displayed, automatically pointing to the \Symbol sub-directory of the IWS program directory
instead of the \Symbol sub-folder of your project folder.

Figure 17. Saving a Symbol

1.

Choose a location in which to save the Symbol file. You can choose one of the existing
categories/folders, or you can create a new one.

2.

Click Save. The Symbol file is saved in the specified location and the Symbol is displayed in the
System Symbols folder of the Library.

Figure 18. Saving a Symbol

3.

For more information, see Using the Library.

Inserting a Symbol in a Screen

To insert a Symbol in a Screen and then complete its Custom Properties:

Open the desired project screen from the Screens folder, or insert a new screen. The screen is
opened for editing.

1.

Open the Symbols Library by doing one of the following:

On the Graphics tab of the ribbon, in the Libraries group, click Symbols;

Double-click Symbols in the Project Explorer; or

Right-click in the screen where you want to insert the symbol, and then click Insert
Linked Symbol on the shortcut menu.

2.

Select the symbol from the Symbols Library, and then click in the screen:

Figure 19. Symbol Placed in a Screen

Once the Symbol is inserted, you can manipulate it like any other object in the screen. You can
align and distribute it with other Objects, and you can apply Animations to it. However, the first
thing to do is complete the Custom Properties for this instance of the Symbol.

Figure 20. Object Properties dialog for the Symbol

3.

Open the Object Properties for the Symbol.4.

Click Expand to open the Symbol Properties dialog.

Figure 21. Symbol Properties dialog for the Symbol

5.

To see all of the properties at the same time, select the Display properties from all
categories check box.

Figure 22. Displaying Properties from All Categories

5.

Enter the property values as needed. In this example, the three check boxes are used to
determine whether to alert Tom, Dick and/or Harry. The captions are updated accordingly, and
the check box tags are configured with the first three elements of a Boolean array called
AlertOptions.

Figure 23. Completed Properties for the Symbol

6.

Click OK to close the Symbol Properties dialog, and then close the Object Properties dialog.7.

The Custom Properties are resolved during runtime, as shown below.

Figure 24. Symbol During Editing (top) and During Runtime (bottom)

Note: Remember, the completed Custom Properties on each instance of a Symbol are
independent from every other instance of that Symbol, but if you make any changes to the
master Symbol file, then those changes automatically propagate to every instance.

Parent topic: Symbols
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics >

ActiveX Control object
On the Graphics tab, in the Libraries group, click ActiveX Control to open the Insert ActiveX
Control dialog, which you can use to place ActiveX components on your screen.

When the dialog opens (as in the following figure), it contains a list of all ActiveX components that are
registered on your PC.

Figure 1. Insert ActiveX Control dialog

Note: When you use ActiveX controls in your project, your runtime stations should have the
same controls already installed and registered. Stations often have "auto download" and "auto
install" features disabled for security reasons, so they may not be able to get ActiveX controls
that are called by your project. Consult your hardware manufacturer and ActiveX controls
provider for more information about how to manually install controls.

If you still want to enable automatic download of ActiveX controls, you can do so by manually
editing your project file (project_name.app) to include the following settings:

[UsedControls]

EnableDownload=1

Count=number of controls

[UsedControl1]

CLSID=class ID of the ActiveX control

Version=version of the ActiveX control

Codebase=URL of the ActiveX control file, or of the .CAB file that contains the ActiveX control files

RegFile1=name of a specific .OCX or .DLL file within the .CAB file; see below

RegFilen=name of a specific .OCX or .DLL file within the .CAB file; see below

…

[UsedControln]

…

The CLSID and Version settings are required for each ActiveX control, and they must match the ID
and version of the actual control file(s) to which Codebase links. This allows a runtime station to
check the control against those that are already registered. If the settings do not match, then
the runtime station may unnecessarily download the same control again.

If you don't know the CLSID and Version settings for an ActiveX control, you can find them in the
registry key of an already installed and registered control. Search for the control file in
HKEY_CLASSES_ROOT\CSLID in the Windows Registry.

Also, the URL for the Codebase setting can be either absolute or relative to the Web server's
"home" directory. For example:

Codebase=http://server_address/AddOns/IndDateTimePick.ocx

…or…

Codebase=AddOns/IndDateTimePick.ocx

Finally, the Regfile settings are required only if Codebase links to a .CAB file. If it does, then use
one or more Regfile settings to name the specific files within the .CAB file that must be
downloaded and registered.

ActiveX controls are components designed according to a standard. Because InduSoft Web Studio is
an ActiveX container, you can configure and run ActiveX controls in the screens created with IWS.
ActiveX controls can provide the following interfaces:

Properties: Variables whose values can be read and/or written for your project (e.g., Object
Color, FileName, URL, and so forth)

Methods: Functions from the ActiveX object that can be triggered by your project (e.g., open a
dialog, execute a calculation, and so forth)

Events: Internal messages that can trigger the execution of expressions in your project (e.g.,
Mouse_Click, Download_Completed, and so forth)

The name of the properties, methods and events supported by each ActiveX depends on its own
implementation.

There are two different ways to interface your project with the ActiveX control:

By using the ActiveX functions XGet(), XSet() and XRun()

OR

By using the Object Properties window to configure the object

Double-click on the ActiveX Control to open the Object Properties dialog.

Figure 2. Object Properties: ActiveX Control

The Object Properties window displays the name of the ActiveX control. Generally, each ActiveX
control is either a *.dll or a *.ocx file registered in your local computer. You must assign a name
(alias) to the ActiveX control on the Name field (e.g., MyControl). This name is used to reference the
object when calling one of the ActiveX functions that are provided in the Built-in Scripting Language.

Note: You should not configure two ActiveX controls on the same screen with the same name.
For instance, if you insert two "Windows Media Player" ActiveX controls on the same screen, and
assign the name MyMP1 to one object (Name field), you cannot assign the same name to the
second object on the same screen. You would have to assign the name MyMP2, for example, to
the second object.

The Property Pages button opens the standard window for configuring the Static Properties (if any).
The layout and the options in this dialog depend on the implementeation of each ActiveX Control. Use
this interface to set properties that should not be changed during runtime (fixed properties).

The Configuration button on the Object Properties window opens dialogs that allow you to do the
following:

Associate tags to properties of the ActiveX Control;

Trigger methods from the ActiveX Control based on tag change; and

Configure scripts, which are executed when Events from the ActiveX Control occur.

The following sections describe how to configure these interfaces.

Note: Although the Configuration dialog displays the list of all properties, methods and events,
you only have to configure the items that you need for your project.

The screen shots used in the following sections depict the Acrobat 3D Office control. The names of

the properties, methods and events vary for each ActiveX control, but the configuration interface is
the same. The concepts described here apply to all controls.

Configuring Properties

The Properties tab provides a grid with the following fields:

Figure 3. Configuration Dialog – Properties Tab

Property: Lists all properties available from the ActiveX object, and indicate their types:

Property
Icon

Property Type

Boolean

Integer

Real

String

Tag/Expression: The tag configured in this field is associated with the respective property of
the ActiveX object. The Action column will define whether the value of this tag will be written to
the ActiveX property, or if the value of the ActiveX property will be written to this tag (or both).

Note: You can configure an expression in this field if you want to write the result of an
expression to the property of the ActiveX object. However, in this case, the value of the
property cannot be read back to one tag (unless you use the XGet() function). Therefore,
an expression is configured in this field, the Scan field is automatically set to Set.

Action: Defines the direction of the interface between the tag or expression configured in the

Tag/Expression field and the ActiveX property, according to the following table:

Action Description

Get Read the value of the ActiveX property and write it to the tag configured in
the Tag/Expression field.

Set Write the value from the tag or expression configured in the
Tag/Expression field into the ActiveX property.

Get+Set Executes both actions (Get and Set). However, when opening a screen
with the ActiveX object, IWS executes the Get command before executing
any Set command. That is, the tag configured in the Tag/Expression
field is updated with the value of the ActiveX property when IWS opens the
screen where the ActiveX is configured.

Set+Get Executes both actions (Get and Set). However, when opening a screen
with the ActiveX object, IWS executes the Set command before executing
any Get command. That is, the ActiveX property is updated with the value
of the tag configured in the Tag/Expression field when IWS opens the
screen where the ActiveX is configured.

Note: When the value of the property is "Read-only" (cannot by overwritten by your
project), the Action field is automatically set to Get.

Scan: Defines the polling method to get values from the ActiveX propreties, according to the
following table:

Scan Description

No The value of the ActiveX property is read and written to the tag configured
in the Tag/Expression field, only when the screen with the ActiveX object is
open, and when the ActiveX object sends a message to IWS to update this
tag.

Always IWS keeps polling the value of the ActiveX property and updating the tag
configured in the Tag/Expression field with this value.

Note: Some ActiveX controls are designed to send messages to their containers (e.g., your
project) indicating that a property changed value and the new value should be read (Get) again.
However, other ActiveX controls do not implement this algorithm. In this case, the only way to
get the updated values of the ActiveX properties is to keep polling these values from the ActiveX
control (Scan=Always).

Configuring Methods

The Methods tab provides a grid with the following fields:

Figure 4. Configuration Dialog – Methods Tab

Method: List all methods available from the ActiveX object.

Parameters: The tags configured in this field are associated with the parameters of the method
of the corresponding ActiveX object. If the method does not support any parameter, the fixed
text <None> is displayed in the Parameters field. Otherwise, you can type the tags associated
in the parameters of the ActiveX object. When the method has more than one parameter, you
can type one tag for each parameter, separating them by a comma (,). For example, TagA ,
TagB , TagC. When the method is executed, either the value of the tags are written to the
parameters of the method (input parameters), or, after the method is executed, the ActiveX
writes the value of the parameters to the tags (output parameters).

Tip: When you click the Browse button (), it will display the list of parameters supported
by the method, allowing you to associate one tag with each parameter.

Trigger: When the tag configured in this field changes value, the respective method of the
ActiveX control is executed.

Return: The tag configured in this field receives the value returned by the method (if any).

Configuring Events

The Events tab provides a grid with the following fields:

Figure 5. Configuration Dialog – Events Tab

Event: List all events available from the ActiveX object.

Parameters: The tags configured in this field are associated with the parameters of the event
of the corresponding ActiveX object. If the event does not support any parameter, the fixed text
<None> is displayed in the Parameters field. Otherwise, you can type the tags associated with
the parameters of the ActiveX object. When the event has more than one parameter, you can
type one tag for each parameter, separating them by a comma (,). For example, TagA , TagB ,
TagC. When the event is generated, either the value of the tags are written to the parameters of
the event (input parameters), or the parameter values are written to the tags (output
parameters).

Tip: When you click the Browse button (), it will display the list of parameters supported
by the event, allowing you to associate one tag with each parameter.

Script: The script configured in this field will be executed when the event is triggered by the
ActiveX control.

Tip: When you click the Browse button (), it will display a dialog with the complete script
associated with the event. The main dialog displays only the expression configured in the
first line of the script.

Parent topic: Screens and Graphics
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics >

.NET Control object

.NET Components are designed according to the Microsoft .NET Framework, which is a standard for
modular programming technologies. Because IWS is a .NET container, you can configure and run
.NET Components in your project screens. The actual functions of a .NET Component are contained
within a .NET Control object, which provides the configuration dialogs.

.NET Components include the following interfaces:

Properties: Variables whose values can be read and/or written for your project (e.g., Object
Color, FileName, URL, and so forth)

Methods: Functions from the .NET Component that can be triggered by your project (e.g.,
open a dialog, execute a calculation, and so forth)

Events: Internal messages that can trigger the execution of expressions in your project (e.g.,
Mouse_Click, Download_Completed, and so forth)

The properties, methods and events supported by each .NET Component vary according to the
component's implementation.

CAUTION:

When using .NET Components in your project, make sure that the target system
(runtime station) can support the same components and that they are properly
installed and registered. Your project includes links to the .NET Components;
however, the installation of these components on the target system must be done
separately. Furthermore, when .NET Components are used on screens open in remote
Thin Clients, the .NET Components must also be manually installed on the Thin Client
stations. The Microsoft Windows operating system installs a large selection of
components by default, but additional components are offered by third-party
providers. Consult your .NET Component provider for further information about how
to install.

Selecting and Placing a .NET Control Object

To select and place a .NET Control object in your project screen:

On the Graphics tab, in the Libraries group, click .NET Control.1.

When the .NET Framework Components dialog opens (as in the following figure), it contains a
list of all .NET Components that are registered on your computer.

Figure 1. .NET Framework Components dialog

2.

Select a component from the list, and then click OK to place it in your project screen. You can
also click the Browse… button to find an unregistered component on your computer.

Tip: Registered .NET Components are typically stored in the following directory:

C:\WINDOWS\Microsoft.NET\Framework\

However, you can have the application include unregistered components in the .NET
Framework Components dialog by editing the project_name.APP file to add this

parameter:

[Execution Environment]

DotNetControlPath=OptionalPath

For example:

[Execution Environment]

DotNetControlPath=C:\DOTNET CONTROLS BACKUP

Thereafter, the .NET Framework Components dialog will list all registered components and
all components found in the specified directory.

3.

By default, a new .NET Control object is placed in the upper-left corner of your project screen.
Click on the object and drag it to where you want it placed.

4.

Once the object is placed, double-click on it to open its Object Properties dialog.

Figure 2. Object Properties: .NET Control

5.

5.

The Object Properties dialog shows the name of the .NET Component. You must assign a name
(alias) to the component in the Name box (e.g., CheckBox1). This name is used to reference the
component when using the scripting languages (VBScript and built-in scripting).

Note: You should not configure two .NET Control objects on the same screen with the same
name. For instance, if you place two CheckBox components on the same screen and assign the
name CheckBox1 to one object (Name field), you cannot assign the same name to the second
object on the same screen. You would have to assign the name CheckBox2, for example, to the
second object.

The Property Pages button opens the standard window for configuring the Static Properties (if any).
The layout and the options in this dialog depend on the implementeation of each .NET Component.
Use this interface to set properties that should not be changed during runtime (fixed properties).

The Members button on the Object Properties dialog opens additional dialogs that allow you to do
the following:

Associate tags to properties of the .NET Component

Trigger methods from the .NET Component based on tag change

Configure scripts, which are executed when Events from the .NET Component occur

The following sections describe how to configure these interfaces.

Note: Although the Members dialog displays the list of all properties, methods and events, you
only have to configure the items that you need for your project.

The screen shots used in the following sections depict the CheckBox component. Although the names
of properties, methods and events varies by component, the configuration interface is the same for
any .NET Component. The concepts described here apply to all of them.

Configuring Properties

The Properties tab provides a grid with the following fields:

Figure 3. Members Dialog – Properties tab

Property: List all properties available from the .NET Component, and indicate their types:

Property
Icon

Property Type

Boolean

Integer

Real

String

Tag/Expression: The tag configured in this field is associated with the respective property of
the .NET Component. The Action column will define whether the value of this tag will be written
to the property, or if the value of the property will be written to this tag (or both).

Action: Defines the direction of the interface between the tag or expression configured in the
Tag/Expression field and the .NET property, according to the following table:

Action Description

Get Read the value of the property and write it to the tag configured in the
Tag/Expression field.

Set Write the value from the tag or expression configured in the
Tag/Expression field into the property.

Get+Set Executes both actions (Get and Set). However, when opening a screen
with the .NET Component, IWS executes the Get command before
executing any Set command. That is, the tag configured in the
Tag/Expression field is updated with the value of the property when IWS
opens the screen where the .NET Component is configured.

Action Description

Set+Get Executes both actions (Get and Set). However, when opening a screen
with the .NET Component, IWS executes the Set command before
executing any Get command. That is, the property is updated with the
value of the tag configured in the Tag/Expression field when IWS opens
the screen where the .NET Component is configured.

Note: When the value of the property is "Read-only" (cannot by overwritten by your
project), the Action field is automatically set to Get.

Scan: Defines the polling method to get values from the propreties. For .NET Components, all
properties scan Always by default. That is, IWS keeps polling the value of the property and
updating the tag configured in the Tag/Expression field with this value.

Configuring Methods

The Methods tab provides a grid with the following fields:

Figure 4. Members Dialog – Methods tab

Method: Lists all methods available from the .NET Component.

Parameters: The tags configured in this field are associated with the corresponding method. If
the method does not support any parameter, then the fixed text <None> is displayed. Otherwise,
you can enter the tags that you want to associate with the parameter. When the method has
more than one parameter, you can enter one tag for each parameter, separating them by a
comma (,). For example, TagA , TagB , TagC.

Tip: When you click the Browse button (), it will display the list of parameters supported

Set+Get Executes both actions (Get and Set). However, when opening a screen
with the .NET Component, IWS executes the Set command before
executing any Get command. That is, the property is updated with the
value of the tag configured in the Tag/Expression field when IWS opens
the screen where the .NET Component is configured.

Note: When the value of the property is "Read-only" (cannot by overwritten by your
project), the Action field is automatically set to Get.

Scan: Defines the polling method to get values from the propreties. For .NET Components, all
properties scan Always by default. That is, IWS keeps polling the value of the property and
updating the tag configured in the Tag/Expression field with this value.

Configuring Methods

The Methods tab provides a grid with the following fields:

Figure 4. Members Dialog – Methods tab

Method: Lists all methods available from the .NET Component.

Parameters: The tags configured in this field are associated with the corresponding method. If
the method does not support any parameter, then the fixed text <None> is displayed. Otherwise,
you can enter the tags that you want to associate with the parameter. When the method has
more than one parameter, you can enter one tag for each parameter, separating them by a
comma (,). For example, TagA , TagB , TagC.

Tip: When you click the Browse button (), it will display the list of parameters supported

by the method, allowing you to associate one tag with each parameter.

When the method is executed, either the value of the tags are written to the parameters of the
method (input parameters), or, after the method is executed, the .NET Component writes the
value of the parameters to the tags (output parameters).

Trigger: When the tag configured in this field changes value, the respective method of the .NET
Component is executed.

Return: The tag configured in this field receives the value returned by the method (if any).

Configuring Events

The Events tab provides a grid with the following fields:

Figure 5. Members Dialog – Events tab

Event: Lists all events available from the .NET Component.

Parameters: The tags configured in this field are associated with the corresponding event. If
the event does not support any parameter, then the fixed text <None> is displayed. Otherwise,
you can enter the tags that you want to associate with the parameter. When the event has
more than one parameter, you can enter one tag for each parameter, separating them by a
comma (,). For example, TagA , TagB , TagC.

Tip: When you click the Browse button (), it will display the list of parameters supported
by the event, allowing you to associate one tag with each parameter.

When the event occurs, either the value of the tags are written to the parameters of the
method (input parameters), or, after the event occurs, the .NET Component writes the value of
the parameters to the tags (output parameters).

Script: The script configured in this field will be executed when the event is triggered by the
.NET Component.

Tip: When you click the Browse button (), it will display a dialog with the complete script
associated with the event. The main dialog displays only the expression configured in the
first line of the script.

Parent topic: Screens and Graphics
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics >

Linked Picture
On the Graphics tab, in the Libraries group, click Linked Picture to paste a linked picture onto the
active screen, while maintaining a connection to the source. A linked picture is information (the
object) created in a source file (another project or another screen). The linked picture is
automatically updated whenever you update the source file, but the picture does not become part of
the screen. If you put a picture file in a project folder or a sub-folder, you can download the file with
the project to the runtime workstation.

Tip: You can associate a linked picture (path and name) to a string tag value so you can switch
from one picture to another dynamically during runtime by modifying the string tag name.

Parent topic: Screens and Graphics
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics >

Applying animations to screen
objects
Use the Animations group to apply animations to a screen object or group of objects. Animations
enable you to modify object properties on the fly (during runtime) according to tag values. Some
animations also enable you to execute commands or insert values (set points) to the tags.

Figure 1. Animations group

Command animation

Hyperlink animation

Bargraph animation

Text Data Link animation

Color animation

Position animation
The Position animation allows you to move an object horizontally and/or vertically during
runtime.

Resize animation
The Resize animation allows you to increase or decrease the size of an object during runtime.

Rotation animation

Parent topic: Screens and Graphics
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Applying animations to screen objects >

Command animation
On the Graphics tab, in the Animations group, click Command to add the animation to a selected
object or group of objects. The animation enables you to click on the object or press a pre-defined
key to execute the command at runtime. Double-click on the object to view its object properties.

Figure 1. Object Properties: Command

The Command animation provides one tag for each one of the events supported by it. Notice that
more than one event can be configured simultaneously for the same Command animation:

On Down: Executes the command/script once when the user clicks on the object with the left
mouse button.

On While: Keeps executing the command/script continuously while the mouse pointer is
pressed on the object. The period (in milliseconds) of execution for the command/script is set in
the Rate field from the Configuration dialog screen, except for the VBScript option, which is
executed as fast as possible.

On Up: Executes the command/script once when the user releases the left mouse button on the
object.

On Right Down: Executes the command/script once when the user clicks on the object with
the right mouse button.

On Right Up: Executes the command/script once when the user releases the right mouse
button on the object.

On Double Click: Executes the command/script once when the user double-clicks on the

object with the left mouse button.

Note:

The runtime project handles touchscreen actions the same as mouse pointer actions.

The events On Right Down, On Right Up and On Double Click are not supported in
projects running on Windows Embedded target systems.

When creating a project for a touchscreen device, keep in mind that events On Right
Down and On Right Up cannot be triggered on such devices.

Type menu: This setting defines the type of action that must be executed by the event of the
Command animation. Notice that each event has its own type. Therefore, the same Command
animation can be configured with different types of action for different events. The following
types are supported:

Type Description

Built-in Language Allows you to configure a script using the IWS built-in language. When this
type is selected, the user can configure up to 12 expressions for each
event in the Expression column. The expressions are executed
sequentially from the first row until the last one when the event is
triggered. The result of each expression is written to the tag configured in
the Tag column (if any). Consult the Built-in Scripting Language
chapter for more information.

VBScript Allows you to configure a script using the standard VBScript language.
When this type is selected, the user can configure a script in the VBScript
editor for the Command animation. Consult the VBScript chapter for
further information about the VBScript language.

Open Screen Allows you to configure the Command animation to open a specific screen
when the event is triggered during runtime. This type is equivalent to the
Open function. You can either type the screen name in the Open Screen
field or browse it. Furthermore, you can type a string tag between curly
brackets {TagName} in this field. When the event is executed, the project
will attempt to open the named screen.

Close Screen Allows you to configure the Command animation to close a specific
screen when the event is triggered during runtime. This type is equivalent
to the Close function. You can either type the screen name in the Close
Screen field or browse it. You can also type a string tag between curly
brackets {TagName} in this field. When the event is executed, the project
will attempt to close the named screen.

Set Tag Allows you to configure the Command animation to set a tag when the
event is triggered during runtime. You can either type the tag name in the
Set Tag field or browse it. When the event is executed, the project will
write the value 1 to the tag configured in this field.

Reset Tag Allows you to configure the Command animation to reset a tag when the
event is triggered during runtime. You can either type the tag name in the
Reset Tag field or browse it. When the event is executed, the project will
write the value 0 to the tag configured in this field.

Type Description

Toggle Tag Allows you to configure the Command animation to toggle a tag when the
event is triggered during runtime. You can either type the tag name in the
Toggle Tag field or browse it. When the event is executed, the project
will toggle the value of the tag configured in this field.

Config button: Launches the Configuration dialog, where the Command animation can be fully
configured.

Back to button: Click to go back to the object properties of the underlying Button object.

Configuration dialog

This dialog allows you to fully configure the Command animation…

Figure 2. Configuration dialog

The event tabs (e.g., On Down, On While, etc.) and the Type menu are the same as in the Object

Toggle Tag Allows you to configure the Command animation to toggle a tag when the
event is triggered during runtime. You can either type the tag name in the
Toggle Tag field or browse it. When the event is executed, the project
will toggle the value of the tag configured in this field.

Config button: Launches the Configuration dialog, where the Command animation can be fully
configured.

Back to button: Click to go back to the object properties of the underlying Button object.

Configuration dialog

This dialog allows you to fully configure the Command animation…

Figure 2. Configuration dialog

The event tabs (e.g., On Down, On While, etc.) and the Type menu are the same as in the Object

Properties dialog described above. The remaining settings are shared for all events:

Options pane:

Enable Focus checkbox: When this option is checked, the object that the Command
animation was applied to can receive the focus during runtime by the navigation keys.

Force checkbox: When this option is checked, any tag that receives a value will generate
events based on its change, even if the value of the tag in question does not change. For
instance, if a tag has the value 0 and the Command animation overwrites the same value
0 to this tag, any other task in the runtime project will recognize that this tag changed
value (even if it did not) after executing the animation. This option is useful when you
want to make sure that actions driven by tag changes (e.g., Write on Tag Change from a
communication driver) are triggered after the Command animation is executed.

Note: For projects created with InduSoft Web Studio v6.1+SP3 or earlier, the Force
option is enabled by default and cannot be disabled.

Beep checkbox: When this option is checked, a short beep is played when the Command
is executed. This option is useful to provide an audio feed-back to the user, indicating that
the Command was executed. It does not indicate, however, if the action triggered by the
Command animation was successful or not.

Release checkbox: When this option is checked, the On Up event is executed when you
drag the cursor (or your finger) out of the object area (whether the button was released or
not). This option is useful to make sure that the On Up event will always be executed after
an On Down event, even if the user releases the mouse cursor out of the object area
before releasing it.

Confirm checkbox: When this option is checked, user will have to answer a confirmation
question before executing the command. This option is useful for decreasing the accidental
triggering of critical events during runtime.

E-Sign checkbox: When this option is checked, the user will be prompted to enter the
Electronic Signature before executing the command.

Key Only checkbox: When this option is checked, the user can only use the keyboard
shortcut (configured in the Key pane described below) to execute commands.

Disable: Disables action by the user when the result of the expression configured in this field is
TRUE (value different from 0).

Security: Security access level required to use the Command animation.

Key pane: Shortcut used to trigger the events On Down, While Down and On Up using a
keyboard. (In other words, pressing this keyboard shortcut is the same as clicking the left
mouse button.) This option is especially useful when creating projects for runtime devices that
do not provide a mouse or touch-screen interface — the keyboard is the only physical interface
available to interact with your project during runtime.

Shift, Ctrl, or Alt boxes: Click to create a key combination key, meaning the Shift, Ctrl
and/or Alt key must be pressed with the key specified in the drop-down list.

Click the browse button (…) to open the Key Modifer dialog, which enables you to modify
your combination keys. You can choose Left, Right or Left or Right to specify the
position on the keyboard of the Shift, Ctrl or Alt key in the key combination. If you choose
Left or Right, the command will be executed any time either of these keys is pressed in

combination with the key specified in the drop-down list.

Parent topic: Applying animations to screen objects

Related information
Hyperlink animation
Bargraph animation
Text Data Link animation
Color animation
Position animation
Resize animation
Rotation animation

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Applying animations to screen objects >

Hyperlink animation
On the Graphics tab, in the Animations group, click Hyperlink to add the animation to a selected
object or group of objects. Applying this animation allows you to click on the object(s) during
execution to launch the default browser and load the specified URL.

Double-click on the object to open the Object Properties dialog.

Figure 1. Object Properties: Hyperlink

You can use this dialog to specify the following parameters:

Hyperlink Type combo-box: Click the combo-box button to select a URL protocol from the list.
The project uses this protocol when it loads the URL.

URL field: Type the URL address you want to load.

Tip: You are not required to enter the protocol type in the URL field. When you select a
protocol type from the Hyperlink Type list, the project automatically adds the protocol's
prefix to the URL address.

Disable field: Type a value greater than zero into this field to disable the hyperlink Command
animation for the selected object(s).

E-Sign checkbox: When this option is checked, the user will be prompted to enter the Electronic
Signature before executing the animation.

Security field: Type a value into this field to specify a security level for the object(s). If a user
logs on but does not have the required security level, the project disables the hyperlink
command for the object(s).

Parent topic: Applying animations to screen objects

Related information
Command animation

Bargraph animation
Text Data Link animation
Color animation
Position animation
Resize animation
Rotation animation

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Applying animations to screen objects >

Bargraph animation
On the Graphics tab, in the Animations group, click Bargraph to add bar graph properties to a
selected object, then double-click on the object to open the Object Properties dialog.

Figure 1. Object Properties: BarGraph

Use the Object Properties dialog to specify the following parameters:

Tag/Expression field: Type a tag or expression that evaluates the bar graph level. You also
can click the icon to browse your directories for an existing tag or expression.

Minimum Value field: Type a numeric constant or a tag value into this field to define the
minimum value used to calculate the height (if vertical) or width (if horizontal) of the bars.

Maximum Value field: Type a numeric constant or a tag value into this field to define the
maximum value used to calculate the height (if vertical) or width (if horizontal) of the bars.

If you do not specify a value for this field, the application opens a dialog requesting you confirm
creation of the tag.

Tip: The application also allows you to enter constants in tag/numeric value fields.
Constant values (defined by the # character) are equivalent to numeric values, except that
constants display in the Tag Replace dialog. You may find constants useful for
documentation purposes or for creating generic objects.

For example: #Name:100.

Where the value (100) following the semicolon (:) is the constant, and Name is a constant
mnemonic only and not added to database.

Foreground Color: To specify a fill color for the bars, click the combo-box button. When the
Color dialog displays, click on a color to select it, and then close the dialog.

Direction area: Click the Vertical or Horizontal radio button to specify the direction of the
bar graph.

Orientation area: Click the Up, Center, or Down radio button to specify the orientation of the
maximum and minimum values when drawing the bars.

Parent topic: Applying animations to screen objects

Related information
Command animation
Hyperlink animation
Text Data Link animation
Color animation
Position animation
Resize animation
Rotation animation

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Applying animations to screen objects >

Text Data Link animation
On the Graphics tab, in the Animations group, click Text Data Link to add the animation input or
output text property to a selected Text object. Applying the Text Data Link property allows you to
insert and display tag values in real time if you are using the keyboard or on-screen keypad to run a
project.

Note: You can only apply this animation to Text objects that include one or more # characters.
Each # represents one character of input/output. You can combine # characters with regular text
in the same Text object — for example, MyLabel ##### or $###.##.

It's important to remember that the runtime project will always display the most significant
digits of a numeric value, regardless of the number or placement of # characters in the text. That
means if you do not have sufficient # characters to display the value, then it will be transformed
in some way depending on the format of the value (as set by the Fmt option described below):

In Decimal format, the number of decimal places is determined by the position of the
decimal separator in the ### text. However, if you do not have enough # characters to the
left of the decimal separator to display the whole value, then the whole value will overrun
the fractional value. For example, if you try to display a value of 112.64 in #.##, you will see
112.

In Hexa and Binary formats, if you have more # characters than you need to display the
value, then the runtime project will fill in with leading zeroes. If you have less characters
than you need, then the value will simply be truncated.

In Auto format, the runtime project will ignore the number of # characters and display the
entire numeric or string value. Numeric values will be displayed in decimal format with their
complete whole and fractional values, regardless of the placement of the decimal separator
in the ### text. Given an exceptionally large value or long string, this may disrupt the layout
of your screens.

Double-click on the object to open the Object Properties dialog. You can use this dialog to specify the
following parameters:

Figure 1. Object Properties: Text Data Link

Tag/Expression text field: Type one of the following into the field:

The name of a tag on which to perform an input or output operation; or

An expression on which to perform an output operation only.

You can also click the browse button … to open the Object Finder to find an existing tag or
expression.

Note: If the configured tag/expression is invalid, then during runtime, the placeholder
characters (###) will be displayed instead.

Format combo-box: Click to select how the numeric value (if any) of the specified tag or
expression will be formatted and displayed on-screen. Available options include Decimal, Hexa
(i.e., hexadecimal), Binary and Auto. If you select Auto, then the value will be formatted
according to the virtual table created by the SetDecimalPoints function.

This option does not actually change the specified tag or expression in any way. For example,
Tag/Expression is set to a tag of Integer type, Input Enabled is checked, and Fmt is set to
Hexa. You may input a new value in hexadecimal format, but it is saved in your project
database as an integer.

Input Enabled checkbox: Click (check) this option to allow user input to the specified tag.
Disable (uncheck) this option to only display the output from the specified tag or expression.

Back to text: Click to go back to the object properties of the underlying Text object.

Minimum Value field: Enter a minimum value for the tag associated with this Text object. A
user will not be permitted to input a number lower than this value.

Maximum Value field: Enter a maximum value for the tag associated with this Text object. A
user will not be permitted to input a number greater than this value.

Password checkbox: Click (check) this option to hide password text entries by replacing the
text with asterisks (*).

Confirm checkbox: Click (check) this option to require users to confirm any new values set
during runtime.

Auto Size checkbox: Click (check) this option to automatically resize the Text object to fit the
output. This option is not available if Input Enabled is checked (see above).

E-Sign checkbox: When this option is checked, the user will be prompted to enter the Electronic
Signature before changing the tag value.

VK: Virtual Keyboard type used for this object. You need to select the Virtual Keyboard option
in the Viewer settings (Viewer on the Project tab of the ribbon) before configuring the Virtual
Keyboard for this interface.

Disable field: Type a value greater than zero in this field to disable the tag's data input
property.

Security field: Type a value in this field to specify the security level for a specific data input
object (as defined in the Security section).

Parent topic: Applying animations to screen objects

Related information
Command animation

Hyperlink animation
Bargraph animation
Color animation
Position animation
Resize animation
Rotation animation

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Applying animations to screen objects >

Color animation
On the Graphics tab, in the Animations group, click Color to add the animation to a selected
object. The Colors animation allows you to modify the color of a static object during runtime based on
the value of a tag or expression.

Double-click on the object to open the Object Properties dialog.

Figure 1. Object Properties: Colors

You can use this dialog to specify the following parameters:

Type: Determines the mode in which this animation works:

By Limit: When selecting this type, you can specify up to four limits (Change Limit) for
this animation and a color for each limit. When the value of the tag or expression
configured in the Tag/Expr field reaches the limits, the color associated with the respective
limit is applied to the object.

By Color: When selecting this type, you can specify the code of the color that must be
applied to the object directly in the Tag/Expr field. Using this code, you can apply any color
supported by your device to the object.

Tip: You can configure the RGBColor function in the Tag/Expr field when Type = By Color.
This allows you to configure the color by its RGB codes. See Color Interface for a table with
the codes for the most commonly used colors.

Tag/Expression field: Type the name of a tag or expression you want to monitor. When Type
= By Limit, IWS compares the result of the tag/expression with the specified Change Limits to
determine the proper color for the selected object. When Type = By Color, the result of this field
sets the color that will be applied to the object.

Change Limit field: Type a limit value (a numeric constant or tag) for the color change. The
numbers must be configured in ascendant order according to the following sequence of the
fields displayed on the Object Properties dialog: Upper left, lower left, upper right and lower

right field. If you click on the More button, you can configure up to 16 different limits for the
color animation.

Figure 2. Color Limits dialog

Color combo box: Click the combo-box button to associate a color with each color change limit.
When the Color dialog opens, click a color to select it, and then close the dialog.

Blink combo-box: Click the combo-box button to specify whether the color change will blink,
and how fast it will do so.

Note: The following fields are automatically disabled (grayed out) when Type = By Color:
Change Limit, Color and Blink.

Parent topic: Applying animations to screen objects

Related information
Command animation
Hyperlink animation
Bargraph animation
Text Data Link animation
Position animation
Resize animation
Rotation animation

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Applying animations to screen objects >

Position animation
The Position animation allows you to move an object horizontally and/or vertically during runtime.

On the Graphics tab, in the Animations group, click Position to add the animation to an object.
Double-click on the object to open its Object Properties dialog.

Figure 1. Object Properties: Position

Use the dialog to configure the following properties:

Show on condition text box: Configure a tag/expression in this field to control when the
object is shown. When the tag/expression is TRUE (i.e., any non-zero value), the object is
shown. When the value is FALSE (i.e., 0 or a blank space), the object is not shown. You can also
leave the field blank to always show the object.

Slider check box: Click (check) this option to operate the object like a slider, which means that
you can drag the object around the screen to send values to the configured tags. (See Move
below.)

Click the Slider button to configure additional settings:

Disable text box: Configure a tag/expression in this field to control when sliding is
disabled. When the value of the tag/expression is TRUE (i.e., any non-zero value), sliding
is disabled. When the value is FALSE (i.e., 0 or a blank space), sliding is enabled.

Security text box: Enter the security level required to use the object as a slider.

Move area: Configure these settings to determine how the object moves on the screen:

Tag / Expression text boxes: The meaning of these boxes depends on whether the
Slider option is enabled (see above):

Expression text box: If the Slider option is not enabled, then configure either a tag
or an expression in this field. The current value of the tag / expression determines
the current position of the object. As the value changes, the object is moved on the
screen.

Tag text box: If the Slider option is enabled, then enter only an Integer or Real tag
in this field. The tag will receive a value that is equivalent to the current position of
the object. As the user moves the object, the value is changed.

For the Horz (horizontal) position, the value increases as the object moves to the right and
it decreases at the object moves to the left. For the Vert (vertical) position, the value
increases as the object moves to the bottom and it decreases at the object moves to the
top.

Range text boxes: Enter the minimum and maximum values for the tag / expression. If
the actual value goes outside of its range, then the value is ignored and the limit is used
instead.

Position text boxes: Enter values to specify how far (in pixels) the object can move from
its starting position. The starting position is equal to "0,0". Values greater than 0 allow the
object to move right and down, and values less than 0 allow the object to move left and
up.

During runtime, the object's position is proportional to the tag / expression value within its
range. For example, if Position is 0 to 100 and Range is 0 to 10, then each increment in
the value will move the object 10 pixels. This is true for both Horz and Vert.

Reference drop-down lists: Select a reference point on the object. The following table
shows how your selections for Horz and Vert work in combination:

 LEFT CENTER RIGHT

TOP

CENTER

BOTTOM

This reference point is meaningful only if you have the Size animation added to the same
object. The position of the object is always based on this reference point, regardless of the
size or shape of the object.

Parent topic: Applying animations to screen objects

Related information
Command animation
Hyperlink animation
Bargraph animation
Text Data Link animation
Color animation
Resize animation
Rotation animation

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Applying animations to screen objects >

Resize animation
The Resize animation allows you to increase or decrease the size of an object during runtime.

On the Graphics tab, in the Animations group, click Resize to add the animation to an object.
Double-click on the object to open its Object Properties dialog.

Figure 1. Object Properties: Size

Use the dialog to configure the following properties:

Tag text boxes: Enter the tags that will control the Height and Width of the object. Leave
either field blank if you don't want the object to change size in that dimension.

Range text boxes: Enter the minimum and maximum values for the specified tag(s). If a tag's
actual value goes outside of its range, then the value is ignored and the limit is used instead.

Size (%) text boxes: Enter the minimum and maximum values for the size of the object. The
minimum value can be as low as 0% (making the object effectively invisible), and the maximum
value can be as high as you want. 100% is the original size of the object when you draw it in
the Screen Editor, so 200% would be double the original size, and so on.

During runtime, the object's size is proportional to the tag value within its range. For example, if
Size (%) is 0 to 100 and Range is 0 to 10, then each increment in the value will increase the
object size by 10%. This is true for both Height and Width.

Reference drop-down lists: Select a reference point to determine the directions in which the
object will change size. The following table shows how your selections for Height and Width
work in combination:

 LEFT CENTER RIGHT

TOP

CENTER

BOTTOM

Parent topic: Applying animations to screen objects

Related information
Command animation
Hyperlink animation
Bargraph animation
Text Data Link animation
Color animation
Position animation
Rotation animation

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Applying animations to screen objects >

Rotation animation
On the Graphics tab, in the Animations group, click Rotation to add the animation to an Open
Polygon, Closed Polygon, Line, or Linked Picture object. Double-click on the object to open the Object
Properties dialog.

Figure 1. Object Properties: Rotation animation

Use this dialog to specify the following parameters:

Tag/Expression field: Enter a Tag name or expression to associate with the Rotation
animation. The value of Tag/Expression determines the actual rotation of the object; as the
value changes, so does the amount of rotation.

Range area: Enter the Minimum and Maximum values allowed for Tag/Expression. Values
less than the minimum and greater than the maximum are disregarded.

Rotation (degrees) area: Enter the Start and End positions (in degrees) of the object. The
actual rotation is proportional to the value of Tag/Expression within Range. An object can
rotate up to 360 degrees, and it rotates clockwise by default.

Tip: For example, a Rotation animation has the following settings: Minimum is 0,
Maximum is 100, Start is 0, and End is 180. If the current value of Tag/Expression is
50 (i.e., halfway between Minimum and Maximum), then the actual rotation of the object is
90 degrees (i.e., halfway between Start and End). A value of 25 is equal to 45 degrees, a
value of 75 is equal to 135 degrees, and so on.

Reference combo-box: Select one of the following as a pivot point on which to rotate the
object:

Left-Top: Upper-left corner of the object.

Left-Bottom: Lower-left corner of the object.

Center: Center of the object.

Right-Top: Upper-right corner of the object.

Right-Bottom: Lower-right corner of the object.

You can fine tune the pivot point by configuring the Offset settings described below.

Advanced button: Click to open the Advanced dialog, where you can configure the following
settings:

Figure 2. Object Properties: Rotation animation – Advanced Dialog

Offset (pixels) area: Enter the number of pixels by which to offset the Reference (i.e.,
pivot point) on the X axis and/or Y axis.

Counter Clockwise checkbox: Click (enable) this option to make the object rotate
counterclockwise instead of clockwise.

Parent topic: Applying animations to screen objects

Related information
Command animation
Hyperlink animation
Bargraph animation
Text Data Link animation
Color animation
Position animation
Resize animation

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Format tab >

Move to Front and Move to Back
IWS assigns a unique identification number (ID#) to every object on the screen. These ID#s always
start at zero and range up to the total number of objects on the screen. You can click on an object to
display its ID# in the status bar.

IWS uses ID#s to determine whether an object displays in front of, or behind, another object on the
screen. Objects with lower ID#s display behind objects with higher ID#s.

Use the following object layer tools to move selected object(s) behind or in front of another screen
object(s).

Note: You can use these tools only with a single selected object or group of objects. You cannot
use these tools with multiple objects selected.

Also, if you select a group of objects and move them the behind or in front of another object,
then the selected group of objects maintain their original display order.

Click the Move to back tool to move a selected object or objects behind all other objects on the
screen. IWS assigns the object the lowest ID# and moves that object behind all other objects on the
screen.

Figure 1. Moving Objects to Back

Note: Alternatively, right-click on an object and select Move to back from the object's shortcut
menu.

Click the Move to front tool to move a selected object or objects in front of all other objects on the
screen. IWS assigns the object the highest ID# and moves that object behind all other objects on the
screen.

Figure 2. Moving Objects to Front

Note: Alternatively, right-click on an object and select Move to front from the object's shortcut
menu.

Parent topic: Format tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Format tab >

Move Backward and Move Forward
IWS assigns a unique identification number (ID#) to every object on the screen. These ID#s always
start at zero and range up to the total number of objects on the screen. You can click on an object to
display its ID# in the status bar.

IWS uses ID#s to determine whether an object displays in front of or behind another object on the
screen. Objects with lower ID#s display behind objects with higher ID#s.Use the following object
layer tools to move selected object(s) behind or in front of another screen object(s).

Note: You can use these tools only with a single selected object or group of objects. You cannot
use these tools with multiple objects selected. Also, if you select a group of objects and move
them the behind or in front of another object, the selected group of objects maintain their
original display order.

Click the Move backward tool to move the selected object or group one layer below the next object
on the screen. (Alternatively, right-click on the object and select Move backward from the shortcut
menu.) IWS assigns the selected object the next available ID# less than the object behind which it
was moved.

Click the Move forward tool to move the selected object or group one layer above the next object
on the screen. (Alternatively, right-click on the object and select Move forward from the shortcut
menu.) IWS assigns the selected object the first available ID# greater than the object in front of
which it was moved.

Parent topic: Format tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Format tab >

Group and Ungroup Tools
Use the following tools to group and ungroup two or more selected objects.

Note: All objects with animations and Group of Symbols objects (which includes most symbols
and library objects) have multiple Object Properties dialogs and properties. You can use the
drop-down list on the Object Properties dialog (Properties on the Graphics tab of the ribbon) to
access these different dialogs and properties.

Click the Group tool to combine multiple objects into a single object to facilitate object selection and
manipulation. (You can access each part of the group in the Object Properties dialog.)

Note: Alternatively, you can right-click on an object and select Group from the object's shortcut
menu.

Click the Ungroup tool to separate a grouped object into its individual components.

Note: Alternatively, you can right-click on an object and select Ungroup from the object's
shortcut menu.

Tip: A complex grouped object can consist of several sets of grouped objects (known as
subgroups). Consequently, you may find it necessary to ungroup all of the subgroups to
completely ungroup a complex object.

Parent topic: Format tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Format tab >

Align, Center and Distribute Tools
When you select a series of objects (two or more), you can align those objects based on the location
of the last object selected. As you select objects, solid handles display on the last object selected, and
the handles on all previously selected objects become empty (unfilled) boxes.

Note: In all of the figures provided, the rectangle represents the last object selected.

Use the following alignment tools to align a series of objects.

Click the Align left tool to align all selected objects to the left edge of the last object selected. For an
example, see the following figure:

Figure 1. Aligning Objects Left

Click the Align right tool to align all selected objects to the right edge of the last object selected. For
an example, see the following figure:

Figure 2. Aligning Objects Right

Click the Align top tool to align all selected objects to the top edge of the last objected selected. For
an example, see the following figure:

Figure 3. Aligning Object Tops

Click the Align bottom tool to align all selected objects to the bottom edge of the last object
selected. For an example, see the following figure:

Figure 4. Aligning Object Bottoms

Click the Center Vertically tool to align all selected objects to the vertical center of the last object
selected. For an example, see the following figure:

Figure 5. Centering Objects Vertically

Click the Center Horizontally tool to align all selected objects to the horizontal center of the last
object selected. For an example, see the following figure:

Figure 6. Centering Objects Horizontally

Click the Evenly distribute horizontally tool to put an equal amount of horizontal space between a
series of objects (two or more). For an example, see the following figure:

Figure 7. Distributing Objects Horizontally

Click the Evenly distribute vertically tool to put an equal amount of vertical space between a
series of objects (two or more). For an example, see the following figure:

Figure 8. Distributing Objects Vertically

Note: The distribution tools may move the last object selected (with solid handles) by no more
than a few pixels to equally space all of the objects.

Parent topic: Format tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Format tab >

Rotate Tool

Click the Rotate tool to rotate the selected object 90 degrees (a quarter turn) clockwise.

Figure 1. Rotating Objects

Note: You can use this tool only with a single selected object or grouped object. You cannot use
this tool with multiple objects selected.

Flip Vertically Tool

Flip Horizontally Tool

Parent topic: Format tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Format tab > Rotate Tool >

Flip Vertically Tool

Click the Flip Vertically tool to invert the selected object vertically. The object rotates around an
imaginary line through its vertical center until it is a mirror image of the original object. For an
example, see the following figure:

Figure 1. Flipping Objects Vertically

Note: You can use this tool only with a single selected object or grouped object. You cannot use
this tool with multiple objects selected.

Parent topic: Rotate Tool
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Format tab > Rotate Tool >

Flip Horizontally Tool

Click the Flip Horizontally tool to invert the selected object horizontally. The object rotates around
an imaginary line through its horizontal center until it is a mirror image of the original object. For
example, see the following figure:

Figure 1. Flipping Objects Horizontally

Note: You can use this tool only with a single selected object or grouped object. You cannot use
this tool with multiple objects selected.

Parent topic: Rotate Tool
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Format tab >

Resize Tools

Use the following ribbon options for resizing:

Click the Resize width tool to set the width of all selected objects to the width of the last
object selected, or to resize one selected object so that its width equals its height.

Click the Resize height tool to set the height of all selected objects to the height of the last
object selected, or to resize one selected object so that its height equals its width.

Tip: You can use Resize width and Resize height to turn an ellipse into a circle or a rectangle
into a square. Make sure you have only one object selected, however.

You also can use the mouse pointer and arrow keys to resize objects. When you select an object (or
group of objects) with the pointer, handles are displayed at each corner and at the midpoint of each
side. You can use these handles as follows:

To enlarge an object, drag a handle in the direction you want to resize the object. Dragging a
side handle resizes the object in one direction only (height only or width only). Dragging a
corner handle resizes the entire object (height and width).

When you drag a corner handle, the object's proportions are constrained by default. To freely
resize the object, hold down the SHIFT key as you drag the handle.

To resize an object one pixel at a time, click and hold a handle and then press the arrow
keys. For the corner handles and the left and right side handles, press the LEFT ARROW and
RIGHT ARROW keys. For the top and bottom handles, press the UP ARROW and DOWN ARROW
keys.

To resize an Open or Closed Polygon, draw a selection box around all of the polygon's
points and group them. You can then resize the polygon like a normal object.

Note: When you resize a Symbol, a Group, or any other collection of selected objects, all of the
objects in the collection are resized in the same direction and to the same degree.

Parent topic: Format tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Format tab >

Fill Color Tool

Click the Fill Color tool to specify a default fill color for the following objects:

Closed Polygons

Ellipses

Rounded Rectangles

Rectangles

Tip: To save development time, select several objects (of any type specified in the preceding
list) and use Fill Color to specify a default fill color for all of them at once.

Parent topic: Format tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Format tab >

Line Color Tool

Click the Line Color tool to specify a line color for selected objects or to set a default color for new
objects, including the following:

Open Polygons

Closed Polygons

Lines

Ellipses

Rounded Rectangles

Rectangles

When you click the Line Color tool, the Line Selection dialog displays. Use this dialog to specify line
styles and color for the selected objects.

Tip: To save development time, you can select several of the preceding objects and use the
Line Color tool to specify a line color for all of the objects at once.

Parent topic: Format tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screens and Graphics > Format tab >

Fonts Tool
Click the Fonts tool to specify the font and color for selected Text objects, or to specify a default font
and color for new Text objects.

Tip: To save development time, select several Text objects and use the Fonts tool to specify
font and color settings for all of the objects at once. (You cannot use this function for grouped
Text objects however.)

Parent topic: Format tab
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display
The Alarm and Trend tasks are used to log historical data, and the Alarm/Event and Trend Control
objects are used to display historical data on a project screen.

These two features are normally used together, but they do not need to be; project data may be
logged without being displayed during runtime, and the data displayed during runtime may be taken
from outside the project.

Alarm worksheet
The Alarms folder enables you to configure alarm groups and tags related to each group. The
Alarm worksheet defines the alarm messages generated by the project. The primary purpose of
an alarm is to inform the operator of any problems or abnormal condition during the process so
he can take corrective action(s).

Event Settings

Alarm/Event Control object
Use the Alarm/Event Control tool to add an Alarm or Event Control object to an project
screen.

Trend worksheet
The Trend folder enables you to configure history groups that store trend curves. You can use
the Trend worksheet to declare which tags must have their values stored on disk, and to create
history files for trend graphs. The project stores the samples in a binary history file (*.hst), and
shows both history and on-line samples in a screen trend graph.

Trend Control object
The Trend Control object displays data points (values) from different data sources in a graphic
format.

Grid object
The Grid object allows you to read/write data in a tabular format from the data source
configured in the object.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display >
Background Tasks >

Alarm worksheet
The Alarms folder enables you to configure alarm groups and tags related to each group. The Alarm
worksheet defines the alarm messages generated by the project. The primary purpose of an alarm is
to inform the operator of any problems or abnormal condition during the process so he can take
corrective action(s).

The Alarm worksheet is executed by the Background Task module (see Execution Tasks). It handles
the status of all alarms and save the alarm messages to the history, if configured to do so, but it
does not display the alarm messages to the operator; the Alarm/Event Control screen object,
available on the Graphics tab of the ribbon, must be created and configured in a screen in order to
display alarms.

To create a new Alarm worksheet, do one of the following:

On the Insert tab of the ribbon, in the Task Worksheets group, click Alarm;

Right-click the Alarms folder in the Project Explorer, and then click Insert on the shortcut
menu; or

Click New on the Application menu, click the File tab, and then select Alarm Worksheet.

To edit an existing Alarm worksheet, double-click it in the Project Explorer.

Figure 1. Alarm worksheet

You can create multiple Alarm groups (worksheets) and each group can be configured with
independent settings, such as message colors, history log enabled/disabled, and so forth.

Each Alarm worksheet is composed of two areas:

Header: Settings applied to all tags and alarms configured in the same alarm group. These
settings allow you to configure the formatting of the message and the actions that must be
triggered based on alarm events (e.g., print alarms, send alarms by email, and so forth). For
more information, see Header Settings.

Body: Configure alarm messages and associate them to conditions linked to tags. For more
information, see Body Settings.

Note:

You can configure the Alarm Group to send notifications by Email automatically, based on
alarm events. For more information, see Email Settings.

The alarm properties associated to each tag (configured in the body of the alarm group)
can also be edited by the Tag Properties dialog (Properties on the Home tab of the
ribbon). However, before associating a tag to an alarm group, it is necessary to create the
alarm group and configure the settings on its header, which will be applied to all tags
associated to the group.

As of IWS v6.1+SP2, the Alarm task has been modified to avoid automatically
acknowledging alarms by another alarm. For example, the Hi (Lo) alarm should not be
automatically acknowledged when the HiHi (LoLo) alarm becomes active. To enable the
previous behavior, set the following key in your project (.APP) file:

[Alarm]

UseLegacyPriorityAck=1

CAUTION:

The settings configured in the body of each Alarm worksheet are stored in the Tags
Database archive(s). Therefore, changes to the tags database may affect the content
of the Alarm worksheets (body). Notice that each tag/type cannot be available in
more than one Alarm group simultaneously because the Alarm Group is a property
associated to each Tag/Alarm Type (e.g., Tag: Level; Alarm Type: Hi; Alarm Group: 2).

Alarm Worksheet Header

Alarm Worksheet Body

Setting the Alarm Database
The alarm history can be saved either in the IWS proprietary format or to an external SQL
Relational database by ADO.

Parent topic: Data Logging and Display
Parent topic: Background Tasks
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Alarm worksheet >

Alarm Worksheet Header

The following table describes the Header settings on an Alarm worksheet:

Field Remarks Syntax

Description Description of the alarm group. It is displayed on
the workspace. This field is used for
documentation only.

Text
(up to 80 chars)

Group Name Name of the Alarm group. During runtime, the
operator can filter alarms based on the Group
Name by the built-in Filters dialog of the
Alarm/Event control object.

Text
(up to 32 chars)

Email Settings Launches the Email Settings dialog, where you
can configure the settings for emails sent
automatically based on alarm conditions.

Button

Advanced Launches the Advanced Settings dialog, where
you can configure the settings for emails sent
automatically based on alarm conditions.

Button

On Line
> Display in Alarm Controls

When checked, the alarms are available to be
displayed on the Alarm/Event Control object.

Checkbox

Field Remarks Syntax

On Line > Ack Required When checked, the alarms require
acknowledgment. In this case, the alarms are
displayed on the Alarm/Event Control object
(Online mode) until they are acknowledged AND
normalized.

Checkbox

On Line > Beep When checked, the computer keeps beeping
while there are alarm(s) to be acknowledged,
currently active.

Checkbox

On Line > Send to Printer When checked, the alarm messages are sent to
the printer as soon as the alarm event occurs.
When using this option, you must use a matrix
printer (instead of DeskJet or LaserJet) in order
to print the message(s) and feed just one line —
otherwise, each alarm will be printed in a
different sheet of paper. The alarms will be
printed in the default printer. If you want to send
alarms to a printer different from the default
printer, you can specify the printer path/name,
editing the following parameter in the
project_name.APP file:

[AlarmLog]

Device=PrinterPath/PrinterName

Checkbox

History > Save to Disk When checked, the alarm messages are stored
in the history log when they become active.

Checkbox

History
> Generate Ack Messages

When checked, the alarm messages are stored
in the history log when they are acknowledged.

Checkbox

History
> Generate Norm Messages

When checked, the alarm messages are stored
in the history log when they become normalized.

Checkbox

Colors in Alarm Controls
> Enable

When checked, the alarms configured in this
group will be displayed with the colors assigned
to each alarm state (Activation,
Acknowledgement or Normalization),
according to the colors configured in the Alarm
Group.

Color

Colors in Alarm Controls
> FG and BG

You can configure the text foreground color (FG)
and background color (BG) for the alarms
displayed on the Alarms/Events Control object.
Each alarm state can be displayed with a
different color schema:

Activation: Alarm active and not
acknowledged

Acknowledgement: Alarm active and

Color

On Line > Ack Required When checked, the alarms require
acknowledgment. In this case, the alarms are
displayed on the Alarm/Event Control object
(Online mode) until they are acknowledged AND
normalized.

Checkbox

On Line > Beep When checked, the computer keeps beeping
while there are alarm(s) to be acknowledged,
currently active.

Checkbox

On Line > Send to Printer When checked, the alarm messages are sent to
the printer as soon as the alarm event occurs.
When using this option, you must use a matrix
printer (instead of DeskJet or LaserJet) in order
to print the message(s) and feed just one line —
otherwise, each alarm will be printed in a
different sheet of paper. The alarms will be
printed in the default printer. If you want to send
alarms to a printer different from the default
printer, you can specify the printer path/name,
editing the following parameter in the
project_name.APP file:

[AlarmLog]

Device=PrinterPath/PrinterName

Checkbox

History > Save to Disk When checked, the alarm messages are stored
in the history log when they become active.

Checkbox

History
> Generate Ack Messages

When checked, the alarm messages are stored
in the history log when they are acknowledged.

Checkbox

History
> Generate Norm Messages

When checked, the alarm messages are stored
in the history log when they become normalized.

Checkbox

Colors in Alarm Controls
> Enable

When checked, the alarms configured in this
group will be displayed with the colors assigned
to each alarm state (Activation,
Acknowledgement or Normalization),
according to the colors configured in the Alarm
Group.

Color

Colors in Alarm Controls
> FG and BG

You can configure the text foreground color (FG)
and background color (BG) for the alarms
displayed on the Alarms/Events Control object.
Each alarm state can be displayed with a
different color schema:

Activation: Alarm active and not
acknowledged

Acknowledgement: Alarm active and

Color

Field Remarks Syntax Acknowledgement: Alarm active and
acknowledged

Normalization: Alarm no longer active
and not acknowledged.

Email Settings for Alarm Worksheet

Advanced Settings for Alarm Worksheet

Parent topic: Alarm worksheet
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Acknowledgement: Alarm active and
acknowledged

Normalization: Alarm no longer active
and not acknowledged.

Email Settings for Alarm Worksheet

Advanced Settings for Alarm Worksheet

Parent topic: Alarm worksheet
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Alarm worksheet > Alarm Worksheet Header >

Email Settings for Alarm Worksheet
IWS has the ability to send emails automatically when alarm events occur. The emails are sent using
the standard SMTP (Simple Message Transfer Protocol). Therefore, you just need a valid email
account with a SMTP Server and POP3 server — it is not necessary to install any additional software,
such as Microsoft Outlook.

Important: Before being email to send emails, it is necessary to execute successfully the
CnfEmail function (from the built-in language) at least once. This function sets the email account
parameters used when sending emails from the project (e.g., SMTP server, user name,
password, and so forth).

Figure 1. Alarms Worksheet — Email Settings

Field Remarks Syntax

Enable send automatic
email

Name of the tag associated with the alarm. Checkbox

To, Cc, Bcc Target addresses to whom the emails will be
sent. You can configure multiple email addresses
in each box (To, Cc and/or Bcc) by separating
the addresses with the semi-colon character
(;).

Text and/or {Tag} (up
to 1024 chars)

Field Remarks Syntax

Subject When selecting "Use alarm message", the alarm
message itself is used as the subject of the email
to be sent. When selecting "Custom", you can
configure a custom text to be used as Subject
when sending the alarm.

Radio-button / Text (up
to 1024 chars)

Send 1 message per
email

When checking this option, each alarm is sent in
an individual email and all emails are sent when
the Send Trigger is triggered. Otherwise, all
alarm messages are buffered and sent in only
one email when the Send Trigger is triggered.
You cannot disable (uncheck) this option when
the Subject option is configured with "Use alarm
message".

Checkbox

Remove failed
messages from the
buffer

When checking this option, the emails are
removed from the buffer after attempting to
send them, even if there was an error (failure)
and the email was not sent. Otherwise, the
messages are kept in the buffer until they are
sent successfully or when the buffer reaches its
maximum size.

checkbox

Send email when alarm
is

Allow you to configure which alarm events should
generate emails:

Active: When the alarm becomes active.

Ack: When the alarm is acknowledged.

Norm: When the alarm is normalized.

Notice that each event can be enabled/disabled
individually.

checkbox

Current Status The tag configured in this field, if any, is updated
with the current status of the current or last
email that the project attempted to send:

-2: Incorrect version of the INDMail.DLL
library.

-1: The INDMail.DLL library is corrupted.

 0: SendEmailExt function is not being
executed.

 1: Sending email(s)

 2: Last email was sent successfully.

 3: There was an error sending the last
email.

Tag

Subject When selecting "Use alarm message", the alarm
message itself is used as the subject of the email
to be sent. When selecting "Custom", you can
configure a custom text to be used as Subject
when sending the alarm.

Radio-button / Text (up
to 1024 chars)

Send 1 message per
email

When checking this option, each alarm is sent in
an individual email and all emails are sent when
the Send Trigger is triggered. Otherwise, all
alarm messages are buffered and sent in only
one email when the Send Trigger is triggered.
You cannot disable (uncheck) this option when
the Subject option is configured with "Use alarm
message".

Checkbox

Remove failed
messages from the
buffer

When checking this option, the emails are
removed from the buffer after attempting to
send them, even if there was an error (failure)
and the email was not sent. Otherwise, the
messages are kept in the buffer until they are
sent successfully or when the buffer reaches its
maximum size.

checkbox

Send email when alarm
is

Allow you to configure which alarm events should
generate emails:

Active: When the alarm becomes active.

Ack: When the alarm is acknowledged.

Norm: When the alarm is normalized.

Notice that each event can be enabled/disabled
individually.

checkbox

Current Status The tag configured in this field, if any, is updated
with the current status of the current or last
email that the project attempted to send:

-2: Incorrect version of the INDMail.DLL
library.

-1: The INDMail.DLL library is corrupted.

 0: SendEmailExt function is not being
executed.

 1: Sending email(s)

 2: Last email was sent successfully.

 3: There was an error sending the last
email.

Tag

Field Remarks Syntax

Current Error The tag configured in this field, if any, is updated
with the error message describing the result of
the last email that the project attempted to
send. Therefore, when configuring a tag in this
field, this tag must be a String type.

Tag

Message Format This interface allows you to configure the actual
format of the message sent by email, based on
the alarm event(s):

Day, Month, Year, Hour, Minute,
Second, MS: The options checked will
compose the timestamp for the alarm
messages. MS stands for milliseconds.

Items: The options checked will compose
the email message for each alarm. You can
configure the order of the items, by using
the Move Up and Move Down buttons.

Separator: Allow you to choose the
separator used between the items checked
in this interface.

While you configure these settings, the Sample
field displays an example of the format of the
message according to the settings being
configured.

Checkbox and Radio-
button

Send Trigger When the alarm events are generated, they are
kept in an internal buffer (memory). When the
tag configured in this field changes of value, the
email(s) on the internal buffer are sent to the
addresses configured in the To, Cc and Bcc
fields. After being successfully sent, the emails
are removed from the internal buffer.

Tag

Max buffer size Maximum number of alarm messages (events)
that can be stored in the internal buffer
simultaneously. When this limit is reached, the
buffer follows a FIFO (First-In, First-Out)
behavior, discharging the older messages as
soon as the newer messages are generated,
guaranteeing that the buffer does not exceed the
limit configured in this field.

Tag or Number

Buffer size The tag configured in this field, if any, is updated
with the number of messages (events) currently
stored in the internal buffer.

Tag

Current Error The tag configured in this field, if any, is updated
with the error message describing the result of
the last email that the project attempted to
send. Therefore, when configuring a tag in this
field, this tag must be a String type.

Tag

Message Format This interface allows you to configure the actual
format of the message sent by email, based on
the alarm event(s):

Day, Month, Year, Hour, Minute,
Second, MS: The options checked will
compose the timestamp for the alarm
messages. MS stands for milliseconds.

Items: The options checked will compose
the email message for each alarm. You can
configure the order of the items, by using
the Move Up and Move Down buttons.

Separator: Allow you to choose the
separator used between the items checked
in this interface.

While you configure these settings, the Sample
field displays an example of the format of the
message according to the settings being
configured.

Checkbox and Radio-
button

Send Trigger When the alarm events are generated, they are
kept in an internal buffer (memory). When the
tag configured in this field changes of value, the
email(s) on the internal buffer are sent to the
addresses configured in the To, Cc and Bcc
fields. After being successfully sent, the emails
are removed from the internal buffer.

Tag

Max buffer size Maximum number of alarm messages (events)
that can be stored in the internal buffer
simultaneously. When this limit is reached, the
buffer follows a FIFO (First-In, First-Out)
behavior, discharging the older messages as
soon as the newer messages are generated,
guaranteeing that the buffer does not exceed the
limit configured in this field.

Tag or Number

Buffer size The tag configured in this field, if any, is updated
with the number of messages (events) currently
stored in the internal buffer.

Tag

Field Remarks Syntax

Clear Buffer When the tag configured in this field changes of
value, all messages (events) currently stored in
the buffer are deleted. These messages will
never be sent.

Tag

Disable send When the value of the tag configured in this field
is TRUE, the Email feature is temporarily
disabled. Alarm events generated while the Email
feature is disabled will not be stored in the
internal buffer. Also, emails will NOT be sent in
this condition, even if the tag configured in the
field Send Trigger changes of value.

Tag

Parent topic: Alarm Worksheet Header
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Clear Buffer When the tag configured in this field changes of
value, all messages (events) currently stored in
the buffer are deleted. These messages will
never be sent.

Tag

Disable send When the value of the tag configured in this field
is TRUE, the Email feature is temporarily
disabled. Alarm events generated while the Email
feature is disabled will not be stored in the
internal buffer. Also, emails will NOT be sent in
this condition, even if the tag configured in the
field Send Trigger changes of value.

Tag

Parent topic: Alarm Worksheet Header
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Alarm worksheet > Alarm Worksheet Header >

Advanced Settings for Alarm
Worksheet

Figure 1. Alarm Worksheet, Advanced Settings Dialog

The following table describes the Advanced settings on an Alarm worksheet:

Field Remarks Syntax

Disable When the value of the tag configured in this is
TRUE, all alarms configured in this group are
temporarily disabled. This option is useful to
disable alarms under special conditions (e.g.,
during maintenance).

Tag

Total Alarms The tag configured in this field, if any, is updated
with the number of alarms from this group,
which are currently active.

Tag

Total Unack The tag configured in this field, if any, is updated
with the number of alarms from this group,
which are currently active AND have not been
acknowledged yet.

Tag

Remote Ack Trigger When the tag configured in this field change of
value, all active alarms from this group are
acknowledged. This option can be used to
acknowledge alarms regardless of any action
from the operator.

Tag

Field Remarks Syntax

Dead Band Time
> Activation

Each alarm must remain continuously in its
alarm condition for the period of time specified in
this field before becoming active. This option is
useful to avoid generating alarms on intermittent
conditions (e.g., noise). If this field is left in
blank, the alarm becomes active as soon as its
condition is true.

Tag or Number

Dead Band Time
> Normalization

Each alarm must remain continuously out from
its alarm condition for the period of time
specified in this field before becoming
normalized. This option is useful to avoid
normalizing alarms on intermittent conditions
(e.g., noise). If this field is left in blank, the
alarm become normalized as soon as its
condition is no longer true.

Tag or Number

Dead Band Time
> Time Stamp/Value

Each alarm maintains a time stamp of the last
significant activity, along with the value of the
tag at that time. You can select the type of
activity that updates the time stamp:

Activation/Norm (default): The time
when the dead band ended — that is, when
the alarm becomes activated or normalized.

Last Tag Change: The time when the
value of the tag last changed during the
dead band.

Start Condition: The time when the dead
band started.

Combo

Parent topic: Alarm Worksheet Header
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Dead Band Time
> Activation

Each alarm must remain continuously in its
alarm condition for the period of time specified in
this field before becoming active. This option is
useful to avoid generating alarms on intermittent
conditions (e.g., noise). If this field is left in
blank, the alarm becomes active as soon as its
condition is true.

Tag or Number

Dead Band Time
> Normalization

Each alarm must remain continuously out from
its alarm condition for the period of time
specified in this field before becoming
normalized. This option is useful to avoid
normalizing alarms on intermittent conditions
(e.g., noise). If this field is left in blank, the
alarm become normalized as soon as its
condition is no longer true.

Tag or Number

Dead Band Time
> Time Stamp/Value

Each alarm maintains a time stamp of the last
significant activity, along with the value of the
tag at that time. You can select the type of
activity that updates the time stamp:

Activation/Norm (default): The time
when the dead band ended — that is, when
the alarm becomes activated or normalized.

Last Tag Change: The time when the
value of the tag last changed during the
dead band.

Start Condition: The time when the dead
band started.

Combo

Parent topic: Alarm Worksheet Header
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Alarm worksheet >

Alarm Worksheet Body

The following table describes the Body settings on an Alarm worksheet:

Field Remarks Syntax

Tag Name Name of the tag associated with the alarm. Tag

Type Type of the alarm:

HiHi: Activates the alarm if the tag value is equal
or higher than the limit.

Hi: Activates the alarm if the tag value is equal or
higher than the limit. (For Boolean tags, if the
value is 1.)

Lo: Activates the alarm if the tag value is equal or
lower than the limit. (For Boolean tags, if the value
is 0.)

LoLo: Activates the alarm if the tag value is equal
or lower than the limit.

Rate: Activates the alarm if the tag value varies
faster than the rate specified to the alarm. (For
Boolean tags, if the value changes.)

DevP: Activates the alarm if the tag value is equal
or higher than the Set Point tag plus the limit.

DevM: Activates the alarm if the tag value is
equal or lower than the Set Point tag minus the
limit.

When using the types Rate, DevP and DevM, it is
necessary to configure additional settings by the Tag
Properties dialog (Properties on the Home tab of the
ribbon).

Combo-box

Field Remarks Syntax

Limit Limit associated with each alarm. The limits can be
modified dynamically during runtime, by the tag fields
HiHiLimit, HiLimit, LoLimit, LoLoLimit, Rate, DevP and
DevM (e.g., TagLevel->HiLimit).

Number

Message Message associated to the alarm. The message can be
displayed on the Alarm/Event Control object and/or
stored in the Alarm History and/or sent by Email,
depending on the settings configured in the Header of
the Alarm group.

Text and/or {Tag} (up to
256 chars)

Priority Priority number associated to the alarm. When
displaying alarms on the Alarm/Event Control object ,
the operator can filter and/or sort the alarms by
priority.

Number (from 0 to 255)

Selection Alias associated to the alarm (e.g., AreaA, AreaB, etc).
When displaying alarms on the Alarm/Event Control
object, the operator can filter and/or sort the alarms by
their selection value.

Text (up to 7 characters)

Parent topic: Alarm worksheet
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Limit Limit associated with each alarm. The limits can be
modified dynamically during runtime, by the tag fields
HiHiLimit, HiLimit, LoLimit, LoLoLimit, Rate, DevP and
DevM (e.g., TagLevel->HiLimit).

Number

Message Message associated to the alarm. The message can be
displayed on the Alarm/Event Control object and/or
stored in the Alarm History and/or sent by Email,
depending on the settings configured in the Header of
the Alarm group.

Text and/or {Tag} (up to
256 chars)

Priority Priority number associated to the alarm. When
displaying alarms on the Alarm/Event Control object ,
the operator can filter and/or sort the alarms by
priority.

Number (from 0 to 255)

Selection Alias associated to the alarm (e.g., AreaA, AreaB, etc).
When displaying alarms on the Alarm/Event Control
object, the operator can filter and/or sort the alarms by
their selection value.

Text (up to 7 characters)

Parent topic: Alarm worksheet
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Alarm worksheet >

Setting the Alarm Database
The alarm history can be saved either in the IWS proprietary format or to an external SQL Relational
database by ADO.

On the Project tab of the ribbon, in the Settings group, click Options. The Project Settings dialog is
displayed:

Figure 1. Project Settings - Options tab

The Alarm History and Events interface allows you to configure the following settings:

Field Remarks Syntax

History Life Time (days) The history for alarm/event messages older than the
number of days specified in this field are automatically
deleted, following a FIFO (First-In, First-Out) behavior.
If this field is left in blank, the history of alarms/events
are not deleted automatically.

Number

Field Remarks Syntax

History Format Defines the format of the history of alarms/events:

Proprietary: Saves the history in the proprietary
format. The alarm messages are saved in a text
file with the name ALyymmdd.ALH, where:

yy is the last two digits of the current year.

mm is the month.

dd is the day

There will be one history file for each day. By
default, the alarm history files created with the
proprietary format are stored in the \Alarm sub-

folder of the project. However, it is possible to
direct the alarms to a different directory by using
the SetAppAlarmPath function from the built-in
language.

Database: Saves the history in a third-party SQL
Relational Database (e.g., SQL Server).

Combo-box

Alarm Database When selecting Database as the format for the history
of alarms, the specific settings to interface with the
third-party SQL Relational Database can be configured
by the dialog launched when pressing this button. For
further details about support for third-party SQL
Relational Databases, see Database Interface.

—

When saving the alarm history in the proprietary format, each alarm event is saved in a new line,
using the pipe character (|) to delimiter the different fields, as illustrated below:

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10|P11|P12|P13|P14|P15|P16|P17|P18|P19|P20|P21

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10|P11|P12|P13|P14|P15|P16|P17|P18|P19|P20|P21

.

.

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10|P11|P12|P13|P14|P15|P16|P17|P18|P19|P20|P21

The format of the history both in proprietary format and in the SQL Relational Database format is
described in the following table:

Proprietary SQL Relational Database Remarks File Vers.

Field No. Field Name Field Type

P1 — — File version (Current =
003)

001

History Format Defines the format of the history of alarms/events:

Proprietary: Saves the history in the proprietary
format. The alarm messages are saved in a text
file with the name ALyymmdd.ALH, where:

yy is the last two digits of the current year.

mm is the month.

dd is the day

There will be one history file for each day. By
default, the alarm history files created with the
proprietary format are stored in the \Alarm sub-

folder of the project. However, it is possible to
direct the alarms to a different directory by using
the SetAppAlarmPath function from the built-in
language.

Database: Saves the history in a third-party SQL
Relational Database (e.g., SQL Server).

Combo-box

Alarm Database When selecting Database as the format for the history
of alarms, the specific settings to interface with the
third-party SQL Relational Database can be configured
by the dialog launched when pressing this button. For
further details about support for third-party SQL
Relational Databases, see Database Interface.

—

When saving the alarm history in the proprietary format, each alarm event is saved in a new line,
using the pipe character (|) to delimiter the different fields, as illustrated below:

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10|P11|P12|P13|P14|P15|P16|P17|P18|P19|P20|P21

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10|P11|P12|P13|P14|P15|P16|P17|P18|P19|P20|P21

.

.

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10|P11|P12|P13|P14|P15|P16|P17|P18|P19|P20|P21

The format of the history both in proprietary format and in the SQL Relational Database format is
described in the following table:

Proprietary SQL Relational Database Remarks File Vers.

Field No. Field Name Field Type

Proprietary SQL Relational Database Remarks File Vers.

Field No. Field Name Field Type

P1 — — File version (Current =
003)

001

P2 Al_Start_Time Date/Time Start Date
(MM/DD/YYYY)

001

P3 Start Time (HH:MM:SS) 001

P4 Al_Tag Text Tag Name 001

P5 Al_Message Text Alarm Message 001

P6 Al_Ack Number Ack, where:

0: Alarm was
acknowledged or
does not require
acknowledgment

1: Alarm was not
acknowledged

001

P7 Al_Active Number Active, where:

0: Alarm is not
active

1: Alarm is active

001

P8 Al_Tag_Value Number Tag Value when the
event occurred

001

P9 Al_Group Number Alarm Group Number 001

P10 Al_Priority Number Priority Number 001

P11 Al_Selection Text Selection 001

P12 Al_Type Number Type, where:

1 is HiHi

2 is Hi(On)

4 is Lo(Off)

8 is LoLo

16 is Rate(Change)

32 is Deviation+

64 is Deviation-

001

P13 Al_Ack_Req Number Ack required, where:

0: Alarm requires
acknowledge

1: Alarm does not

001

P1 — — File version (Current =
003)

001

P2 Al_Start_Time Date/Time Start Date
(MM/DD/YYYY)

001

P3 Start Time (HH:MM:SS) 001

P4 Al_Tag Text Tag Name 001

P5 Al_Message Text Alarm Message 001

P6 Al_Ack Number Ack, where:

0: Alarm was
acknowledged or
does not require
acknowledgment

1: Alarm was not
acknowledged

001

P7 Al_Active Number Active, where:

0: Alarm is not
active

1: Alarm is active

001

P8 Al_Tag_Value Number Tag Value when the
event occurred

001

P9 Al_Group Number Alarm Group Number 001

P10 Al_Priority Number Priority Number 001

P11 Al_Selection Text Selection 001

P12 Al_Type Number Type, where:

1 is HiHi

2 is Hi(On)

4 is Lo(Off)

8 is LoLo

16 is Rate(Change)

32 is Deviation+

64 is Deviation-

001

P13 Al_Ack_Req Number Ack required, where:

0: Alarm requires
acknowledge

1: Alarm does not

001

Proprietary SQL Relational Database Remarks File Vers.

Field No. Field Name Field Type 1: Alarm does not
require acknowldge

P14 Al_Norm_Time Date/Time Normalization Date
(MM/DD/YYYY)

001

P15 Normalization Time
(HH:MM:SS)

001

P16 Al_Ack_Time Date/Time Ack Date (MM/DD/YYYY) 001

P17 Ack Time (HH:MM:SS) 001

P18 Al_User User Name 002

P19 Al_User_Comment Comment 002

P20 Al_User_Full User Full Name 003

P21 Al_Station Station 003

P22 Al_Prev_Tag_Value Number Previous Value 003

P23 Bias Number Time Zone Bias 003

— Al_Start_Time_ms Number Number of milliseconds
for the Start Time
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

— Al_Norm_Time_ms Number Number of milliseconds
for the Norm Time
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

— Al_Ack_Time_ms Number Number of milliseconds
for the Ack Time
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

— Al_Deleted Number Deleted, where:

0: Alarm message
was not deleted by
the user (not
visible).

1: Alarm message
was deleted by the
user (visible).

003

1: Alarm does not
require acknowldge

P14 Al_Norm_Time Date/Time Normalization Date
(MM/DD/YYYY)

001

P15 Normalization Time
(HH:MM:SS)

001

P16 Al_Ack_Time Date/Time Ack Date (MM/DD/YYYY) 001

P17 Ack Time (HH:MM:SS) 001

P18 Al_User User Name 002

P19 Al_User_Comment Comment 002

P20 Al_User_Full User Full Name 003

P21 Al_Station Station 003

P22 Al_Prev_Tag_Value Number Previous Value 003

P23 Bias Number Time Zone Bias 003

— Al_Start_Time_ms Number Number of milliseconds
for the Start Time
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

— Al_Norm_Time_ms Number Number of milliseconds
for the Norm Time
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

— Al_Ack_Time_ms Number Number of milliseconds
for the Ack Time
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

— Al_Deleted Number Deleted, where:

0: Alarm message
was not deleted by
the user (not
visible).

1: Alarm message
was deleted by the
user (visible).

003

Proprietary SQL Relational Database Remarks File Vers.

Field No. Field Name Field Type

— Last_Update Date/Time Timestamp of the last
update for this event.

003

— Last_Update_ms Number Number of milliseconds
for the Last Event
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

Tip: When saving the History Alarms in a SQL Relational Database (File Format = Database),
you can customize the name of the columns created in the database by editing the
project_name.APP file, as follows:

[Alarm]

DefaultName=NewName

For example:

[Alarm]

Message=Alarm_Message

Ack=Acknowledgment

See also:

SQL Relational Databases

Studio Database Gateway

Database Appendix A: Using ODBC Databases

Configuring a Default Database for All Task History

Parent topic: Alarm worksheet
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

— Last_Update Date/Time Timestamp of the last
update for this event.

003

— Last_Update_ms Number Number of milliseconds
for the Last Event
timestamp. This field is
used when the database
does not support ms in a
TimeStamp field.

003

Tip: When saving the History Alarms in a SQL Relational Database (File Format = Database),
you can customize the name of the columns created in the database by editing the
project_name.APP file, as follows:

[Alarm]

DefaultName=NewName

For example:

[Alarm]

Message=Alarm_Message

Ack=Acknowledgment

See also:

SQL Relational Databases

Studio Database Gateway

Database Appendix A: Using ODBC Databases

Configuring a Default Database for All Task History

Parent topic: Alarm worksheet
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display >

Event Settings
This section describes IWS's logging and event-retrieval features. An event can be any tag change,
generating reports or recipes, opening and closing screens, logging onto and logging off the security
system, and so forth. IWS saves all of these events in a log file, which can be retrieved by the
Alarm/Event Control object.

Event log files are stored in the project's \Alarm folder (the same folder where the project saves alarm
history files). The event log file names must conform to the evYYMMDD.evt format, where:

YY represents the last two digits of the year in which the event log file was generated

MM represents the month in which the event log file was generated

DD represents the day on which the event log file was generated

For example, a log file for May 7, 2003 would be ev030507.evt.

The event files (*.evt) are ASCII text files created according to the following format:

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10

.

.

.

P1|P2|P3|P4|P5|P6|P7|P8|P9|P10

where:

P1 = File version (Current 1)

P2 = Event Type

SECURITY SYSTEM1.

DISPLAY2.

RECIPE3.

REPORT4.

CUSTOM MESSAGES5.

SYSTEM WARNING6.

LOG TAGS7.

P3 = Event Time (DD/MM/YYYY HH:MM:SS.SSS)

P4 = Tag Name

P5 = Tag Value

P6 = Source (Not used)

P7 = User Name

P8 = User Full Name

P9 = Event Message

P10 = Station

Configuring the Events Settings

Use the steps to configure the event-retrieval feature:

Select the Global tab.1.

Double-click the Event Logger icon to open the Event Settings dialog:

Figure 1. Event Settings dialog

2.

Configure the parameters on the Event Settings dialog as follows:

Enable event logger checkbox: Click (check) this box to enable event-logging.

Disable text box: Type a tag into this field. If the tag value is other than 0 (false), then
the project automatically disables the Event Logger during runtime.

Event Database button: Click to open the Database Configuration dialog, in which you
can enter settings that will enable the project to save event history data to a database.

Settings:

Security System checkbox: Click (check) this box to include security system events
in the historic event file. The project logs the following security system events:

Log On / Log Off users

User created/removed using the CreateUser() or RemoveUser() functions

3.

User blocked/unblocked using the BlockUser() or UnblockUser() functions

User blocked by the security system after several attempts to enter an invalid
password

Password expired

Password modified

Invalid Log On attempt

Display checkbox: Click (check) this box to include screen Open and Close events in
the historical event file.

Recipe checkbox: Click (check) this box to include recipe load, save, init, and delete
events in the historical event file.

Report checkbox: Click (check) this box to include reports saved to disk or send to
printer events in the historical event file.

Custom Messages checkbox: Click (check) this box to include events generated by
the SendEvent(strEvent) function in the historical event file.

System Warning checkbox: Click (check) this box to include general system
warnings (such as Division by zero, Attempted to access invalid array index, and so
forth) in the historical event file. The project logs the following system warning
events:

Errors that occur when sending alarms by email

Tag was blocked/unblocked

Division by zero

Connection/Disconnection of the remote security system

Tags checkbox: Click (check) this box to enable and log tag changes in the historical
event file. Configure the tags you want to log in the Tags table as follows:

Tag Name column: Type the name of the tag you want to log in the event file.

Dead Band column: Type a value to filter acceptable changes against.

For example, if you specify a Dead Band value = 5 for a tag value = 50 and the tag
value changes to 52, the system will not register this variation in the event log file,
because the variation is less than 5. However, if the tag value change is equal to or
greater than 5, the system will save the new value to the history file.

Message column: Type a string (message) related to this tag change. You can
specify tags in messages using the {tag name} syntax.

The Tags parameter can be useful if you want to generate a log file of events that are not
necessarily alarm conditions (for example, Motor On, Motor Off, and so forth).

Setting the Event Database

Parent topic: Data Logging and Display
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Event Settings >

Setting the Event Database

On the Project tab of the ribbon, in the Settings group, click Options. The Project Settings
dialog is displayed:

Figure 1. Project Settings: Options Tab

1.

In the Alarm History and Events pane, click the arrow to the right of the History Format field.
Select Database.

2.

Click the Event Database button. This opens the Database Configuration dialog. Enter the
applicable data in this window. Click OK when you are done.

3.

Click OK to save the Project Settings data and close the window.4.

Event Table on a Relational Database

The fields saved in the History Event are described in the following table:

Field Name Data Type Remarks

Version Integer This field is created only when the File Format is
Proprietary. Current version: 002

Event_Type Integer 1: SECURITY SYSTEM

2: DISPLAY

3: RECIPE

4: REPORT

5: CUSTOM MESSAGES

6: SYSTEM WARNING

7: LOG TAGS

Event_Time TimeStamp Timestamp indicating when the event occurred.

When the File Format is Proprietary, IWS saves the Event
Time in the following format: MM/DD/YYYY
HH:MM:SS.MSS.

Event_Info String Tag Name

Value Real Tag value when the event occurred

Source String Name of the task that generated the event

User String User logged when the event occurred.

User_Full String Full name of the user logged when the event occurred.

Message String Event message

Station String Name of the station (computer) where the event occurred.

Comment String Comment (optional) typed by the operator when the event
occurred. This field only exists for Version >=2

Previous_Value Real Tag value that occurred before the event. This field only
exists for Version >=2

Deleted Boolean 0: Event message was not deleted

1: Event message was deleted

This field is created only when the File Format is Database.

Bias Integer Difference (in minutes) from the Time Stamp columns and
the GMT time. This field only exists for Version >=2

Last_Update TimeStamp Time Stamp when the register was created/modified. This
field is used to synchronize the databases when using the
Secondary Database in addition to the Primary Database.
This field is created only when the File Format is Database.

Tip: When saving the Events in a SQL Relational Database (File Format = Database) you can
customize the name of the columns created in the database by editing the project_name.APP file

as follows:

[EventLogger]

DefaultName=NewName

For example:

[EventLogger]

Event_Info=Information

Message=Event_Message

Parent topic: Event Settings
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display >

Alarm/Event Control object
Use the Alarm/Event Control tool to add an Alarm or Event Control object to an project screen.

To create and configure an Alarm/Event Control object:

On the Graphics tab of the ribbon, in the Data Objects group, click Alarm/Event Control.1.

Click in the display, and drag the mouse to create and adjust the object's shape.2.

Double-click on the object to open the following Object Properties dialog.

Figure 1. Object Properties: Alarm/Event Control

You can use this dialog to specify the following parameters:

Select an alarm object mode in the Type pane:

Alarm Online: Display only current alarm messages.

Alarm History: Display only alarm messages from the Alarm History database.

Alarm History + Event: Display both alarm messages from the Alarm History
database and logged events from the Event History database.

Event: Display only logged events from the Event History database.

Click (enable) the Show gridlines checkbox to display gridlines in the object.

Figure 2. Displaying a Grid

3.

Click (enable) the Show Header checkbox to display a header on the object.

Figure 3. Displaying a Header

Use the Win color box to select a background color for the object. Click the color box to
open the color palette pop-up, then simply click a color to select it.

Click (enable) the Ext translation checkbox to enable the external translation of
messages using the Translation Tool. (See The Translation Tool for more information.)

E-Sign checkbox: When this option is checked, the user will be prompted to enter the
Electronic Signature before executing the animation.

VK: Virtual Keyboard type used for this object. You need to select the Virtual Keyboard
option in the Viewer settings (Viewer on the Project tab of the ribbon) before configuring
the Virtual Keyboard for this interface.

Fonts

Click the Fonts button to open a standard Fonts interface where you can specify display properties
for the message text.

Columns

Click the Columns button to open the Columns dialog where you can specify display properties for
columns in the object.

Figure 4. Columns dialog

The Available list contains all of the column types available for this object. The Visible list
contains all of the column types currently in use for the object.

Click the » and « buttons to move selections between the two lists.

Tip: You can configure an Alarm Control object to display recently replaced values together
with their new values. To do so, move both Value and Previous to the Visible list.

Click the Move Up or Move Down buttons to rearrange the order of columns in the Visible list.

Use the Label and Width fields in the Properties pane to change the default column labels and
widths at runtime.

Use the Align combo box to specify alignment (Left, Center, or Right) for the alarm message
text within a specified column.

Click (enable) the Available during runtime checkbox to allow the user to add selected
columns to the visible list during runtime.

Use the Key box to assign a shortcut to each column. This allows you to sort the information on
the Alarm Control object by any column, using keyboard keys instead of the mouse cursor.

When you are finished, click OK to close the Column dialog.

Note: When acknowledging an alarm, the Alarm Control object sends a message to the Alarm
task with the following information: Tag Name, Type, User and Station. This is a solution to
control acknowledged alarms from a Thin Client.

Filters

To filter alarm messages during runtime, click the Filters button. The Filters dialog displays so you
can specify filtering parameters for the Alarm Control object.

Figure 5. Filters dialog

Use the Group field to filter messages by the Alarm Worksheet number. The worksheets are
organized in the Alarms folder, in the Tasks tab of the Project Explorer, starting with 1. If you
specify a Group of 0, then all of the worksheets will be displayed. You can use commas or
dashes to specify a range of groups; for example,1,3,5-6.

Use the Selection field to filter messages by the Selection text configured on the Alarm
Worksheet.

In the Priority pane, use the From and To fields to filter messages by the Priority configured on
the Alarm Worksheet. Type numerical values into the these fields to delimit the priority range.

Use the Type field to filter messages by the alarm type (e.g., HiHi, Hi, Lo, LoLo, Rate, Dev+,
Dev-). You can use commas to specify more than one type; for example,HiHi,LoLo.

Use the State field to filter messages by the alarm status:

Value Description

0 All alarms (default)

1 All active and unacknowledged alarms

2 All active and acknowledged alarms

3 All inactive and acknowledged alarms

4 All inactive and unacknowledged
alarms

Leaving this field blank is effectively the same as entering a value of 0.

In the Search in columns pane, use the Tagname, Message, and/or Username text fields to
specify criteria for filtering messages. Type a tagname, message, and/or user name into the
text field for which you want IWS to search.

Use the parameters in the Interval pane to filter messages by the last x messages (Latest) or

based on a period of time (Period). If you do not specify any interval at all, then only the
alarms for the current day will be displayed.

Note:

You can specify String tags in curly brackets (e.g.{tagname}) in the Group, Selection,

Tagname, Message, and Username fields, to change these values during runtime.

You must specify String tags without curly brackets (e.g.tagname) in the Type field and

the Period fields of the Interval pane. These fields cannot take values directly.

You can specify Integer tags in the From and To fields Priority pane, the State field,
and the Latest field from the Interval pane.

You can use wildcards (* and ?) when specifying values for the Selection,
Tagname, Message, and Username fields.

Use the Filter Expression pane to configure an expression that will filter unwanted messages out
of the display. Only messages that satisfy the expression will be shown.

To enter an expression, click on the Edit button; the Alarm Filter Expression dialog is displayed.
The filter expression must follow the basic syntax of…

[Column Name]Comparison Operator'Value'

…where the Column Name is the name of a column in the Alarm/Event Control object. For

example:

[Activation Time]>'08/17/2007 15:00'

This filter will only show alarm messages with activation times greater (later) than 15:00 on
08/17/2007.

Note:

The maximum number of characters is 1024 for Engineering Mode and 2048 for
Runtime Mode.

The Display Value and State columns are not supported by the filter expression.

Tip:

You can combine several conditions simultaneously by using the logic operators AND,
OR, and NOT. For example:

[Type]='HiHi' OR [Type]='LoLo' AND [Activation Time]>'08/17/2007 15:00'

You can use wildcards (* and ?) in the filter expression.

It is not necessary to use the square brackets when the Column Name is only one word

(e.g., Value).

You can change the filter expression during runtime by specifying String tags in curly
brackets. For example:

[Value]='{AlarmFilterValue}'

To use more than 1024 characters in the filter expression during runtime, you must
use more than one tag between curly brackets using the {TagName1} AND {TagName2}
syntax.

Use the parameters in the Initial Sort pane to set the default sorting order. Select a sort type
from the Column combo-box, and then select Asc or Desc to sort in ascending or descending
order. You can configure up to three levels of sorting.

Note: If you configure all three levels with sort types other than Activation Time, then the
project will automatically sort on a fourth level according to Activation Time, in descending
order.

You cannot change the type of this fourth-level sort, but you can toggle its default order —
from descending to ascending — by manually editing your project file (project_name.app)

to change the following setting:

[Objects]

DescendingAlarmListTime=TRUE or FALSE

TRUE sorts in descending order, FALSE sorts in ascending order. Please note that this setting
only works for projects created with or updated to InduSoft Web Studio v6.1+SP5 or later.

Click the Allow sort in runtime checkbox if you want to allow the user to change the sort
order during runtime.

Advanced

Click the Advanced button to open the Advanced dialog where you can specify advanced properties
for the Alarm Control object.

Figure 6. Advanced dialog

Use the parameters in the Date & Time Format pane to control which date and time information
displays in the alarm message. Click (enable) a checkbox to include that element in the display.
Note: MS stands for milliseconds.

Tip: Watch the Sample text to preview how the information will look in the alarm
message.

Use the parameters in the Ack pane to control how alarms are acknowledged.

Security field: Type a numeric value to specify which security level can acknowlege an
alarm message. Only those users with the specified level can respond.

Ack All trigger field: Type a tag to receive a value. When the tag changes value, it
indicates that all messages in the alarm object have been acknowleged.

Ack trigger field: Type a tag to receive a value. When the tag changes value, it indicates
that the message at the top of the alarm object has been acknowleged.

Confirm checkbox: Click (enable) this box to display a confirmation dialog when the user
tries to acknowledge a single alarm.

Enable comment (individual ack only) checkbox: Click (enable) this box to allow the
user to enter comments about the alarm, just after acknowledging it.

Use the parameters in the runtime dialog triggers pane to contol

Columns field: Type a tag to receive a value. When the tag changes value, it opens a

dialog allowing the user to customize the columns visible in the object.

Filters field: Type a tag to receive a value. When the tag changes value, it opens a dialog
allowing the user to filter the columns visible in the object.

Use the parameters in the Delete Message pane to control who can delete alarm messages from
the Alarm History:

Security: Use this field to specify which security level can delete alarm messages. Only
those users with the specified security level will be allowed to delete an alarm message.

Confirm: Click (enable) this box to require the user to confirm a message deletion before
IWS actually deletes the selected alarm message.

Print Trigger: When the tag configured in this field is toggled, the current state of the
Alarm/Event Control object is sent to the default printer.

PDF Trigger field: When the tag configured in this field is toggled, the current state of the
Alarm/Event Control object is saved as a PDF file at the location specified by PDF Filename.

PDF Filename field: Enter a complete file path and name where the PDF file is to be saved.
You can also enter a tag name using the {tag} syntax.

Note: PDF Trigger and PDF Filename are not supported in projects running on Windows
Embedded or Thin Client.

Multiline checkbox: When this option is checked, the print output or PDF will be formatted
according to the available column space, and the text within each cell will be wrapped so that all
of it is shown.

Total items field: Type an integer tag to see how many alarms remain after IWS filters the
alarm object using parameters specified on the Filters dialog.

Auto Format checkbox: When checked, decimal values in the Display Value, Previous and
Value columns will be formatted according to the virtual table created by the SetDecimalPoints()
function.

Selected tag field: Type a string tag to enable the end user to click on an alarm message to
see the name of the tag associated with that alarm event.

First Row Text field: Type a string tag. This tag will receive the text of all fields from the first
row of the Alarm/Event Control. The fields are tab delimited. Whenever the first row changes —
either due to a new Alarm/Event, or simply because the rows are reordered — the value of the
configured tag is updated.

Summary Changes field: Type an integer tag. This tag will receive a running count of the
number of changes in the Alarm/Event Control. For example, when a new Alarm occurs or when
an Alarm is acknowledged, the value of the configured tag will be incremented. Reordering the
rows is not counted as a change.

Click the Navigation Triggers button to open the following dialog:

Figure 7. Navigation Triggers dialog

You can make the on-screen Alarm Control object scroll up, scroll down, page up, page down,
go to home (beginning) of page, or go to end of page by configuring tags in the corresponding
fields. Whenever the values of the configred tags change, the Alarm Control object will navigate
that way. This is useful for adding navigation controls to the screen; for example, if you
configure the same tag to the Up field in this dialog and a Pushbutton object, then the Alarm
Control object will scroll up whenever the Pushbutton object is pressed.

When you are finished, click OK to close the Advanced dialog.

Parent topic: Data Logging and Display
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display >
Background Tasks >

Trend worksheet
The Trend folder enables you to configure history groups that store trend curves. You can use the
Trend worksheet to declare which tags must have their values stored on disk, and to create history
files for trend graphs. The project stores the samples in a binary history file (*.hst), and shows both
history and on-line samples in a screen trend graph.

The Trend worksheet is executed by the Background Task module (see Execution Tasks). It handles
the saving of trend data to the history, but it does not display that data to the operator; the Trend
Control screen object, available on the Graphics tab of the ribbon, must be created and configured in
a screen in order to display trend data.

To create a new Trend worksheet, do one of the following:

On the Insert tab of the ribbon, in the Task Worksheets group, click Trend;

Right-click the Trends folder in the Project Explorer, and then click Insert on the shortcut
menu; or

Click New on the Application menu, click the File tab, and then select Trend Worksheet.

To edit an existing Trend worksheet, double-click it in the Project Explorer.

Figure 1. Trend worksheet

The Trend worksheet is divided into two areas:

Header area (top section), which contains information for the whole group

Body area (bottom section), where you define each tag in the group. This section contains
several columns (only two are shown in the preceding figure).

Use the Header parameters on this worksheet as follows:

Description field: Type a description of the worksheet for documentation purposes.

Type combo box: Click the arrow button to select a trend history format from the list. The
available options are:

Proprietary

File Format: Binary

Default Path: …\project_name\Hst\GGYYDDMM.HST, where:

YY = Two last digits of the year

MM = Month

DD = Day

Note: IWS provides the HST2TXT.EXE and TXT2HST.EXE programs, which enable you

to convert trend history files from binary (.hst) to text (.txt) and vice versa. For
more information about these programs, see Converting Trend History Files from
Binary to Text and Converting Trend History Files from Text to Binary.

Database

Database Type: Chosen by the user

Default Table Name:TRENDGGG (GGG = Trend Worksheet Number; e.g., TREND001 for
the Trend Worksheet 001)

For more information about the structure of the database table that IWS uses to save
history files, see Database Interface.

CAUTION:

You can specify String tags in many fields of the Trend worksheet, to change
those values during runtime, but doing so may affect how those values are saved
in the trend history:

When the history format is Proprietary, the value of the String tag is
converted to a numerical value (if possible) and then saved to the history
file. If numeric conversion is not possible, then a value of 0 is saved.

When the history format is Database, the actual value of the String tag is
saved in the database.

Database Configuration: Opens the Database Configuration dialog, where you can enter the
requisite settings to link the project to an external SQL Relational Database for the purpose of
saving the trend history.

Save On Trigger checkbox and field: Click (enable) and type a tag name to save trend
samples when someone changes the specified tag. (Tag change can be an event from the
Scheduler.)

Save On Tag Change checkbox: Click (enable) to always save the trend sample when a value
change occurs in any of the tags from that group.

Advanced: Click to display the Trend Advanced Settings dialog. For information about
completing the fields in this window, see Batch History Configuration.

Use the Body parameters on this worksheet as follows:

Tag Name field: Type the tag name to be saved in the history file.

Dead Band field: Type a value to filter acceptable changes when Save on Tag Change is
used. For example, Dead Band has value = 5. If the tag value is 50 and changes to 52, the
system will not register this variation in the database, because it is less than 5. If the change is
equal to or greater than 5, the new value will be saved to the history file.

Field field: Name of the field in the database where the tag will be stored. If this field is left
blank, the name of the tag will be used as the tag name. Array tags and classes will have the
characters "[", "]" and "." replaced by "_". Examples:

Tag Name Default Field

MyArray[1] MyArray_1

MyClass.Member1 MyClass_Member1

MyClass[3].Member2 MyClass_3_Member2

Note: The Trend task can accept only up to 240 tags in a single worksheet. If you manually
configure more than 240 tags in the same worksheet, then the Trend task will generate an error
when you run the finished project.

See also:

Converting Trend History Files from Binary to Text

Converting Trend History Files From Text to Binary

Creating Batch History

Configuring a Default Database for All Task History

Converting Trend History Files from Binary to Text

Converting Trend History Files from Text to Binary

Creating Batch History

Setting the Trend Database

Parent topic: Data Logging and Display
Parent topic: Background Tasks
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend worksheet >

Converting Trend History Files from
Binary to Text
By default, IWS saves trend history files in a binary format (.hst). Because you may want to have
these files in .txt format, IWS provides the HST2TXT.EXE program to convert trend history files
from binary into text format.

To convert a file, use the following procedure:

From a DOS window, change directory (cd) to the IWS \Bin directory:1.

cd C:\Program Files\InduSoft Web Studio v7.0\Bin

At the command prompt, copy the Hst2txt.exe into the same directory where the .hst file is
located.

2.

At the command prompt, type Hst2txt.exe and specify the following parameters:

filename: Name of the trend history file to convert

[separator]: Data separator character (default is <TAB>)

[/e]: Extended functionality (convert data with more than 10 characters)

[/i:HH:MM:SS]: Start time in hours (HH), minutes (MM), and seconds (SS)

[/f:HH:MM:SS]: Finish time in hours (HH), minutes (MM), and seconds (SS)

[/m]: Include milliseconds in the Time column (Type 1 to print the milliseconds value in

the text file created from the .hst file.)

For example:

Hst2txt.exe 01952010.hst

The program creates a .hdr (header) file and the .txt file, which are both plain text files
that can be viewed using any text editor (for example, Notepad).

The .hdr file contains the name of the tags configured in the Trend Worksheet.

The .txt file contains the tag values saved in the history file.

3.

After the program converts the file, type Exit to close the DOS window.4.

Note: Alternatively, you can use the HST2TXT math script in a Math worksheet to convert binary
files into text format automatically without having to use a DOS window.

See also:

Converting Trend History Files From Text to Binary

Creating Batch History

Configuring a Default Database for All Task History

Parent topic: Trend worksheet
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend worksheet >

Converting Trend History Files from
Text to Binary
IWS provides the TXT2HST.EXE program to convert text files back into binary format.

To convert a file, use the following procedure:

From a DOS window, change directory (cd) to the IWS \Bin directory:1.

cd C:\Program Files\InduSoft Web Studio v7.0\Bin

At the command prompt, copy the Txt2hst.exe into the same directory where the .txt file is
located.

2.

At the command prompt, type Txt2hst.exe and specify the following parameters:

filename: Name of the ASCII file with history data to convert

[separator]: Data separator character (default is <TAB>)

[/e]: Extended functionality (data value with more than 10 characters)

[/i:HH:MM:SS]: Start time of data value in hours (HH), minutes (MM), and seconds (SS)

[/f:HH:MM:SS]: Finish time of data value in hours (HH), minutes (MM), and seconds (SS)

For example:

Txtt2hst.exe 02950201.txt

The program creates a .hdr (header) file and converts the .txt file into a .hst binary file.

3.

After the program converts the file, type Exit to close the DOS window.4.

Note: You cannot create a math script for the TXT2HST.EXE program and use it in a Math
worksheet to convert text files into binary format as you can for HST2TXT.EXE. The math script
shortcut is available for binary files only.

See also:

Converting Trend History Files from Binary to Text

Creating Batch History

Configuring a Default Database for All Task History

Parent topic: Trend worksheet
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend worksheet >

Creating Batch History

IWS provides powerful tools that enable the user to create and manage batch historical information.
The user is able to create batches by using the following formats:

Proprietary: When using the proprietary format, each batch will be stored on a different
historical file. The user can save historical data in both the normal historical file and batch files
at the same time (see Trend Folder for more information about these files).

Database: The historical data used for the batch is saved in the same table as the normal
historical data; an additional table called BatchHistory keeps registers with the information
about the batches. The list below describes the fields on the BatchHistory table:

Field Name Data Type Description

Group_Number Integer Trend group number. This is the number of the
worksheet that you are creating to specify the tags that
will be stored on your batch history.

Batch_Name String Name of the batch

Start_Time TimeStamp Date and Time that the batch was started.

End_Time TimeStamp Date and Time that the batch was finished

Pri_Table String Reserved

Sec_Table String Reserved

Description String Batch description

Deleted Boolean
0: Batch has not been deleted

1: Batch has been deleted

Tip: You can customize the name of the table and the name of the columns created in the
database by editing the project_name.APP file, as follows:

[Trend]

DefaultName=NewName

[TrendGroupPRI|SEC]

BatchHistory=TableName

For example:

[TREND001PRI]

BatchHistory=MyTableForPrimaryDB

[TREND001SEC]

BatchHistory=MyTableForSecondaryDB

[Trend]

Group_Number=Trend_Worksheet

Batch_Name=Load_Number

Batch History Configuration

When you add a Trend worksheet (see Trend folder) and click the Advanced button, the following
window will display:

Figure 1. Trend Advanced Settings

The Batch pane provides the following fields:

Start/Stop (input): Enter the tag that will start/stop your batches. When the tag in this field
is set to TRUE (different from 0), IWS will either start saving data to your batch file (if you are
using proprietary format), or add a new register to the BatchHistory table on your database,
indicating that a batch has been started. Note that historical data will be saved according to the
configuration in the fields Save Trigger and Save On Tag Change options on the Trend
Worksheet.

Name (input): This field represents the batch name; its meaning depends on the format
selected on the Trend Worksheet:

If you selected Proprietary in the Type field, the Name should comply with the format
[Path]<FileName>, where:

Path: An optional field. If the path is not specified, the batch history file will be
stored in the same path as the project_name.app file.

FileName: Name of the batch history file.

If you selected Databasein the Type field, the value in this field will be stored in the
Batch_Name field of the BatchHistory table.

Tip: You can enter tag names between curly brackets in this field (e.g.,
C:\MyBatches\{MyTagWithName}{MyTagWithNumber}.hst).

Delete (input): When the tag specified in this field changes its value, the batch will be deleted.
With the Proprietary format, the batch history file will be removed. With the Database
format, it will set the Delete field in the BatchHistory table to true, but the saved historical data
will remain. The Trend object only sees batches that have the delete field set to 0 (zero).

Existent (output): The tag entered on this field will receive the value 1 if the batch specified in
the Name field already exists; otherwise the tag will receive the value 0.

Description (output): This field is available only when using the Database format. When the
tag in the Start/Stop field changes to TRUE, the register that is added to the BatchHistory
table will display the string in this field.

Tip: You can enter tag names between curly brackets in this field (e.g., {MyTag})

Save data even if batch is not running: If this field is unchecked, the historical data will be
saved only when the tag in the Start/Stop field is TRUE.

Tip: The Batch Historical data can be displayed to the user in either Graphical or Table
format. See Trend Folder or Grid Object to display information in these formats.

Disk Space Control pane: The following options are available:

History Life Time (days) field: Specify how many days to keep the history file on the
disk. After the specified period, IWS automatically erases the file. Use this option only for
files based on a date.

Compress After (days) field: Specify how many days to keep the trend history file
(*.hst) on the disk before compressing the file. After the specified period, IWS
automatically compresses the file. Use this option only for files based on a date. This
option is not available for Windows Embedded target systems.

Disable All Data Saving field: Enter a tag to provide a temporary disable function. When the
tag value is TRUE (different from zero [0]), the trend task stops recording data for this
worksheet.

See also:

Converting Trend History Files from Binary to Text

Converting Trend History Files From Text to Binary

Configuring a Default Database for All Task History

Parent topic: Trend worksheet
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend worksheet >

Setting the Trend Database

Click the Tasks tab, and right-click the Trend folder. Double-click the applicable Trend.1.

Click the arrow to the right of the History Format field. Select Database.2.

Click the Database Configuration button. This opens the Database Configuration dialog. Enter
the applicable data in this window. Click OK when you are finished.

3.

Click the File drop-down menu, then click Save to save the changes to the Trend.4.

Trend Table on a Relational Database

The fields saved in the History Trend are described in the following table:

Field Name Data Type Remarks

Time_Stamp TimeStamp TimeStamp (Date and Time) when the data was
saved.

<TagName> Integer or Real (depending on
the tag type)

IWS will create one field (column) in the
database for each tag configured in the Trend
worksheet.

Parent topic: Trend worksheet
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display >

Trend Control object
The Trend Control object displays data points (values) from different data sources in a graphic
format.

The main features provided by the Trend Control object are:

Display of multiple pens simultaneously

Support for different Data Sources, such as Tag, Batch, Database and Text File

Capability to generate X/Y graphs from the configured data sources (please refer to Appendix A
for an example of an X/Y chart).

Simultaneous display of an unlimited number of data points. This feature might be limited by
the hardware used since available memory and performance will vary.

Built-in toolbar, which provides interfaces for the user to interact with the Trend Control object
during runtime

Built-in legend, which displays the main information associated to each pen linked to the object

Zooming and auto-scaling tools

Horizontal and vertical orientation

Object Properties: Trend Control dialog
The Object Properties: Trend Control dialog is used to configure the basic properties of a Trend
Control screen object.

Runtime Interface

Using the Data Source Text File

Using the Data Source Database

Parent topic: Data Logging and Display
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend Control object >

Object Properties: Trend Control
dialog
The Object Properties: Trend Control dialog is used to configure the basic properties of a Trend
Control screen object.

Accessing the dialog

To access the Object Properties dialog for a specific screen object, do one of the following:

Select the screen object, and then on the Graphics tab, in the Editing group, click
Properties;

Select the screen object, and then press Alt+Enter;

Right-click the screen object, and then click Properties on the shortcut menu; or

Double-click the screen object.

The dialog in detail

Figure 1. Object Properties: Trend Control dialog

In addition to the elements that are common to all Object Properties dialogs, the Object Properties:
Trend Control dialog contains the following elements:

Area / Element Name Description

Area / Element Name Description

Border Type Sets the type of border around the graph area of the trend
control. (There are no borders around the trend control's legend
or toolbar.)

Color Sets the color of the border, if the border type is Solid. For more
information, see Selecting colors and fill effects.

Background No Fill / Fill Enables the background fill for the graph area of the trend
control. (There are no backgrounds for the trend control's legend
or toolbar.) If the fill is not enabled, then the graph is transparent
to whatever other screen objects are behind the trend control.

Color Sets the color and fill effect of the background fill, if it is enabled.
For more information, see Selecting colors and fill effects.

Points Opens the, which allows configuration of the trend control's data
points (or pens). For more information, see Trend Control: Points
dialog.

Axes Allows configuration of the trend control's X and Y axes, as well
as its horizontal or vertical orientation. For more information, see
Trend Control: Axes dialog.

Toolbar Allows configuration of the user toolbar that is displayed above
the trend control. For more information, see Trend Control:
Toolbar dialog.

Data Sources Allows configuration of multiple data sources for the trend. For
more information, see Trend Control: Data Sources dialog.

Legend Allows configuration of the legend that is displayed below the
trend control. For more information, see Trend Control: Legend
dialog.

Advanced Allows configuration of the trend control's advanced properties,
such as runtime options and tag triggers. For more information,
see Trend Control: Advanced dialog.

Although the Trend Control object supports flexible configurations to meet the specific needs of your
project, most of the settings are set by defaults based on the most common interfaces. Therefore, in
many cases, you will only configure data points (displayed during runtime), which can be done easily
by clicking the Points button from the Object Properties window.

Points dialog
The Points dialog is used to configure the data points for a Trend Control screen object. The
value of each data point is represented as a pen in the trend display. You can dynamically
change which data points are visible during runtime, regardless of how many data points are
associated with the screen object.

Axes dialog

Border Type Sets the type of border around the graph area of the trend
control. (There are no borders around the trend control's legend
or toolbar.)

Color Sets the color of the border, if the border type is Solid. For more
information, see Selecting colors and fill effects.

Background No Fill / Fill Enables the background fill for the graph area of the trend
control. (There are no backgrounds for the trend control's legend
or toolbar.) If the fill is not enabled, then the graph is transparent
to whatever other screen objects are behind the trend control.

Color Sets the color and fill effect of the background fill, if it is enabled.
For more information, see Selecting colors and fill effects.

Points Opens the, which allows configuration of the trend control's data
points (or pens). For more information, see Trend Control: Points
dialog.

Axes Allows configuration of the trend control's X and Y axes, as well
as its horizontal or vertical orientation. For more information, see
Trend Control: Axes dialog.

Toolbar Allows configuration of the user toolbar that is displayed above
the trend control. For more information, see Trend Control:
Toolbar dialog.

Data Sources Allows configuration of multiple data sources for the trend. For
more information, see Trend Control: Data Sources dialog.

Legend Allows configuration of the legend that is displayed below the
trend control. For more information, see Trend Control: Legend
dialog.

Advanced Allows configuration of the trend control's advanced properties,
such as runtime options and tag triggers. For more information,
see Trend Control: Advanced dialog.

Although the Trend Control object supports flexible configurations to meet the specific needs of your
project, most of the settings are set by defaults based on the most common interfaces. Therefore, in
many cases, you will only configure data points (displayed during runtime), which can be done easily
by clicking the Points button from the Object Properties window.

Points dialog
The Points dialog is used to configure the data points for a Trend Control screen object. The
value of each data point is represented as a pen in the trend display. You can dynamically
change which data points are visible during runtime, regardless of how many data points are
associated with the screen object.

Axes dialog

Toolbar dialog
The Toolbar dialog is used to customize the toolbar on the Trend Control screen object.

Data Sources dialog

Legend dialog

Advanced dialog

Parent topic: Trend Control object
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend Control object > Object Properties: Trend Control dialog >

Points dialog
The Points dialog is used to configure the data points for a Trend Control screen object. The value of
each data point is represented as a pen in the trend display. You can dynamically change which data
points are visible during runtime, regardless of how many data points are associated with the screen
object.

Accessing the dialog

To access the Points dialog for a specific Trend Control screen object, first access the Object
Properties dialog for that screen object and then click Points.

The dialog in detail

Figure 1. Points dialog

The following table summarizes the properties of each data point:

Column Name Description

Point A unique ID number for the point, which is assigned automatically when the point
is created in this interface.

Label The label associated with the Point can be displayed on the Legend, during
runtime, providing a short reference to the user for each Point.

Color The color of the pen usedColor of the pen used to draw the values of the Point on
the Trend Control object.

Data Source The data source for this point. Tag is available by default, but all other sources
must be configured in the Data Sources dialog.

Tag/Field The meaning of this parameter depends on the Data Source type associated with
the data point:

Tag: Type the name of the tag with values to display. If the tag is configured
in the Trend task, the history data is automatically retrieved; otherwise, only
the online values are displayed.

Column Name Description

Batch: Type the name of the tag with values to be retrieved from the Batch
History file generated by the Trend Task, and displayed on the object.

Database: Type the name of the field (column) in the SQL Relational
Database that holds the data Point values.

Text File: Type the number of the column that holds the Point values. The
number 0 refers to the first column, 1 refers to the second column, and so
on.

Min / Max The scale of the Y-axis for this point. This overrides the default scale that is set in
the Axes dialog.

Note: The Min and Max properties can hold real numeric values up to six decimal
places. If you need more precision than that, then you must configure the Min and
Max properties with Real tags and then store the values in those tags.

Style The line and marker styles for this point; click the button to open the Pen Style
dialog.

Options Additional options for this point; click the button to open the Options dialog.

Hide Tag trigger — when the value is TRUE, the data point is hidden in the trend
display.

Pen Style dialog
This dialog allows you to configure the style of the pen used to draw the data Point values on
the object during runtime.

Options dialog

Parent topic: Object Properties: Trend Control dialog

Related reference
Axes dialog
Toolbar dialog
Data Sources dialog
Legend dialog
Advanced dialog

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Batch: Type the name of the tag with values to be retrieved from the Batch
History file generated by the Trend Task, and displayed on the object.

Database: Type the name of the field (column) in the SQL Relational
Database that holds the data Point values.

Text File: Type the number of the column that holds the Point values. The
number 0 refers to the first column, 1 refers to the second column, and so
on.

Min / Max The scale of the Y-axis for this point. This overrides the default scale that is set in
the Axes dialog.

Note: The Min and Max properties can hold real numeric values up to six decimal
places. If you need more precision than that, then you must configure the Min and
Max properties with Real tags and then store the values in those tags.

Style The line and marker styles for this point; click the button to open the Pen Style
dialog.

Options Additional options for this point; click the button to open the Options dialog.

Hide Tag trigger — when the value is TRUE, the data point is hidden in the trend
display.

Pen Style dialog
This dialog allows you to configure the style of the pen used to draw the data Point values on
the object during runtime.

Options dialog

Parent topic: Object Properties: Trend Control dialog

Related reference
Axes dialog
Toolbar dialog
Data Sources dialog
Legend dialog
Advanced dialog

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend Control object > Object Properties: Trend Control dialog > Points
dialog >

Pen Style dialog
This dialog allows you to configure the style of the pen used to draw the data Point values on the
object during runtime.

Accessing the dialog

To access the Pen Style dialog for a specific data point, first access the Points dialog and then click
the Style column for that data point.

Also, it can be launched during runtime, allowing the user to customize these settings on-the-fly.

The dialog in detail

Figure 1. Pen Style dialog

The Pen Style dialog includes the following elements:

Table 1. Elements in the Pen Style dialog

Area / Element Name Description

Line Settings State You have the option of defining a Hi Limit and a Lo Limit for each
data Point, with the Options dialog. The Pen Style Dialog allows
you to configure different settings for the pen (e.g., color), both
when its values are within the limits (Normal State) and not
within the limits (Out of Limits state).

Use Normal
Settings

Available only for the Out of Limits state. When checked, the
pen will always be displayed with the settings for the Normal
state, even if the data point values are not within the limits
configured for it.

Type The type of line (e.g., solid, dashed, dotted) that connects the
data points.

Weight The weight of the line that connects the data points.

Expansion The algorithm used to connect the points, as follows:

: Consecutive points are directly connected to each
other by an analog line. This option is suitable for numerical
values.

: Consecutive points are connected only through
horizontal or vertical steps (depending on the orientation of
the trend display). This option is suitable for Boolean values.

Marker The shape used to mark each data point. If no shape is selected,
then only the connecting line between points is displayed.

Marker size The size of the data point marker.

Color The color of the trend line and data point markers.

Fill Fill Type The type of fill between the trend line and the number line.

Pattern File The graphic file used to fill the trend area. Available only Fill Type
is set to Custom Pattern.

Click the browse button to open a Windows file browser and then
select the desired graphics file. The file should be located in your
project folder.

See below for an example of trends with custom fill patterns.

Color The color used to fill the trend area. Available only when Fill Type
is set to Solid Color.

Fill
Transparency
(%)

The transparency level of the fill. (If the fill is transparent, then
other trends behind it can be seen through it, making the entire
graph easier to read.) Available for both Custom Pattern and
Solid Color.

Note: When viewing your project on either a Windows Embedded device or a Thin Client (any
OS), the Pen Style dialog — available during runtime — allows the user to change the pen color

only.

Figure 2. Trends with custom fill patterns

Parent topic: Points dialog
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend Control object > Object Properties: Trend Control dialog > Points
dialog >

Options dialog

Accessing the dialog

To access the Pen Style dialog for a specific data point, first access the Points dialog and then click
the Options column for that data point.

The dialog in detail

Figure 1. Options dialog

The Options dialog includes the following elements:

Element
Name

Description

Description This text can be displayed in the legend, providing a short description about the
data point, during runtime. When tags are used, the default description is the one
configured for the tag.

Element
Name

Description

Eng. Unit This text can be displayed in the legend, providing the engineering unit (i.e., the
unit of measurement) associated with the data point, during runtime. When tags
are used, the default units are the ones configured for the tag.

Lo Limit When the data point value is below this limit, its pen can be displayed with a
different style (e.g., color) during runtime. See Pen Style dialog for further
information. When tags are used, the default Low Limit is the Low Alarm value
configured for the tag.

Hi Limit When the data point value is above this limit, its pen can be displayed with a
different style (e.g., color) during runtime. See Pen Style dialog for further
information. When tags are used, the default High Limit is the High Alarm value
configured for the tag.

Hide Scale You can configure a tag in this field to control the visibility of the scale (Y axis)
associated with this pen during runtime by changing the value of this tag (0=Show
; 1=Hide).

Break
Interval

Maximum interval between two consecutive points. If the time between two
consecutive samples is higher than this number (in seconds), the Trend Control
assumes that there was no data collection in this period and does not draw a line
linking both samples. When the X Axis is configured as numeric, the value on this
field represents a numeric scalar value. If the X Axis is configured as date/time,
the value for this field is given in seconds.

This field has some special values:

-1 : Do not connect the points.

-2 : Connect only points in ascending order.

X-Axis Offset Off-set for this data point from the X-Axis scale configured for the object. This
option is useful when you want to display data from two or more data points using
a different X scale (period of time/value) for each one, so you can compare them.
When the X Axis is configured as numeric, the value on this field represents a
numeric scalar value. If the X Axis is configured as date/time, the value for this
field is given in seconds.

Cursor Value You can configure a tag in this field. During runtime, the trend control updates the
value of this tag with the value of the intersection between the data point pen and
the vertical cursor (if any).

Y-Axis Log
Base

Type a tag name or numeric value. When the value is 1, the Y-axis of the trend is
displayed on a logarithmic (e.g., 1, 10, 100, 1000) rather than linear scale.

Annotation ID N/A

Style Modifier N/A

Parent topic: Points dialog
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Eng. Unit This text can be displayed in the legend, providing the engineering unit (i.e., the
unit of measurement) associated with the data point, during runtime. When tags
are used, the default units are the ones configured for the tag.

Lo Limit When the data point value is below this limit, its pen can be displayed with a
different style (e.g., color) during runtime. See Pen Style dialog for further
information. When tags are used, the default Low Limit is the Low Alarm value
configured for the tag.

Hi Limit When the data point value is above this limit, its pen can be displayed with a
different style (e.g., color) during runtime. See Pen Style dialog for further
information. When tags are used, the default High Limit is the High Alarm value
configured for the tag.

Hide Scale You can configure a tag in this field to control the visibility of the scale (Y axis)
associated with this pen during runtime by changing the value of this tag (0=Show
; 1=Hide).

Break
Interval

Maximum interval between two consecutive points. If the time between two
consecutive samples is higher than this number (in seconds), the Trend Control
assumes that there was no data collection in this period and does not draw a line
linking both samples. When the X Axis is configured as numeric, the value on this
field represents a numeric scalar value. If the X Axis is configured as date/time,
the value for this field is given in seconds.

This field has some special values:

-1 : Do not connect the points.

-2 : Connect only points in ascending order.

X-Axis Offset Off-set for this data point from the X-Axis scale configured for the object. This
option is useful when you want to display data from two or more data points using
a different X scale (period of time/value) for each one, so you can compare them.
When the X Axis is configured as numeric, the value on this field represents a
numeric scalar value. If the X Axis is configured as date/time, the value for this
field is given in seconds.

Cursor Value You can configure a tag in this field. During runtime, the trend control updates the
value of this tag with the value of the intersection between the data point pen and
the vertical cursor (if any).

Y-Axis Log
Base

Type a tag name or numeric value. When the value is 1, the Y-axis of the trend is
displayed on a logarithmic (e.g., 1, 10, 100, 1000) rather than linear scale.

Annotation ID N/A

Style Modifier N/A

Parent topic: Points dialog
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend Control object > Object Properties: Trend Control dialog >

Axes dialog

Accessing the dialog

To access the Axes dialog for a specific Trend Control screen object, first access the Object Properties
dialog for that screen object and then click Axes.

The dialog in detail

Figure 1. Axes dialog

The Axes dialog contains the following elements:

Area / Element Name Description

X-axis Data Type Date/Time

Numeric

Scale Format

Period (when
Data Type is
Date/Time)

Type
Auto: When this option is selected, the
Trend Control object works with Start
Date/Time when is it triggered to Pause

Area / Element Name Description Date/Time when is it triggered to Pause
Mode, and it works with Time Before
Now when it is triggered to Play Mode.

Start Date/Time: When this option is
selected, the value of the tag configured in
the Time field defines the starting
Date/Time for the data displayed on the
object.

Time Before Now: When this option is
selected, the value of the tag configured in
the Time field defines the amount of time
before the current Date/Time, which will be
used as the starting Date/Time for the data
displayed on the object.

Duration Defines the Period of data displayed on the
object. You can configure a string tag in this
field, so you can change the duration
dynamically during runtime by changing the
value of this tag. The format of the value
supported by this property is HH:MM:SS. For
example, 36:00:00 (thirty six hours).

Time This field is optional. The value of the tag
configured in this field represents a period of
time, rather than a specific date or time. The
meaning of this value depends on the option set
for the Type property.

When the Type is set as Start Date/Time,
the value of the tag configured in this field
must comply with the format Date Time.
For example, 02/10/2005 18:30:00.

When the Type is set as Time Before Now,
the value of the tag configured in this field
must comply with one of the following
formats:

Time (string value). For example, 48:00:00
(forty eight hours).

1.

Number of hours (real value). For example,
2.5 (two hours and thirty minutes).

2.

If the Time field is left blank (or if the tag
configured in this field has the value 0), the
object displays data up to the current
Date/Time.

Period (when
Data Type is
Numeric)

Min / Max Minimum and maximum values displayed on the
X-axis.

The Min and Max properties can hold real

Date/Time when is it triggered to Pause
Mode, and it works with Time Before
Now when it is triggered to Play Mode.

Start Date/Time: When this option is
selected, the value of the tag configured in
the Time field defines the starting
Date/Time for the data displayed on the
object.

Time Before Now: When this option is
selected, the value of the tag configured in
the Time field defines the amount of time
before the current Date/Time, which will be
used as the starting Date/Time for the data
displayed on the object.

Duration Defines the Period of data displayed on the
object. You can configure a string tag in this
field, so you can change the duration
dynamically during runtime by changing the
value of this tag. The format of the value
supported by this property is HH:MM:SS. For
example, 36:00:00 (thirty six hours).

Time This field is optional. The value of the tag
configured in this field represents a period of
time, rather than a specific date or time. The
meaning of this value depends on the option set
for the Type property.

When the Type is set as Start Date/Time,
the value of the tag configured in this field
must comply with the format Date Time.
For example, 02/10/2005 18:30:00.

When the Type is set as Time Before Now,
the value of the tag configured in this field
must comply with one of the following
formats:

Time (string value). For example, 48:00:00
(forty eight hours).

1.

Number of hours (real value). For example,
2.5 (two hours and thirty minutes).

2.

If the Time field is left blank (or if the tag
configured in this field has the value 0), the
object displays data up to the current
Date/Time.

Period (when
Data Type is
Numeric)

Min / Max Minimum and maximum values displayed on the
X-axis.

The Min and Max properties can hold real

Area / Element Name Description The Min and Max properties can hold real
numeric values up to six decimal places. If you
need more precision than that, then you must
configure the Min and Max properties with Real
tags and then store the values in those tags.

Eng. Units Engineering Unit (e.g., Kg, BTU, psi) that is
associated with the X-axis during runtime.

Grid Divisions You can configure the number of divisions
(vertical or horizontal lines) drawn on the object
for the X and/or Y-axis respectively, as well as
the color of these lines.

Color

 Time Bar When checked, the Time bar is displayed below
the X-axis during runtime; otherwise, it is
hidden. The time bar is a standard interface that
can be used by the operator to change the X-
axis scale during runtime.

Scroll Bar When checked, the Scroll bar is displayed below
the X-axis during runtime; otherwise, it is
hidden. The time bar is a standard interface that
can be used by the operator to navigate through
the X-axis scale during runtime. Optionally, you
can configure a tag in the Scroll bar field, which
defines the period for the scroll bar. If this field
is left empty, the period is equal to the current
value for Duration of the X-axis.

Cursor The cursor is an optional ruler orthogonal to the
X-axis, which can be used during runtime to
obtain the value of any pen at a specific point
(intersection of the pen with the cursor). When
you click this button, the Cursor dialog launches,
where you can configure the settings for the
optional vertical cursor as follows:

Positon Defines the position of the X-axis, as well as its
direction and orientation, as follows:

Y-axis Grid Divisions You can configure the number of divisions
(vertical or horizontal lines) drawn on the object
for the X and/or Y-axis respectively, as well as
the color of these lines.

Color

Scale Min / Max Default minimum and maximum values
displayed in the Y-axis. Used when more than
one pen shares the same scale (Multiple
Sections disabled), and/or for the points whose
Min and Max fields are not configured (left
blank).

The Min and Max properties can hold real
numeric values up to six decimal places. If you
need more precision than that, then you must
configure the Min and Max properties with Real
tags and then store the values in those tags.

Eng. Units Engineering Unit (e.g., Kg, BTU, psi) that is
associated with the X-axis during runtime.

Grid Divisions You can configure the number of divisions
(vertical or horizontal lines) drawn on the object
for the X and/or Y-axis respectively, as well as
the color of these lines.

Color

 Time Bar When checked, the Time bar is displayed below
the X-axis during runtime; otherwise, it is
hidden. The time bar is a standard interface that
can be used by the operator to change the X-
axis scale during runtime.

Scroll Bar When checked, the Scroll bar is displayed below
the X-axis during runtime; otherwise, it is
hidden. The time bar is a standard interface that
can be used by the operator to navigate through
the X-axis scale during runtime. Optionally, you
can configure a tag in the Scroll bar field, which
defines the period for the scroll bar. If this field
is left empty, the period is equal to the current
value for Duration of the X-axis.

Cursor The cursor is an optional ruler orthogonal to the
X-axis, which can be used during runtime to
obtain the value of any pen at a specific point
(intersection of the pen with the cursor). When
you click this button, the Cursor dialog launches,
where you can configure the settings for the
optional vertical cursor as follows:

Positon Defines the position of the X-axis, as well as its
direction and orientation, as follows:

Y-axis Grid Divisions You can configure the number of divisions
(vertical or horizontal lines) drawn on the object
for the X and/or Y-axis respectively, as well as
the color of these lines.

Color

Scale Min / Max Default minimum and maximum values
displayed in the Y-axis. Used when more than
one pen shares the same scale (Multiple
Sections disabled), and/or for the points whose
Min and Max fields are not configured (left
blank).

Area / Element Name Description

Multiple
Selections

When checked, the Y scale is divided
automatically into one section for each pen;
otherwise, all pens share the same Y scale.

Format Launches a dialog for configuring the format of
the labels displayed by the Y-axis.

Note: The tags configured in the Period/Range fields are automatically updated when the user
changes the X scale dynamically during runtime, using the Time bar embedded in the object.

Data Type: The X-axis can display either Date/Time values or numeric values, according to this
setting.

Data Type Scale Format

Date/Time

Numeric

Note: The number of decimal points for the X or Y scale (Decimals) can be configured with
a tag. Therefore, this setting can be modified dynamically during runtime.

Cursor: The cursor is an optional ruler orthogonal to the X-axis, which can be used during
runtime to obtain the value of any pen at a specific point (intersection of the pen with the
cursor). When you click this button, the Cursor dialog launches, where you can configure the
settings for the optional vertical cursor as follows:

Figure 2. Cursor Dialog

Multiple
Selections

When checked, the Y scale is divided
automatically into one section for each pen;
otherwise, all pens share the same Y scale.

Format Launches a dialog for configuring the format of
the labels displayed by the Y-axis.

Note: The tags configured in the Period/Range fields are automatically updated when the user
changes the X scale dynamically during runtime, using the Time bar embedded in the object.

Data Type: The X-axis can display either Date/Time values or numeric values, according to this
setting.

Data Type Scale Format

Date/Time

Numeric

Note: The number of decimal points for the X or Y scale (Decimals) can be configured with
a tag. Therefore, this setting can be modified dynamically during runtime.

Cursor: The cursor is an optional ruler orthogonal to the X-axis, which can be used during
runtime to obtain the value of any pen at a specific point (intersection of the pen with the
cursor). When you click this button, the Cursor dialog launches, where you can configure the
settings for the optional vertical cursor as follows:

Figure 2. Cursor Dialog

Property Description

Enable When checked, the vertical cursor is visible during runtime.

Color Color of the line drawn for the cursor.

Position (0-100) You can configure a numeric tag in this field, which is proportional to the
position of the cursor on the X-axis, from 0 to 100%. When this value is
changed, the position of the cursor is automatically modified.

Value Output You can configure a string tag in this field that returns the value of the X-
axis in which the cursor is currently positioned.

Position: Defines the position of the X-axis, as well as its direction and orientation, as follows:

Figure 3. Position Dialog

Property Description

Placement Side of the trend control on which the X-axis will be placed.

Direction Direction of the X-axis.

Orientation Orientation of the X-axis.

Vertical Label
Orientation

The orientation of the text labels on the vertical axis, regardless of whether
the vertical axis is X or Y.

Parent topic: Object Properties: Trend Control dialog

Related reference
Points dialog
Toolbar dialog
Data Sources dialog

Legend dialog
Advanced dialog

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend Control object > Object Properties: Trend Control dialog >

Toolbar dialog
The Toolbar dialog is used to customize the toolbar on the Trend Control screen object.

Accessing the dialog

To access the Toolbar dialog for a specific Trend Control screen object, first access the Object
Properties dialog for that screen object and then click Toolbar.

The dialog in detail

Figure 1. Toolbar dialog

The Show toolbar option controls whether the entire toolbar is shown during runtime. You may hide
the toolbar to save space or to prevent users from changing the trend display.

Also, each command/tool in the toolbar has the following properties:

Column Name Description

Command The name of the command/tool. For more information about each tool, see

Show The option to show the tool on the toolbar.

Activation
Tag

An optional tag trigger — when the value of the tag changes, the command is
triggered as if the tool was clicked.

This can be used to script changes in the trend display, You can configure a tag in
this field (optional). When the tag changes value, it triggers the respective
command. This option is useful when you want to create customized interfaces to

Column Name Description command. This option is useful when you want to create customized interfaces to
trigger the commands, instead of (or redundant with) the embedded toolbar.

Tooltip The tooltip that is displayed when the mouse cursor hovers over the tool.

Parent topic: Object Properties: Trend Control dialog

Related reference
Points dialog
Axes dialog
Data Sources dialog
Legend dialog
Advanced dialog

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

command. This option is useful when you want to create customized interfaces to
trigger the commands, instead of (or redundant with) the embedded toolbar.

Tooltip The tooltip that is displayed when the mouse cursor hovers over the tool.

Parent topic: Object Properties: Trend Control dialog

Related reference
Points dialog
Axes dialog
Data Sources dialog
Legend dialog
Advanced dialog

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend Control object > Object Properties: Trend Control dialog >

Data Sources dialog

Accessing the dialog

To access the Data Sources dialog for a specific Trend Control screen object, first access the Object
Properties dialog for that screen object and then click Data Sources.

The dialog in detail

Figure 1. Data Sources dialog

The data source defines the location of the values from the data point(s) associated with it. Many
points can share the same data source — you do not need to create one data source for each data
point.

The data source tag is available by default to the Trend Control object. You can add additional data
sources with the New button. The name you enter will be used as an alias to link the data points to
this new data source.

The other fields in this dialog allow you to edit the data source settings:

Source Type: Select the source type of the location of the data point values.

X-Axis: Enter the name of the field (column) from the data source that holds the X axis data.

Max. Buffer: The maximum amount of data (in bytes) that will be held in runtime memory.

Load Progress: The tag in this field will receive a real value (0-100) that represents the
percentage of the Data Source load progress.

Sort: This option is useful for plotting data from a Text file. When enabled (checked), it sorts

the data and shows the Cursor column value until the Max. Buffer is filled. When disabled
(unchecked), the data are not sorted and the Cursor column value is not shown.

Keep Open: This option keeps the data source open as long as the screen that contains the
Trend Control object is open. This improves the performance of the runtime project, but keeping
the data source open may cause other problems like database connection errors (when Source
Type is Database) and file write conflicts (when Source Type is Batch or Text File). To close
the data source after the data has been loaded, clear (uncheck) this option.

Data Source Settings: Click to define the settings for the selected Source Type.

The following table summarizes the settings for each Source Type:

Data Source
Type

Description X-Axis field Data Source Settings

Batch Batch generated
by the Trend task
of IWS

Disabled. The X-
Axis data will be
retrieved
automatically on
the correct
position from the
proprietary Batch
file generated by
IWS. Enter the data point values in Batch

Name for their retrieval. You can
configure a tag between curly brackets
in this field to change this setting
dynamically during runtime.

Database SQL Relational
Database

Field name that
contains the X axis
data

Configure the settings to link this Data
Source to the SQL Relational Database
that holds the data point values. See
Database Configuration Dialog Window
for further information about this
dialog interface. Please refer to

Data Source
Type

Description X-Axis field Data Source Settings

dialog interface. Please refer to
Appendix B for an example of
configuring databases.

Text File Text file (e.g., CSV
file) with data
point values
separated by a
specific delimiter

Number of the
column that holds
the X-Axis data.
The number 0
refers to the first
column, 1 refers
to the second
column, and so
on.

Enter the name of the text file that
holds the data points. The default path
is the current project folder. You can
configure a tag between curly brackets
in this field to change this setting
dynamically during runtime.

You can also choose one or more
delimiters for the data stored in the
text file. The value of each row is
written in the text file between two
delimiters. When using a comma as a
delimiter, the grid object is able to
read data from CSV files. You can even
choose a custom delimiter by checking
the Other option. Please refer to
Appendix A for an example of
configuring text files.

Parent topic: Object Properties: Trend Control dialog

Related reference
Points dialog
Axes dialog
Toolbar dialog
Legend dialog
Advanced dialog

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

dialog interface. Please refer to
Appendix B for an example of
configuring databases.

Text File Text file (e.g., CSV
file) with data
point values
separated by a
specific delimiter

Number of the
column that holds
the X-Axis data.
The number 0
refers to the first
column, 1 refers
to the second
column, and so
on.

Enter the name of the text file that
holds the data points. The default path
is the current project folder. You can
configure a tag between curly brackets
in this field to change this setting
dynamically during runtime.

You can also choose one or more
delimiters for the data stored in the
text file. The value of each row is
written in the text file between two
delimiters. When using a comma as a
delimiter, the grid object is able to
read data from CSV files. You can even
choose a custom delimiter by checking
the Other option. Please refer to
Appendix A for an example of
configuring text files.

Parent topic: Object Properties: Trend Control dialog

Related reference
Points dialog
Axes dialog
Toolbar dialog
Legend dialog
Advanced dialog

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend Control object > Object Properties: Trend Control dialog >

Legend dialog

Accessing the dialog

To access the Legend dialog for a specific Trend Control screen object, first access the Object
Properties dialog for that screen object and then click Legend.

The dialog in detail

Figure 1. Legend dialog

The Legend dialog contains the following elements:

Show: When checked, the embedded legend is displayed during runtime. This interface
provides useful information associated with the pens currently linked to the object.

Available / Visible: The items in the Visible box are displayed in the legend during runtime.
You can add items to and remove them from the Visible box using the » and « buttons
respectively. Moreover, you can use the Move Up and Move Down buttons to change the
order in which the items are displayed in the legend during runtime.

The following table lists the available legend items:

Item Legend Icon Description

Eng Units The tag/pen's Engineering Units.

Min The tag/pen's minimum possible value.

Max The tag/pen's maximum possible value.

Selection Press button to select another tag for this pen.

Remove Press button to completely remove this pen from the
legend and the Trend chart.

Hide Select (check) option to hide this pen in the Trend
chart.

Pen Style Press button to change the pen's line style, weight,
color, markers, and so on.

Scale Select (check) option to show the pen's scale on the
Trend chart.

Description Description of the tag/pen.

Current The current value of the tag configured to the pen.

Cursor The value of the pen where it intersects the cursor line.

Properties: Allows you to configure the properties for the field highlighted in the Available or
Visible box:

Property Description

Label Label for the field displayed during runtime

Width Width for the field (in pixels) during runtime.

Align Alignment of the data displayed in the field.

Available during runtime When this option is checked, the user can show or hide
the field during runtime.

Maximum size: Defines the size of the legend in terms of number of rows. For instance, the
user might have 8 points being displayed in the trend object, if the maximum size is set to two,
the legend will have a scroll bar to allow the user to scroll to the other points.

Number of items: Number of points (default) displayed on the legend. You can allow the user
to add/remove points during runtime regardless of the value in this field.

Selected Item: You can configure a numeric tag in this field. The object writes in this tag the
number of the selected row. In addition, you can select different rows by writing their values in
this tag.

Fonts: Sets the font for the text displayed in the legend.

Parent topic: Object Properties: Trend Control dialog

Related reference

Points dialog
Axes dialog
Toolbar dialog
Data Sources dialog
Advanced dialog

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend Control object > Object Properties: Trend Control dialog >

Advanced dialog

Accessing the dialog

To access the Advanced dialog for a specific Trend Control screen object, first access the Object
Properties dialog for that screen object and then click Advanced.

The dialog in detail

Figure 1. Advanced dialog

The Advanced dialog contains the following elements:

Area / Element Name Description

Run Mode
Options

Update
trigger

When the tag configured in this field changes value, the trend
object is updated (refreshed).

Update
interval

When the update trigger is issued and the X Axis if of type
numeric, the value on this field will be added to the minimum and
maximum values of the X Axis.

Area / Element Name Description

Load
indicator

Type the name of a project tag. While the trend control is loading
external data, the tag receives a value of 1, and when the trend
control has finished loading the data, the tag receives a value of
0.

Move to
current time
on run

When this box is checked, X axis shifts to the current time
automatically when the object is triggered to Play mode, during
runtime.

Retrieve
bounding
samples

When this box is checked, the object retrieve the data outbound
the object (first points only). Uncheck this option can improve the
performance, since the points outbound the object will not be
retrieved from the history. On the other hand, the object will not
draw lines linking the first and last samples to the extremities of
the object.

Run-Time
Config

Save trigger The settings of the Trend object modified during runtime can be
saved in temporary files. This option can be used to:

Keep the settings consistent, so when the user closes the
screen and opens it again, or re-starts your project, the
settings configured during runtime are not lost.

Create standard settings for different scenarios and load the
appropriate configuration during the runtime, based on a
pre-defined condition or based on the user-selection.

When the tag configured in this field changes value (e.g.,
toggles), the current settings of the Trend object are saved in the
temporary file. This command is not available for the Thin Client.

Load trigger When the tag configured in this field changes value (e.g.,
toggles), the settings from the temporary file are loaded and
applied to the Trend object during runtime.

Note: After the screen where the Trend object is configured is
saved, the settings are not automatically loaded from the
temporary file when the screen is opened again, unless the Load
trigger command is executed before the screen is closed.

File Name If this field is left blank, the temporary file is saved in your
project's Web sub-folder with the syntax

ScreenNameObjectIDTrendControl.stmp (e.g.,
MyScreen10TrendControl.stmp). The Thin Client station

saves/loads the temporary file in the standard Temp directory of
the operating system (e.g., \Documents and

Settings\CurrentUser\Local Settings\Temp).

You can configure a customized file name for the temporary file in
this field or even configure a string tag between curly brackets,
so the user can change the name of the configuration file
dynamically during runtime by changing the value of this tag. If
you do not specify any path, the file is saved in your project's Web

Load
indicator

Type the name of a project tag. While the trend control is loading
external data, the tag receives a value of 1, and when the trend
control has finished loading the data, the tag receives a value of
0.

Move to
current time
on run

When this box is checked, X axis shifts to the current time
automatically when the object is triggered to Play mode, during
runtime.

Retrieve
bounding
samples

When this box is checked, the object retrieve the data outbound
the object (first points only). Uncheck this option can improve the
performance, since the points outbound the object will not be
retrieved from the history. On the other hand, the object will not
draw lines linking the first and last samples to the extremities of
the object.

Run-Time
Config

Save trigger The settings of the Trend object modified during runtime can be
saved in temporary files. This option can be used to:

Keep the settings consistent, so when the user closes the
screen and opens it again, or re-starts your project, the
settings configured during runtime are not lost.

Create standard settings for different scenarios and load the
appropriate configuration during the runtime, based on a
pre-defined condition or based on the user-selection.

When the tag configured in this field changes value (e.g.,
toggles), the current settings of the Trend object are saved in the
temporary file. This command is not available for the Thin Client.

Load trigger When the tag configured in this field changes value (e.g.,
toggles), the settings from the temporary file are loaded and
applied to the Trend object during runtime.

Note: After the screen where the Trend object is configured is
saved, the settings are not automatically loaded from the
temporary file when the screen is opened again, unless the Load
trigger command is executed before the screen is closed.

File Name If this field is left blank, the temporary file is saved in your
project's Web sub-folder with the syntax

ScreenNameObjectIDTrendControl.stmp (e.g.,
MyScreen10TrendControl.stmp). The Thin Client station

saves/loads the temporary file in the standard Temp directory of
the operating system (e.g., \Documents and

Settings\CurrentUser\Local Settings\Temp).

You can configure a customized file name for the temporary file in
this field or even configure a string tag between curly brackets,
so the user can change the name of the configuration file
dynamically during runtime by changing the value of this tag. If
you do not specify any path, the file is saved in your project's Web

Area / Element Name Description you do not specify any path, the file is saved in your project's Web

sub-folder by default.

Auto Save When this box is checked, the current settings of the Trend are
automatically saved in the temporary file when the screen where
the Trend is configured is closed during runtime. If the box is not
checked, the settings are saved only when the Save trigger
command is executed.

Custom Point
Selection

Screen This interface allows you to create your custom dialog to modify
or insert pens to the object.

Name of the screen which must be launched when the user
triggers a command to modify or insert a new pen to the object
during runtime.

Point Number Point number (from the Points dialog), indicating the point
associated to the pen that will be inserted or modified during
runtime.

Add Indicator Flag that indicates that the user triggered an action to insert a
new pen (value 1) instead of modifying a pen that is already been
visualized (value 0).

Export to File Trigger When the tag configured in this field changes value (e.g.,
toggles), the current state of the trend control is exported to an
image file. The toolbar and scroll bar are not included. The legend
and time display are included only if the trend control is
configured to show them.

File Name The file path and name of the exported file.

If no path is specified, then the file is saved in the project
directory. If no extension is specified, then it is determined by
Format.

Tip: You can specify a project tag in curly brackets (e.g.,
{tagname}), to programatically change the file name during

runtime.

Status The tag configured in this field receives status codes that indicate
the success or failure of the export.

Format The graphic format of the exported file.

If Auto is selected, then the format is determined by the
extension specified in File Name. If Auto is selected but no
extension is specified, then the default format is BMP.

Size The image file is exported at full size by default. However, you
can specify the width and height (in pixels).

Options VK (Virtual
Keyboard)

Virtual Keyboard type used for this object.

you do not specify any path, the file is saved in your project's Web

sub-folder by default.

Auto Save When this box is checked, the current settings of the Trend are
automatically saved in the temporary file when the screen where
the Trend is configured is closed during runtime. If the box is not
checked, the settings are saved only when the Save trigger
command is executed.

Custom Point
Selection

Screen This interface allows you to create your custom dialog to modify
or insert pens to the object.

Name of the screen which must be launched when the user
triggers a command to modify or insert a new pen to the object
during runtime.

Point Number Point number (from the Points dialog), indicating the point
associated to the pen that will be inserted or modified during
runtime.

Add Indicator Flag that indicates that the user triggered an action to insert a
new pen (value 1) instead of modifying a pen that is already been
visualized (value 0).

Export to File Trigger When the tag configured in this field changes value (e.g.,
toggles), the current state of the trend control is exported to an
image file. The toolbar and scroll bar are not included. The legend
and time display are included only if the trend control is
configured to show them.

File Name The file path and name of the exported file.

If no path is specified, then the file is saved in the project
directory. If no extension is specified, then it is determined by
Format.

Tip: You can specify a project tag in curly brackets (e.g.,
{tagname}), to programatically change the file name during

runtime.

Status The tag configured in this field receives status codes that indicate
the success or failure of the export.

Format The graphic format of the exported file.

If Auto is selected, then the format is determined by the
extension specified in File Name. If Auto is selected but no
extension is specified, then the default format is BMP.

Size The image file is exported at full size by default. However, you
can specify the width and height (in pixels).

Options VK (Virtual
Keyboard)

Virtual Keyboard type used for this object.

Area / Element Name Description

Ignore X
Filter

When this box is checked, the X Filter is ignored to avoid adding
the WHERE or querying clause to the Data Sources.

Enable
translation

Enable the external translation for the text displayed by this
object.

Auto Format When checked, decimal values in the Current, Cursor, Max, Min
and Scale columns will be formatted according to the virtual table
created by the SetDecimalPoints() function.

Note: For the Auto Format to work, decimals formatting on the
X-axis must be disabled — that is, the Decimals field in the Axes
dialog must be left blank.

Parent topic: Object Properties: Trend Control dialog

Related reference
Points dialog
Axes dialog
Toolbar dialog
Data Sources dialog
Legend dialog

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Ignore X
Filter

When this box is checked, the X Filter is ignored to avoid adding
the WHERE or querying clause to the Data Sources.

Enable
translation

Enable the external translation for the text displayed by this
object.

Auto Format When checked, decimal values in the Current, Cursor, Max, Min
and Scale columns will be formatted according to the virtual table
created by the SetDecimalPoints() function.

Note: For the Auto Format to work, decimals formatting on the
X-axis must be disabled — that is, the Decimals field in the Axes
dialog must be left blank.

Parent topic: Object Properties: Trend Control dialog

Related reference
Points dialog
Axes dialog
Toolbar dialog
Data Sources dialog
Legend dialog

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend Control object >

Runtime Interface

When enabled, some embedded interfaces can help the user to interact with the Trend Control during
runtime. This section describes these interfaces:

Toolbar: The commands available in the embedded Toolbar are described in the following
table:

Command Icon Description Activation Tag

Run Sets the Trend to the Play
Mode. In this mode, the X axis
is continuously updated (Online
Mode). This option is disabled
(grayed out) when the trend is
already in Play Mode.

0 = Play Mode on

1 = Play Mode off

Stop Sets the Trend to the Stop
Mode. In this mode, the X axis
is not continuously updated
(History Mode), so the user can
visualize history data in a
frozen period of time. This
option is disabled (grayed out)
when the trend is already in
Stop Mode.

0 = Stop Mode on

1 = Stop Mode off

Period Launches an embedded dialog,
where the user can modify the
X axis scale main settings.

When the Activation
Tag changes value
(e.g., toggles), this
command is
executed.

Window Zoom Allows the user to click on the
Trend area and drag the cursor
to select the area that must be
visible when the cursor is
released. This option is disabled
(grayed out) when the
Multiple Section option (for
the Y scale) is active.

Horizontal Zoom Allows the user to click on two
points in the Trend area,
defining the horizontal scale
that must be available.

Vertical Zoom Allows the user to click on two
points in the Trend area,
defining the vertical scale that
must be available. This option is

Command Icon Description Activation Tag must be available. This option is
disabled (grayed out) when the
Multiple Section option (for
the Y scale) is active.

Zoom In Allows the user to zoom in
(display half of the current X
and Y scales) each time they
click on the Trend area.

0 = Zoom In on

1 = Zoom In off

Zoom Out Allows the user to zoom out
each time they click on the
Trend area.

0 = Zoom Out on

1 = Zoom Out off

Cancel Zoom Cancels the current Window,
Horizontal or Vertical Zoom
and returns the Trend display
to its original scale.

When the Activation
Tag changes value
(e.g., toggles), this
command is
executed.

Legend Properties Launches an embedded dialog,
where the user can modify the
Legend main settings.

Pen Style Launches an embedded dialog,
where the user can modify the
style of the selected pen.

Add Pen Launches a dialog, where the
user can add a new pen to the
Trend object.

Remove Pen Removes the selected pen from
the Trend display.

Multiple Sections Switches the Y scale to Multiple
Sections (a section for each
pen) or Single Section (all pens
share the same Y scale
section).

0 = Multiple Sections
on

1 = Multiple Sections
off

Cursor Turns the cursor (ruler) to
visible or hidden.

0 = Cursor on

1 = Cursor off

Auto Scale Changes the Y axis scale to fit
all values from the pens that
are currently being monitored.

When the Activation
Tag changes value
(e.g., toggles), this
command is
executed.

Legend: The commands available in the embedded Legend are described in the following table:

must be available. This option is
disabled (grayed out) when the
Multiple Section option (for
the Y scale) is active.

Zoom In Allows the user to zoom in
(display half of the current X
and Y scales) each time they
click on the Trend area.

0 = Zoom In on

1 = Zoom In off

Zoom Out Allows the user to zoom out
each time they click on the
Trend area.

0 = Zoom Out on

1 = Zoom Out off

Cancel Zoom Cancels the current Window,
Horizontal or Vertical Zoom
and returns the Trend display
to its original scale.

When the Activation
Tag changes value
(e.g., toggles), this
command is
executed.

Legend Properties Launches an embedded dialog,
where the user can modify the
Legend main settings.

Pen Style Launches an embedded dialog,
where the user can modify the
style of the selected pen.

Add Pen Launches a dialog, where the
user can add a new pen to the
Trend object.

Remove Pen Removes the selected pen from
the Trend display.

Multiple Sections Switches the Y scale to Multiple
Sections (a section for each
pen) or Single Section (all pens
share the same Y scale
section).

0 = Multiple Sections
on

1 = Multiple Sections
off

Cursor Turns the cursor (ruler) to
visible or hidden.

0 = Cursor on

1 = Cursor off

Auto Scale Changes the Y axis scale to fit
all values from the pens that
are currently being monitored.

When the Activation
Tag changes value
(e.g., toggles), this
command is
executed.

Command Icon Description Activation Tag

Print Prints the current state of the
Trend display. (Historical data
are not printed.)

When the Activation
Tag changes value
(e.g., toggles), this
command is
executed.

Legend: The commands available in the embedded Legend are described in the following table:

Command Icon Description

Selection Launches a dialog, where the user can replace the data point
associated with the selected pen on the legend

Remove Removes the selected pen from the Trend object

Hide When checked, the selected pen is visible; otherwise, it is
hidden.

Pen Style Launches an embedded dialog, where the user can modify the
style of the selected pen.

Scale When this box is checked, the Y axis scale is visible;
otherwise, it is hidden. The scale can be hidden only when the
Multiple Sections option is off.

Scroll bar: Using the Scroll bar, the user can slide through the X axis values, according to the
period configured for this scale.

Time bar: Using the Time bar, the user can modify the Duration, as well as the Start
Date/Time and/or the End Date/Time, for the data displayed on the object. Changing these
values will affect the tags associated with the X axis scale (if any).

Parent topic: Trend Control object
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Print Prints the current state of the
Trend display. (Historical data
are not printed.)

When the Activation
Tag changes value
(e.g., toggles), this
command is
executed.

Legend: The commands available in the embedded Legend are described in the following table:

Command Icon Description

Selection Launches a dialog, where the user can replace the data point
associated with the selected pen on the legend

Remove Removes the selected pen from the Trend object

Hide When checked, the selected pen is visible; otherwise, it is
hidden.

Pen Style Launches an embedded dialog, where the user can modify the
style of the selected pen.

Scale When this box is checked, the Y axis scale is visible;
otherwise, it is hidden. The scale can be hidden only when the
Multiple Sections option is off.

Scroll bar: Using the Scroll bar, the user can slide through the X axis values, according to the
period configured for this scale.

Time bar: Using the Time bar, the user can modify the Duration, as well as the Start
Date/Time and/or the End Date/Time, for the data displayed on the object. Changing these
values will affect the tags associated with the X axis scale (if any).

Parent topic: Trend Control object
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend Control object >

Using the Data Source Text File
The Trend Control can generate trend charts from any Text File that has the values organized in
columns and rows. The columns should be separated from each other by special characters (usually
the comma). Each sample (pair of values representing a point in the graph) is represented by a row
(a line in the file). Suppose that the user wants to display a chart with the information in the
following table:

X Value Y1 Value Y2 Value

0 0 10

1 1 20

2 2 30

3 3 40

We have one variable that represents the X Axis and two variables (Y1 and Y2) that will represent
different lines in the chart. The first step is to convert the data into a text file. If we adopt the comma
as our separator the file will be as shown below:

Figure 1.

We strongly recommend that you save the file in the same folder where the project is. By doing so,
you do not have to specify the entire path and your project will still work, even if it is copied to a
different computer.

Once you have added the Trend Control to your screen, double-click on the object to open the Object
Properties and click on Axis…. Change the Data Type of the X Axis to Numeric, and set the ranges
as shown in the picture below:

Figure 2.

Click OK on this window and then, in the Object Properties window, click on the Data Sources…
button. The following window will display:

Figure 3. Trend Control – Data Sources dialog

We need to create a data source in order to access to the text file. Click on the New… button,
specify the Data Source name MyTextFile and then click Create. You should see the following

information now:

Figure 4. Setting X Axis field to 0

On the X Axis field we need to indicate which column in our text file represents the X Axis. In our
example we are using column zero, so enter 0 for this field, then click Data Source Settings…. The
following window will display:

Figure 5. Selecting the text file

If you have copied the text file to the project folder, you only have to specify the file name,
otherwise, enter with the complete path where the file is located (use the browse button as needed).
Click OK on this window and OK again to finish the data source configuration and close the Data
Source configuration Window.

Now we need to define our Y1 and our Y2. They will be represented by points on our Trend Control.

Double-click on the Trend Control again to access the Object Properties window and then click on
Points…. Your next step is to define the points according to the following figure:

After following these steps, run your project and you should see something similar to the figure
below:

Figure 6.

Figure 7.

Parent topic: Trend Control object
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Trend Control object >

Using the Data Source Database
The Trend Control can generate trend charts from any Relational Database that can be accessed
through the ADO.Net technology. This Appendix illustrates how to access a Microsoft Access
Database; if you are using another type of database, almost all the definitions will apply, however
you will need to configure your connection on a different way. For information on how to configure
other databases, please refer to the Appendixes in the Database Interface section of this manual.

Suppose that you have an access database at your C drive named mydata.mdb and that you want to
generate a chart based on the information in the following table:

Figure 1.

The first step is to add the Trend Control to your screen. Now double-click on the object to open then
Object Properties and click on Data Sources…. The following window will display:

Figure 2. Trend Control – Data Sources dialog

We need to create a data source in order to access to the database. Click the New… button, specify
the Data Source name MyDB and then click Create. You should see the following information now:

Figure 3. Setting X Axis field to Time_Stamp

Change the Source Type to Database and specify Time_Stamp in the X Axis field. Then click on the
Data Source Settings… button, the following window will display:

Figure 4. Clearing the Use project default option

Uncheck the checkbox Use project default and click on the browse button … in order to configure
the connection string. The following window will display:

Figure 5. Selecting the OLE DB Provider

Select the Microsoft Jet 4.0 OLE DB Provider and click Next ». In the following window, you should
specify the database path:

Figure 6. Selecting the database file

Click OK to finish the Connection String configuration. Now uncheck the option Use default name
and select the table from your database as shown below:

Figure 7. Selecting the table in the database

Click OK on this window and OK again to finish the data source configuration and close the Data
Source configuration window.

Now we need to define Temperature and Pressure. They will be represented by points on our Trend
Control. Double-click on the Trend Control again to access the Object Properties window and then
click Points…. Your next step is to define the points according to the following figure:

Figure 8.

If you run the trend, it will start with the current date/time. In order to see the data in the chart you
will have to properly configure the start date/time as shown below:

Figure 9.

Parent topic: Trend Control object
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display >

Grid object
The Grid object allows you to read/write data in a tabular format from the data source configured in
the object.

To draw one, do the following:

Click the Grid tool 1.

Click on the screen, click the left mouse button, and drag the mouse across the screen to create
a box of the desired size (while holding down the mouse button).

2.

Release the mouse button, and the Grid Object will display.

Figure 1. Sample Grid Object

3.

Right-click on the Grid Object, and select Properties from the menu. The Object Properties dialog
will open. Use this dialog to configure the Grid Object's parameters:

Figure 2. Object Properties: Grid

Data Source: Select the data source type. The object supports three data sources:

Data Source Description

Text File Displays data from a text file in the ASCII or Unicode format (e.g., CSV
text files).

Data Source Description

Class Tag Displays values from a Class Tag, where the members of the tag are fields
(columns) of the grid object, and each array position is one row of the grid
object.

Database Displays data from an SQL Relational Database, using ADO (ActiveX
Database Object) to exchange data with the database.

E-Sign: When you check this option, the user will be prompted to enter an electronic signature
before entering or modifying data on the object.

VK: Select a Virtual Keyboard type used for this object. The option <Use Default> selects the
default Virtual Keyboard configured in the Viewer settings (Viewer on the Project tab of the
ribbon). You can also specify a different Virtual Keyboard for this Grid object.

Security: Enter the security system access level required for the object/animation.

Disable: You can enter an expression in this field to disable data input or action by the user.

Highlight Color: Select a background color for the selected row, during runtime.

Text Color: Select a text color for the selected row, during runtime.

Win Color 1: Select a background color for the odd rows.

Win Color 2: Select a background color for the even rows.

Fonts: Click to launch the Fonts dialog, where you can configure the font settings for the text
displayed in the Grid object.

Columns: Click to launch the Columns dialog, where you can configure the settings (such as
label, column, width, etc.) for the columns of the Grid object.

Data: Click to launch the Data dialog, where you can specify a data source for the Grid object.

Advanced: Click to launch the Advanced dialog, where you can configure several settings for
the Grid object.

Columns dialog

Data dialog
This dialog allows you to configure the data source for a Grid object.

Advanced dialog
This dialog allows you to configure the advanced settings for a Grid object.

Parent topic: Data Logging and Display
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Class Tag Displays values from a Class Tag, where the members of the tag are fields
(columns) of the grid object, and each array position is one row of the grid
object.

Database Displays data from an SQL Relational Database, using ADO (ActiveX
Database Object) to exchange data with the database.

E-Sign: When you check this option, the user will be prompted to enter an electronic signature
before entering or modifying data on the object.

VK: Select a Virtual Keyboard type used for this object. The option <Use Default> selects the
default Virtual Keyboard configured in the Viewer settings (Viewer on the Project tab of the
ribbon). You can also specify a different Virtual Keyboard for this Grid object.

Security: Enter the security system access level required for the object/animation.

Disable: You can enter an expression in this field to disable data input or action by the user.

Highlight Color: Select a background color for the selected row, during runtime.

Text Color: Select a text color for the selected row, during runtime.

Win Color 1: Select a background color for the odd rows.

Win Color 2: Select a background color for the even rows.

Fonts: Click to launch the Fonts dialog, where you can configure the font settings for the text
displayed in the Grid object.

Columns: Click to launch the Columns dialog, where you can configure the settings (such as
label, column, width, etc.) for the columns of the Grid object.

Data: Click to launch the Data dialog, where you can specify a data source for the Grid object.

Advanced: Click to launch the Advanced dialog, where you can configure several settings for
the Grid object.

Columns dialog

Data dialog
This dialog allows you to configure the data source for a Grid object.

Advanced dialog
This dialog allows you to configure the advanced settings for a Grid object.

Parent topic: Data Logging and Display
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Grid object >

Columns dialog
You can configure the settings for each column displayed by the Grid object during runtime, as
follows:

Figure 1. Columns dialog

Column: The ID Number defines the position of the column in the table.

Label: Enter a Title for each column, which will display as the heading (first) row of the Grid
object.

Tip: You can configure tags between curly brackts in the Label field to modify it
dynamically during runtime. When the label is blank (e.g., ""), then the width of the column
is set to 0 during runtime. This option is useful to hide columns during runtime.

Field: Enter the name of the field (column) in the SQL Relational Database to which the Grid
object is linked. If this field is left in blank, the text configured in the Label field will be used as
the Field name. (This setting is available only when the Data Source type is set to Database.)

Type: Select the Type of interface that will be used in the column. The options are:

Type Description

Text Displays alphanumeric values

Numeric Displays numeric values

Picture Displays the picture (*.bmp or *.ico format) from the data source. For

Type Description Picture Displays the picture (*.bmp or *.ico format) from the data source. For
instance, if the value from the data source is MyFile.bmp, the grid object
will display the picture from the file MyFile.bmp stored in your project
folder. The picture will be automatically resized to fit the cell of the grid
object. The picture file(s) must be stored in the Web sub-folder of your

project folder to support this feature on the Thin Client stations. CEView
projects support pictures in bitmap format (*.bmp), but not in icon format
(*.ico).

Checkbox Displays checkbox interfaces. The checkbox will be unchecked if the value
read from the file is 0, <NULL> or "FALSE"; otherwise, the checkbox will be
checked. By default, IWS will use the value 0 for unchecked and the value
1 for checked.

Time Displays the value in the Time format (e.g., HH:MM:SS). This setting is
available only when the Data Source type is set to Database.

Date Displays the value in the Date format (e.g., MM/DD/YYYY). This setting is
available only when the Data Source type is set to Database.

Date/Time Displays the value in the Date/Time format (e.g., MM/DD/YYYY
HH:MM:SS). This setting is available only when the Data Source type is
set to Database.

Note:

When the Data Source type is set to Database, it is important to make sure that the
Type for each column configured in the object matches the Type of the respective
field in the database.

When the Data Source type is set to Database, you can configure valid SQL
statements directly in the field (e.g., List(DISTINCT [Cell_Name]) AS [Cell Name]). You
can also configure tag names between curly brackets to modify this setting during
runtime (e.g., {MyFieldName}).

Tip: If Picture is the column type, the Grid object displays a default icon () if the picture
file is not found during runtime. You can configure a different picture to be displayed when
the file is not found by copying the picture file to the Web sub-folder of your project folder

and configuring its name on the project_name.app file, as follows:

[Objects]

GridDefaultPicture=PictureFileName

Width: Enter a width of the column, in pixels.

Align: Select an Alignment for the data shown in the column. There are three options: Left,
Right or Center.

Input: Click (check) to allow the user to enter data in this column during runtime.

Key: Use this field to designate a shortcut for sorting the values. A shortcut is a combination of

Picture Displays the picture (*.bmp or *.ico format) from the data source. For
instance, if the value from the data source is MyFile.bmp, the grid object
will display the picture from the file MyFile.bmp stored in your project
folder. The picture will be automatically resized to fit the cell of the grid
object. The picture file(s) must be stored in the Web sub-folder of your

project folder to support this feature on the Thin Client stations. CEView
projects support pictures in bitmap format (*.bmp), but not in icon format
(*.ico).

Checkbox Displays checkbox interfaces. The checkbox will be unchecked if the value
read from the file is 0, <NULL> or "FALSE"; otherwise, the checkbox will be
checked. By default, IWS will use the value 0 for unchecked and the value
1 for checked.

Time Displays the value in the Time format (e.g., HH:MM:SS). This setting is
available only when the Data Source type is set to Database.

Date Displays the value in the Date format (e.g., MM/DD/YYYY). This setting is
available only when the Data Source type is set to Database.

Date/Time Displays the value in the Date/Time format (e.g., MM/DD/YYYY
HH:MM:SS). This setting is available only when the Data Source type is
set to Database.

Note:

When the Data Source type is set to Database, it is important to make sure that the
Type for each column configured in the object matches the Type of the respective
field in the database.

When the Data Source type is set to Database, you can configure valid SQL
statements directly in the field (e.g., List(DISTINCT [Cell_Name]) AS [Cell Name]). You
can also configure tag names between curly brackets to modify this setting during
runtime (e.g., {MyFieldName}).

Tip: If Picture is the column type, the Grid object displays a default icon () if the picture
file is not found during runtime. You can configure a different picture to be displayed when
the file is not found by copying the picture file to the Web sub-folder of your project folder

and configuring its name on the project_name.app file, as follows:

[Objects]

GridDefaultPicture=PictureFileName

Width: Enter a width of the column, in pixels.

Align: Select an Alignment for the data shown in the column. There are three options: Left,
Right or Center.

Input: Click (check) to allow the user to enter data in this column during runtime.

Key: Use this field to designate a shortcut for sorting the values. A shortcut is a combination of

keys pressed on a keyboard at one time (e.g., CTRL+C, CTRL+V, etc.). This option is especially
useful when creating projects for runtime devices that do not provide a mouse or touchscreen
interface and only have a keyboard for interacting with the project during runtime.

Unit: Enter the name of the engineering unit (i.e., the unit of measurement), if any, that
applies to the data displayed. You can also enter a String tag using the {tagname} syntax, which

allows you to change the value of Unit during runtime.

Decimal Points: Enter the number of decimal places to be displayed. You can also enter an
Integer tag using the {tagname} syntax, which allows you to change the value of Decimal

Points during runtime.

Note: When the Data Source type is set to Class Tag, and the Columns dialog is left
blank, the object displays the values from all members of the Class tag with the following
default column settings:

Label = <Name of the Member from the Class tag>

Type = Text

Width = <Minimum size to display the name of the member from the class tag on the
header of the grid object>

Align = Center

Input = Enabled (checked)

Key = <None>

Unit = <Unit of the Member from the Class tag>

The Unit of a class member or tag is set using the Tag Properties tool.

Show ID Column: Check to display the number of each row, automatically.

Allow sorting columns: Check to enable the user to sort the values in the columns during
runtime, either by clicking on the label or by using the shortcut configured for each column. This
option is disabled if the Show header option from the Advanced dialog is not checked.

Tip: Use the Move Up and Move Down buttons to reorder the display of the columns.

Parent topic: Grid object
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Grid object >

Data dialog
This dialog allows you to configure the data source for a Grid object.

Grid Data – Text File

When the Data Source type is set to Text File, you can configure the following settings:

Figure 1.

File: Enter the name of the text file source. You can either type the file name and its path or
click the … button to browse for it. (If the file is stored in your project folder, you can omit the
path in the name.)

Tip: You can configure tag names between curly brackets {TagName} in the File field.

Delimiters: Set the delimiter(s) used in the data source file. For instance, if the data will be
read from a CSV (comma separated values) file, you would select the Comma option. You can
even choose a custom delimiter by checking the Other option and typing the custom delimiter
in the field beside it.

Read only checkbox: When this option is checked, the Grid object will only read data from the
specified file. The object will not write anything to the file.

Grid Data – Class Tag

When the Data Source type is set to Class Tag, you can configure the following interface:

Figure 2.

Class Tag: Enter the name of the main class tag source. (Do not specify a specific member of
the class tag.) You can specify the initial array position in this field (e.g., Mytag[10]); otherwise,
0 (zero) will be used as the initial position by default.

Number of Items: Enter the number of array positions from the Class Tag that should be
displayed.

View: When the tag configured in the optional field changes value (e.g., toggles) during
runtime, the grid object launches a dialog, allowing the user to show/hide each column or
modify their positions.

Figure 3.

Grid Data – Database Configuration

When the Data Source type is set to Database, you can configure the following settings:

Figure 4.

Please refer to the Database Configuration dialog for further information about this dialog.

Parent topic: Grid object
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Data Logging and Display > Grid object >

Advanced dialog
This dialog allows you to configure the advanced settings for a Grid object.

Figure 1. Advanced dialog

User Enable: If the value of this tag is TRUE (different from 0), the user can select different
rows of the object by clicking on them during runtime. This field can be configured with a tag or
with a numeric value.

Selected Values: The values from each column of the selected row are written to each position
of the array tag configured in this field. Moreover, you can modify the value of the cells
currently selected in the Grid object by changing the value of array tag configured in this field.
The initial array position (offset) can be configured in this field.

Number of Rows: The grid object writes the number of rows currently available in the grid
object to the tag configured in this field.

Row Number: The Grid object writes the number of the row currently selected during runtime.
In addition, you can select different rows by writing their values in this tag.

Condition: Enter an expression to filter the grid data; only rows that match the expression will
be displayed. The expression must use the following syntax:

Column Operator Value

For example…

ColumnX > 200

When Data Source (in the Grid Object Properties dialog) is set to Text File or Class Tag, the
Column is the value specified in the Label. When Data Sourse is set to Database, the column is

the value specified in the Field. (In this case, if the Field is left blank, then the column value
specified is the Label.)

Also, expressions for Database must be formatted like a SQL Where statement. The following
table shows which operators should be used:

Table 1. Condition Expression Operators

Comparison Data Source is Text
File…

Data Source is
Database…

equal to = LIKE

not equal to <> NOT LIKE

wildcard, single character ? _

wildcard, unlimited characters * %

As such, the following expression for Text File…

C1 = 'ab?d'

…means the same as the following expression for Database…

C1 LIKE 'ab_d'

Finally, you can combine several expressions simultaneously in the Condition field, using the
logic operators AND, OR, and NOT. For example:

ColumnAge > '10' OR ColumnName = 'John' AND ColumnDate > '05/20/2003'

Tip: You can configure tags between curly brackets {TagName} in the Condition field to
change the filtering condition during runtime.

Print Trigger: When the tag configured in this field is toggled, the current state of the Grid
object is sent to the default printer.

PDF Trigger field: When the tag configured in this field is toggled, the current state of the Grid
object is saved as a PDF file at the location specified by PDF Filename.

PDF Filename field: Enter a complete file path and name where the PDF file is to be saved.
You can also enter a tag name using the {tag} syntax.

Note: PDF Trigger and PDF Filename are not supported in projects running on Windows
Embedded or Thin Client.

Multiline checkbox: When this option is checked, the print output or PDF will be formatted
according to the available column space, and the text within each cell will be wrapped so that all
of it is shown.

Reload: When the tag configured in this field is toggled, the object reloads the data from the
data source and displays it.

Save Trigger: When the tag configured in this field is toggled, the data source (Text File or
Database) is updated with the current values of the grid object. This field is not available when
the Data Source type is Class Tag, because the values are automatically updated in the tags as
you change a cell in the grid.

Insert Trigger: When Auto refresh after insert trigger is enabled (checked), the tag
configured in this field is used as a trigger to refresh the database table. Whenever the value of
the tag changes, a new row is added to the table and the values of the array configured in the
Inserted Values field are automatically inserted.

Inserted Values: If the Insert Trigger is being used, then the array tag configured in this
field provides the values that will be inserted. This field must only contain an array tag, although
it can be of any size.

Save on data change: When this option is checked, the values are updated on the data
source (Text File or Database) as soon as the user enters a new value on the grid, during
runtime. This option is disabled when the Data Source type is Class Tag, because the values are
automatically updated in the tags as the user changes the value of the cells in the grid.

Enable Slider/Resize: If this box is not checked, the user is unable to scroll the list by
dragging the slider button, or to change the cell's size during runtime.

Conditional checkbox: When this option is checked, the user cannot uncheck a checkbox on
the Grid during runtime, unless all preceding checkboxes in the same column are already
unchecked. This option is especially useful when you want to oblige the user to follow a pre-
defined sequence. This field is not available when the Data Source type is Class Tag.

Show Header: When this option is checked, the header of the Grid object is visible during
runtime, displaying the label of each column.

Show gridlines: When this option is checked, the gridlines of the Grid object are visible during
runtime.

Ext. translation: When this option is checked, the text displayed by the Grid object will be
susceptible to the Translation Tool during runtime.

Disable TAB to navigate through cells: When this option is checked, the user can only
navigate through the cells of the Grid Object with the arrow keys, rather than the Tab key. You
should disable the Tab key for navigation if you want it to be used for switching to the next
object that supports focus on the screen.

Concatenate Label for picture: When this option is checked, the reference name for the
picture is the result of the concatenation of the name in the Field column with the value of the

Label column. The result will be <Label name>_<Field value>.

Export: This interface allows you to export the data from the grid object to a class-array tag,
regardless of the Data Source selected for the object. The following fields must be configured to
support this feature:

Field Description

Class tag Type the main tag name of the class-array tag that will receive the
exported values. Each row from the grid object will be exported to one
array position of the array tag, by matching column labels. The initial array
position can be configured in this field; 0 is the default.

Trigger When the tag configured in this field changes value (e.g., toggles), the
data is exported from the Grid object to the class-array tag configured in
the Class tag field.

Tip: The Export feature is an easy and powerful tool to transfer data from different data
sources to tags. After exporting the data to tags, you can use different tasks to manipulate
the data, such as the FileWrite() function, or the Recipe or Report tasks to save the data in
text files (e.g., CSV files).

Auto Format: When this option is checked, decimal values in columns of Numeric type will be
formatted according to the virtual table created by the SetDecimalPoints() function. This option
will work only in columns for which Decimal Points are not already configured. For more
information, please see Grid Object: Columns dialog.

Parent topic: Grid object
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Background Tasks
Background tasks are, as the name implies, project features that run in the background, as opposed
to the graphical screens with which the user interacts.

The background tasks are executed by the Background Tasks module (see Execution Tasks), and
they are defined by task worksheets in the Project Explorer.

Alarm worksheet
The Alarms folder enables you to configure alarm groups and tags related to each group. The
Alarm worksheet defines the alarm messages generated by the project. The primary purpose of
an alarm is to inform the operator of any problems or abnormal condition during the process so
he can take corrective action(s).

Trend worksheet
The Trend folder enables you to configure history groups that store trend curves. You can use
the Trend worksheet to declare which tags must have their values stored on disk, and to create
history files for trend graphs. The project stores the samples in a binary history file (*.hst), and
shows both history and on-line samples in a screen trend graph.

Recipe worksheet
A Recipe worksheet is used to load tag values from or save tag values to an external file during
runtime. It is typically used to execute process recipes, but you can store any type of
information (such as operation logs, passwords, and so on) in the external file.

Report worksheet
A Report worksheet is used to design a report that is dynamically generated during runtime
(using the current values of the included tags) and then either sent to a printer or saved to a
file.

ODBC worksheet
The ODBC interface runs in a network environment and uses the standard Windows ODBC
configuration. The ODBC task is capable of data interchange between IWS and any database
supporting this interface.

Math worksheet
A Math worksheet is used to implement program logic (using the Built-in Scripting Language)
that should be continuously executed during runtime, rather than on specific actions like the
user pressing a button on a screen.

Script worksheet
A Script worksheet is used to implement program logic (using VBScript) that should be
continuously executed during runtime, rather than on specific actions like the user pressing a
button on a screen.

Scheduler worksheet

A Scheduler worksheet is used to execute program logic (using the Built-in Scripting Language)
at a specific date/time, on a regular time interval, or upon a triggering event.

Database/ERP worksheet
In addition to ODBC, IWS also supports Microsoft .NET ActiveX Data Objects (ADO.NET) for
interfacing between the project tags database and other external databases. A Database/ERP
worksheet is used to associate project tags with external database fields.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Background Tasks >

Recipe worksheet
A Recipe worksheet is used to load tag values from or save tag values to an external file during
runtime. It is typically used to execute process recipes, but you can store any type of information
(such as operation logs, passwords, and so on) in the external file.

To create a new Recipe worksheet, do one of the following:

On the Insert tab of the ribbon, in the Task Worksheets group, click Recipe;

Right-click the Recipes folder in the Project Explorer, and then click Insert on the shortcut
menu; or

Click New on the Application menu, click the File tab, and then select Recipe Worksheet.

To edit an existing Recipe worksheet, double-click it in the Project Explorer.

Figure 1. Recipe worksheet

The worksheet is divided into two areas:

Header area (top section), which contains information for the whole group

Body area (bottom section), where you define each tag in the group.

Use the Header parameters on this worksheet as follows:

Description field: Type a description of the worksheet, for documentation purposes.

File Name field: Type the name of the external file, using static text (File1) or a indirect tag
({FileNameTag}).

Register Number field: Type a tag to define the register number to be read or written into a
DBF file. (This field is for legacy purposes only and is no longer used.)

Save As XML: Select (check) to save information in XML format, or deselect (uncheck) to save
in DAT format.

You can load information in a .DAT file into different tags using a second Recipe worksheet, but
you must load information in an .XML file into tags with the same name as the tag from which
the data originated.

Note: As with HTML pages, you must be running the Web server to view XML data from
the Web. Unlike the HTML pages in the runtime system, XML pages do not need to have the
project running to view the XML data. (You must be running Internet Explorer version 5.0
or higher to view XML data.)

Unicode checkbox: Click (enable) to save the recipe in Unicode format (two bytes per
character) or (disable) to save the recipe in ANSI format (one byte per character).

Note: When saving a worksheet, you can save it using any name you choose (you are not
required to use a predefined file name). A configuration file using the default extension .RCP (or
.XSL if you specify Save As XML) contains the recipe configuration and the File Name field
contains the data file name to be read or written.

Use the Body parameters on this worksheet as follows:

Tag Name field: Type tag names to update with file contents or with values to write to a file. If
the tag is an array, you must specify the first position to use.

If the tag is an Array or a Class (or both), then the development application automatically
enables every array position and class member by default. To configure a specific array position
and/or class member, type it in the Tag Name field as normal. For example, level[3].member.

Number of Elements field: Specify how many positions of the array tag are in use.

Tip: You can configure a tag name between curly brackets ({tagname}) in this field, allowing

the user to dynamically change the Number of Elements configured in the Recipe for each
array tag, during runtime.

To execute a Recipe worksheet, use the Recipe function anywhere an expression is allowed.

Parent topic: Background Tasks
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Background Tasks >

Report worksheet
A Report worksheet is used to design a report that is dynamically generated during runtime (using
the current values of the included tags) and then either sent to a printer or saved to a file.

To create a new Report worksheet, do one of the following:

On the Insert tab of the ribbon, in the Task Worksheets group, click Report;

Right-click the Reports folder in the Project Explorer, and then click Insert on the shortcut
menu; or

Click New on the Application menu, click the File tab, and then select Report Worksheet.

To edit an existing Report worksheet, double-click it in the Project Explorer.

Figure 1. Report worksheet

The Report worksheet is divided into two areas:

Header area (top section), which contains information for the whole group; and

Body area (bottom section), where you define each tag in the group.

Use the Header parameters on this worksheet as follows:

Description field: Type a description of the worksheet for documentation purposes.

Output File field: Type a tag name for the output file (using the {tag} syntax) where data is

stored when you are printing to a file. Where the tag value is part of the file name.

For example: report{Day}.out. Where the generated file might be report1.out, report2.out,
report3.out, and so on, according to the tag day value.

Note: A report configuration file uses .RCP as the default extension. The Output File field
is the file where data is stored.

Edit RTF file button: Click to access the report as an RTF file, which you can edit for layout
modification and so forth.

Disk Append checkbox: When printing to a file

Check the box to add (amend) the new report to the end of an existing file

Uncheck the box to replace the existing report in that file with the new report

Unicode checkbox: Click (enable) to save the report in Unicode format (two bytes per
character) or (disable) to save the report in ASCII format (one byte per character).

Lock Value into the {Tag/Exp} length checkbox: Click (enable) to automatically truncate
the values of Tags/Expressions in the report to fit between the curly brackets, as they are
positioned in the Body of the report (see below). This helps to preserve the layout of the report.
If this option is left unchecked, then the full values of Tags/Expressions in the report will be
displayed.

Use the Body portion of this worksheet for report formatting. You can configure a report using data in
the system and indicating where to print the tag values. Each tag name will replace the {tag_name}
tag name. For Real type tags, use the following syntax: {tag_name n}, where n is the number of

decimal places you want printed.

Note: If you are using the standard report editor (text only: ASCII or Unicode), then the
number of characters reserved for the tag value will be equal to the number of characters used
to type the tag name (including the two "curly" brackets). For example, if you configure {TagA} in
the report body, reserve six characters for the tag value in the report file. This behavior is not
valid for reports in RTF format.

To execute a Report worksheet, use the Report function anywhere an expression is allowed.

Parent topic: Background Tasks
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Background Tasks >

ODBC worksheet
The ODBC interface runs in a network environment and uses the standard Windows ODBC
configuration. The ODBC task is capable of data interchange between IWS and any database
supporting this interface.

Note: In addition to configuring the ODBC worksheet, you must configure the Windows ODBC
standard driver. IWS refers to the User DSN (Data Source Name), which you configure through
the Control Panel. For more information, refer to your Windows documentation.

Also, the ODBC interface is not available for projects running on Windows Embedded target
systems.

To create a new ODBC worksheet, do one of the following:

On the Insert tab of the ribbon, in the Task Worksheets group, click ODBC;

Right-click the ODBC folder in the Project Explorer, and then click Insert on the shortcut
menu; or

Click New on the Application menu, click the File tab, and then select ODBC Worksheet.

To edit an existing ODBC worksheet, double-click it in the Project Explorer.

A new worksheet displays, as follows.

Figure 1. ODBC worksheet

ODBC worksheets are executed under the ODBC Runtime task. However, creating a new worksheet
does not automatically enable the task; you must use the Execution Tasks dialog (Tasks on the
Home tab of the ribbon) to configure the task to start at runtime. For more information, please see

Execution Tasks.

The ODBC worksheet is divided into two areas:

Header area (top section), which contains information for the whole group, defines tags to start
read and write events, sets return values, handles database access parameters, and so forth;
and

Body area (bottom section), where you define each tag in the group and relate tags to fields in
the current register from the database table.

Use the Header parameters on this worksheet as follows:

Description field: Type a description of the worksheet for documentation purposes.

Data Source Name field: Type the same Data Source Name (DNS) specified in the Windows
Control Panel containing information about specific database access.

User field: Type a user name to access to the database.

Password field: Type the user's password.

Table field: Type a table name in the database.

Condition field: Type a search condition or filter.

Status field: Type a return value (fill in with a tag name). The tag should report 0 for success
and use another value for an error code.

Transaction Completed field: Type a tag that changes value when the transaction is
executed.

Select, Next, Insert, Delete, or Update Trigger fields: Type a tag to work as a trigger,
where each value change causes the system to execute the corresponding command. At least
one trigger field is required.

Use the Body parameters on this worksheet as follows:

Tag Name field: Type the names of tags to update with file contents or tags whose values
should be written to a file.

Column: Type the location in which to find data in the file (for example, R3CH corresponds to
Row 3, Column H of an Excel sheet)

You must use the Windows Control Panel to set up the ODBC interface for Excel files. The procedure
is as follows:

Click the Start > Settings > Control Panel.1.

When the Control Panel window displays, double-click on the ODBC icon to open the ODBC Data
Source Administrator dialog.

2.

In the ODBC Data Source Administrator dialog, click Excel Files in the User Data Sources list,
and then click the Configure button.

3.

When the ODBC Microsoft Excel Setup dialog displays, type the Windows configuration name to
be used in the DSN field on ODBC worksheet into the Data Source Name field.

4.

Click the Select Workbook button to configure the Excel file you want to use.5.

Return to the ODBC Data Source Administrator dialog and verify that your User DSN displays in
the list. Click OK to close the dialog.

6.

7.

8.

5.

6.

After configuring the ODBC Windows interface, you must configure the project's ODBC
worksheets.

7.

From the Tasks tab, insert a new ODBC worksheet.8.

Be sure you set the ODBC Runtime to start automatically using the Execution Tasks dialog
(Tasks on the Home tab of the ribbon).

9.

To start this configuration, you simply need to run the project. Your project will handle the Select,
Next, Insert, Delete, and Update triggers to allow data to exchange throughout rows in Excel and
tags configured in the worksheet.

Consult your Windows documentation for the meaning of specific error codes.

The following is a list of IWS error codes:

Select command

1 - Error in the ODBCPREPARE function.

2 - Error in the ODBCBINDCOL function.

3 - Error in the ODBCEXECUTE function.

4 - Error in the ODBCSETCH function.

Next command

5 - Error in the ODBCSETCH function.

Insert command

6 - Error in the ODBCPREPARE function.

7 - Error in the ODBCEXECUTE function.

8 - Error in the ODBCCOMMITE function.

Update command

9 - Error in the ODBCPREPARE function.

10 - Error in the ODBCEXECUTE function.

11 - Error in the ODBCCOMMITE function.

Delete command

12 - Error in the ODBCPREPARE function.

13 - Error in the ODBCEXECUTE function.

14 - Error in the ODBCCOMMITE function.

Parent topic: Background Tasks
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Background Tasks >

Math worksheet
A Math worksheet is used to implement program logic (using the Built-in Scripting Language) that
should be continuously executed during runtime, rather than on specific actions like the user pressing
a button on a screen.

Note: The Math worksheet is functionally similar to the Script worksheet, except that it uses the
Built-in Scripting Language instead of VBScript.

To create a new Math worksheet, do one of the following:

On the Insert tab of the ribbon, in the Task Worksheets group, click Math;

Right-click the Math folder in the Project Explorer, and then click Insert on the shortcut menu;
or

Click New on the Application menu, click the File tab, and then select Math Worksheet.

To edit an existing Math worksheet, double-click it in the Project Explorer.

Figure 1. Math worksheet

The Math worksheet is divided into two areas:

Header area (top section), which contains information for the whole group; and

Body area (bottom section), where you define each tag, expression, and Programming Lines
(logical routines and mathematical calculations through functions and logical operations) in the
group.

Use the Header parameters on this worksheet as follows:

Description field: Type a description of the worksheet for documentation purposes.

Execution field: Type an expression, a single tag, or a constant value to determine when the
worksheet should execute.

Note: The project executes the worksheet only when the Execution field result is not
zero. If you always want the worksheet to execute, type a 1 (constant value) in the
Execution field.

Use the Body parameters on this worksheet as follows:

Tag Name field: Type a tag to receive a return value from the specified calculation in the
Expression column.

Expression field: Type an expression to return a return value to the specified tag in the Tag
Name column.

To execute a Math worksheet at a specific time, separate from whatever is configured in the
Execution field, use the Math function anywhere an expression is allowed.

Parent topic: Background Tasks
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Background Tasks >
VBScript Interfaces in the Software >

Script worksheet
A Script worksheet is used to implement program logic (using VBScript) that should be continuously executed during
runtime, rather than on specific actions like the user pressing a button on a screen.

Note: The Script worksheet is functionally similar to the Math worksheet, except that it uses VBScript instead of
the Built-in Scripting Language.

To create a new Script worksheet, do one of the following:

On the Insert tab of the ribbon, in the Task Worksheets group, click Script ;

Right-click the Script folder in the Project Explorer, and then click Insert on the shortcut menu; or

Click New on the Application menu, click the File tab, and then select Script Worksheet .

To edit an existing Script worksheet, double-click it in the Project Explorer.

Figure 1. Script worksheet

The code configured in each Script worksheet is executed by the Background Task. The project scans the worksheets
sequentially (based on the worksheet number) and executes only the groups in which the condition configured in the
Execution field of the worksheet is TRUE (i.e., non-zero).

Note: You must use the syntax supported by the Built-in Scripting Language in the Execution field. Only the body
of the worksheet supports VBScript.

Variables declared in the worksheet have local scope for that specific group only. They are not available for any other
VBScript interface.

You cannot define procedures (i.e., functions and subs) in the Script worksheet. However, you can call procedures
defined in the Global Procedures or in the Startup Script .

Example:
'Variables available only for this group can be declared here
Dim myVar, myTest
myTest = 1

'The code configured here is executed while the condition configured in the Execution field is TRUE
myVar = $FindFile("c:*.txt")
If MyVar > 0 Then
 $TagNumOfFiles = myVar
End If

CAUTION:

When any Script worksheet is saved during runtime (on-line configuration), the Startup Script will be
executed again and the current value of the local variables of any Script worksheet will be reset.

Startup Script worksheet
The Startup Script worksheet is a VBScript interface that is automatically executed when the
project is run.

Parent topic: Background Tasks
Parent topic: VBScript Interfaces in the Software
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Background Tasks > Script worksheet >
VBScript Interfaces in the Software >

Startup Script worksheet
The Startup Script worksheet is a VBScript interface that is automatically executed when the project is run.

To edit the Startup Script worksheet, double-click it in the Project Explorer. (It is located on the Tasks tab, in the Script
folder.) The worksheet is displayed:

Figure 1. Startup Script worksheet

The code configured in this worksheet is executed just once when the Background Task module (BGTask) is started. This
interface is useful for initializing variables or executing logics that must be implemented when the project is run.

You can declare and initialize variables and define procedures. However, variables or procedures declared in this interface
will be available ONLY to the Script worksheets executed by the Background Task module — they are not available to any
VBScript interface from the Graphic Module.

Example:
'Variables available for all Script groups from the Script task can be declared and initialized here
Dim MyVar, Counter
MyVar = 100

'Procedures available for all Script groups from the Script task can be implemented here

Function AreaEquTriangle(base, high)
 AreaEquTriangle = (base * high) / 2
End Function

Sub CheckLimits(myValue, myHiLimit, myLoLimit)
 If (myValue > myHiLimit Or myValue < myLoLimit) Then
 MsgBox("Value out of range")
 End If
End Sub

'The code configured here is executed just once when the Background task is started
If $GetOS() = 3 Then
 MsgBox ("Welcome! This project is running under Microsoft Windows Embedded operating system.")

Else
 MsgBox("Welcome! This project Is running under Microsoft Windows desktop operating system.")
End If

Parent topic: Script worksheet
Parent topic: VBScript Interfaces in the Software
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Background Tasks >

Scheduler worksheet
A Scheduler worksheet is used to execute program logic (using the Built-in Scripting Language) at a
specific date/time, on a regular time interval, or upon a triggering event.

To create a new Scheduler worksheet, do one of the following:

On the Insert tab of the ribbon, in the Task Worksheets group, click Scheduler;

Right-click the Scheduler folder in the Project Explorer, and then click Insert on the shortcut
menu; or

Click New on the Application menu, click the File tab, and then select Scheduler Worksheet.

To edit an existing Scheduler worksheet, double-click it in the Project Explorer.

Figure 1. Scheduler worksheet

The Scheduler worksheet is divided into two areas:

Header area (top section), which contains information for the whole group

Body area (bottom section), where you define each tag, expression, and condition for the
group.

Use the parameters on this worksheet as follows:

Description field: Type a description of the worksheet for documentation purposes.

Event drop-down list: Click to select an event type from the following:

Calendar: Generates time bases greater than 24 hours. For example, You can define an
event that prints a report every Friday at a specific time.

Note: Be sure to complete the Date field if you want a specific date for event
execution.

Clock: Generates time bases smaller than 24 hours (intervals in minutes or seconds). This
function is frequently used with trend graphics. For example, you can define a tag that will
be incremented each hour.

Change: Event related to the change of a tag in the Trigger field.

Note: This only works for tag changes on the project server, regardless of a tag's
defined scope.

Trigger field: This field is used only with the Change Event type. Type the name of a project
tag in this field, and when the value of the tag changes, Expression is evaluated.

Time field: This field is used with the Calendar and Clock Event types.

If the Event type is Calendar, then Time is a specific time of the day on Date. When that
Date and Time occurs, Expression is evaluated.

If the Event type is Clock, then Time is a time interval starting from when the project was run.
Every time the interval occurs, Expression is evaluated.

Either way, type a time using the HH:MM:SS.ms format. Valid values are 00 to 23 for hours, 00 to 59
for minutes, 00 to 59 for seconds, and 1 to 9 for milliseconds. (Milliseconds are optional.)
Examples: 03:00:00 is every three hours, 00:00:00.1 is every 100 milliseconds.

Date field: This field is used only with the Calendar Event type. Type a specific date using the
MM/DD/YYYY format, and when that Date and Time occurs, Expression is evaluated.

Valid values are 01 to 12 for months, 01 to 31 for days, and 1900 to 2099 for years. If the field is
left blank, then the event occurs daily at the specified Time.

Tag field: Type a tag that will receive the value returned by Expression (if any).

Expression field: Type an expression to be evaluated. This field is used by all events.

Disable field: Contains a disable condition for the specified function. Leave this field blank or
use an expression value equal to zero to execute the function. Use an expression value equal to
one and the function will not execute (Disable = 1).

Parent topic: Background Tasks
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Background Tasks >

Database/ERP worksheet
In addition to ODBC, IWS also supports Microsoft .NET ActiveX Data Objects (ADO.NET) for
interfacing between the project tags database and other external databases. A Database/ERP
worksheet is used to associate project tags with external database fields.

Note: For more information about ADO.NET support in IWS — including how to communicate
with remote databases using the IWS Database Gateway software — please see Database
Interface.

To interface with an external database, you must first configure a connection to the database and
then build a worksheet that associates project tags with the database fields.

Database Connections

To create a new connection to a target database:

In the Project Explorer, open the Database/ERP folder and then right-click on Connections.1.

Choose Insert from the shortcut menu.

The Database Connection dialog is displayed.

Figure 1. Database Connection dialog

2.

In the Name field, enter the name that you want to use to reference the target database. You
can create multiple database connections, but each connection must have a unique name.

3.

In the Connection String field, click the browse button … to open a standard Data Link
Properties dialog. Use the dialog to configure a connection string for the target database.

Note: The list of Database Providers shown in the Data Link Properties dialog depends on
the providers actually installed and available in the station where you are running the
development application. For more information about using the Data Link Properties dialog,

4.

5.

please refer to Windows Help.

In the User Name and Password fields, enter an appropriate login for the target database.
The login should already be created on the database server, and it should have enough
privileges to read from and write to the database tables.

5.

If you are connecting to a remote database through the Studio Database Gateway, then click
the Advanced button to open the advanced settings dialog, as shown below.

Figure 2. Database Connection (Advanced) dialog

6.

In the Host field, enter the IP address of the station that is running the IWS Database Gateway
software (STADOSvr.exe). In the Port field, enter the port number on which the software has
been configured to run.

Other settings to configure, if necessary:

Disable Primary Keys checkbox: IWS will try to define a primary key to the table in
order to speed up the queries. If you are using a database that does not support primary
keys (e.g., Microsoft Excel), then you should check this box.

Disable Milliseconds in Date/Time Columns checkbox: IWS will try to include
milliseconds when saving a date/time in the database. If you are using a database that
does not support milliseconds, then you should check this box.

7.

Click OK to close the dialog and save the connection configuration.8.

Database connections are saved as XML files in the \project_name\Config sub-folder. Each file is

given the same name as the name of the connection (as entered in the Name field of the Database
Connection dialog), with the .XDC file extension. For example, the connection configuration DB1 is
saved in the file…

\project_name\Config\DB1.XDC

Database Worksheet

Note: This feature emulates Structured Query Language (SQL) database operations. You should

be familiar with how SQL commands are formed and executed before you use this feature.

Database worksheets allow asynchronous execution of database operations, and they offer a user-
friendly interface for building SQL commands. Use one of the following methods to create a new
database worksheet:

On the Insert tab of the ribbon, in the Task Worksheets group, click Database; or

Right-click on the Database/ERP folder in the Project Explorer, and then click Insert on the
shortcut menu; or

A new worksheet is displayed, as shown below:

Figure 3. Database worksheet

Database worksheets are saved in the \project_name\Config directory, with the .XDB file extension.

Each new worksheet is automatically numbered in the order of its creation. For example, the first
worksheet created is saved in the file…

\project_name\Config\DB001.XDB

Database worksheets are executed under the Database Client Runtime task. However, creating a
new worksheet does not automatically enable the task; you must use the Execution Tasks dialog
(Tasks on the Home tab of the ribbon) to configure the task to start at runtime. For more
information, please see Execution Tasks.

Also, database worksheets run only on the server, and all triggers must be configured with server
tags.

Worksheet Header

The header of the database worksheet is configured as follows:

Description field: Enter a description of the worksheet, for documentation purposes.

Status field: Enter the name of a numeric tag that will receive status codes for database
operations during runtime:

Table 1. Status codes for external database operations

Status Code Description

4 Result set is empty

3 Cursor released and query successfully closed

2 Beginning of result set reached, usually while moving cursor to previous
row

1 End of result set reached, usually while moving cursor to next row

0 No errors; status normal

-1 Error while connecting to specified database (see Connection below)

-2 Error while selecting result set

-3 Error while moving cursor to next row (see Next trigger below)

-4 Error while moving cursor to previous row (see Previous trigger below)

-5 Error while closing the query (see Close Query trigger below)

-6 Error while inserting rows in result set (see Insert trigger below)

-7 Error while updating result set (see Update trigger below)

-8 Error while deleting result set (see Delete trigger below)

Completed field: Enter the name of a numeric tag that will be toggled when database
commands are successfully executed.

Error Message field: Enter the name of a string tag that will receive detailed error messages, if
errors occur during runtime.

Connection combo-box: Click to select a connection to the target database. All available
connections are listed, as configured with the Database Connection dialog described above.

Type combo-box: Click to specify how the result set will be selected for the worksheet:

Table: Enter a table name and an optional filter condition. (The filter condition is
equivalent to the SQL "Where" clause.) All rows of the table that match the filter condition
are selected.

SQL: Enter a custom SQL "Select" statement.

Note: For Table, Condition and SQL Statement, you can enter the names of project
tags that contain the desired information. This lets you programmatically change the
selection during runtime. However, tag names must be enclosed in curly brackets ({}) to
distinguish them from literal strings. Also, you must release an existing selection before you
open a new one; see Close Query below.

Cursor Triggers area…

Select field: Enter any tag; when the value of the tag changes, a new cursor opens the
first row of the result set and copies those values to the tags configured in the worksheet
body.

Next field: Enter any tag; when the value of the tag changes, the cursor moves to the
next row of the result set and copies those values to the tags configured in the worksheet
body.

Advanced button: Click to open the Advanced Cursor Options dialog…

Figure 4. Advanced Cursor Options dialog

Close Query field: Enter any tag; when the value of the tag changes, the cursor
releases the result set.

Previous field: Enter any tag; when the value of the tag changes, the cursor moves
to the previous row of the result set and copies those values to the tag configured in
the worksheet body.

Total number of rows field: Enter a numeric tag that will receive the total number
of rows in the result set.

Current row number field: Enter a numeric tag that will receive the number of the
current row (i.e., the position of the cursor). When a result set is first opened using
the Select trigger, this number is 1. Each Next trigger increments this number, and
each Previous trigger decrements it.

Table Triggers area…

Insert field: Enter any tag; when the value of the tag changes, a new row is inserted with
the current values of the tags configured in the worksheet body.

Update field: Enter any tag; when the value of the tag changes, all rows of the result set
are overwritten with the current values of the tags configured in the worksheet body.

Delete field: Enter any tag; when the value of the tag changes, all rows of the result set
are deleted.

Note: Table triggers are available only when Type is set to Table, because these
operations work on the entire table row.

Worksheet Body

In the body of the worksheet, you can map project tags to the columns (fields) of the result set. For
each row of the body, enter a Tag Name and its corresponding Column. Which columns are
available depends on how the result set is selected, and how it is selected may change during
runtime, so be sure to map all necessary columns.

Parent topic: Background Tasks
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Communication with Other Devices
Communication tasks/worksheets are used to exchange tag values with other IWS projects, remote
devices such as PLCs and transmitters, and any other systems that implement supported protocols
like OPC and DDE.

To enable communication, configure the worksheets in the Comm tab of the Project Explorer.

Configuring direct communication with a remote device
A communication driver is a DLL containing specific information about the remote equipment
and implements the communication protocol. Drivers for dozens of common and not-so-
common devices are installed with InduSoft Web Studio.

Configuring an OPC Client connection to an OPC Server
The OPC Client task/worksheet is used to communicate with any system that implements the
OPC Server protocol.

Configuring an OPC UA Client connection to an OPC UA Server
The OPC UA Client task/worksheet is to communicate with any system that implements the OPC
UA Server protocol.

Configuring an OPC Xi Client connection to an OPC Xi server
The OPC Xi Client task/worksheet is to communicate with any system that implements the OPC
Xi Server protocol.

Configuring a TCP/IP Client connection to another project
The TCP/IP Client task/worksheet is used to communicate with another IWS project server.

Configuring a DDE Client connection to a DDE Server
The DDE Client task/worksheet is used to configure a DDE Client connection to a DDE Server
application such as Microsoft Excel (or any other Windows program supporting this interface).

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Communication with Other Devices >

Configuring direct communication
with a remote device
A communication driver is a DLL containing specific information about the remote equipment and
implements the communication protocol. Drivers for dozens of common and not-so-common devices
are installed with InduSoft Web Studio.

(InduSoft also provides a toolkit to develop new communication drivers. For more information,
please contact Customer Support.)

The Drivers task/worksheet allows you to define the communication interface (or interfaces) between
the project and remote equipment; such as a PLC, a single-loop, and transmitters.

Note: Consult the Help menu for a description of the functions and characteristics that are
standard for all drivers. When developing a project, you can also refer to the specific
documentation provided with each communication driver. This documentation is usually located
in the DRV directory.

To configure a communication driver, you must specify the interface parameters (for example, the
station address and the baud rate), specify the equipment addresses, and then link them to project
tags.

Use one of the following methods to add or remove a driver:

On the Insert tab of the ribbon, in the Communication group, click Add/Remove Driver; or

Right-click the Drivers folder in the Project Explorer, and then click Add/Remove drivers on
the shortcut menu.

Both methods open a Communication Drivers dialog, which displays a list of available drivers.

Figure 1. Communication Drivers dialog

Use the parameters on this dialog, as follows:

Available Drivers field: Lists all available drivers and a brief description of each.

Help button: Click to open the Help menu, which contains detailed configuration instructions
for the driver currently highlighted in the Available Drivers field.

Select button: Click to select the driver currently highlighted in the Available Drivers field.

Selected Drivers field: Lists all selected drivers and their descriptions (if available).

Remove button: Click to remove a driver currently highlighted in the Selected Drivers field.

When you click OK in the Communications Driver dialog, you create a subfolder for the selected
driver(s) in the Drivers folder located on the Comm tab.

You can right-click on a driver subfolder to access the Settings option, which opens the
Communications Parameters dialog.

Figure 2. Sample Communications Parameters dialog

Use the parameters on this dialog, as follows:

Serial Encapsulation field: Enables serial drivers to communicate with modem, TCP/IP or UDP
connections. This setting is supported only for serial drivers developed with the UNICOMM
library, which includes most of the serial drivers available in the product.

CAUTION:

The Modem option is not supported for Pocket PC v3.00 or older.

Note: This section covers only the None option, which enables the driver to connect using
a normal serial channel. Please refer to "Using TCP/IP and UDP Encapsulation" and "Using
Modem Connections" below for more information about other encapsulation modes. "Serial
Encapsulation Tests" below lists the drivers that have been tested with modem, TCP/IP and
UDP modes.

COM field: Click to select a serial communication port.

Baud Rate, Data Bits, Stop Bits, and Parity fields: Click to select parameters for a serial
port configuration.

Long1, Long2, String1, and String2 fields: These fields are driver custom settings. In the
example above, the driver uses Long1 to set up the error detection method and String1 to
define the PLC family type.

Advanced button: Click to open the Advanced settings dialog. Use this dialog to change the
default driver parameters.

Figure 3. Advanced Settings dialog

Specify or change the default driver parameters as follows:

Timeout (ms) area:

Start message field: Specify the timeout for the message start.

End message field: Specify the timeout for the message end.

Interval between char field: Specify the timeout between each character.

Wait CTS field: Specify the timeout for the Clear to Send wait.

Handshake area:

Control RTS drop-down list: Specify whether to use the "Request to Send" control.

Verify CTS drop-down list: Specify whether to use the "Clear to Send" type of verification.

Disable DTR checkbox: Click (enable) this box to disable the DTR function (the driver will
not set the DTR signal before starting the communication).

Enable IR checkbox (only available on Windows Embedded target systems): Click
(enable) this box to enable the serial driver to use an Infrared interface (COM2 port)
instead of a standard serial port to communicate with the device (such as the PLC, I/O,
hand-held computers, and so forth).

Protocol area:

Station field: Some slave drivers such as the Modbus Slave (MODSL) require a slave
network address. Use this field to specify the slave address.

Retries field: Type a numeric value to specify how many times the driver will attempt to
execute the same communication command before considering a communication error for
this command.

Buffers length (bytes) area:

Tx Buffer field: Specify the transmission buffer length (in bytes).

Rx Buffer field: Specify the reception buffer length (in bytes).

Simultaneous Requests area (available only on selected drivers):

Maximum field: Specify the maximum number of requests that may be sent
simultaneously to all connected devices.

Maximum per station field: Specify the maximum number of requests that may be sent
simultaneously to a single device.

Note: The maximum number of simultaneous requests depends on the device and protocol
specifications. Please consult the device manufacturer's documentation.

The development application provides two interfaces, which you can use to configure the driver
(associating project tags to device addresses):

MAIN DRIVER SHEET: Provides the easiest method for configuring communication between
project tags and device addresses. This interface allows you to automatically group tags to
provide the best performance during runtime. You cannot use this interface to control the time
needed to scan a group of tags individually.

STANDARD DRIVER SHEETS: Allows you to control the time needed to scan a group of tags
individually.

You can use both sheets at the same time.

Using TCP/IP and UDP Encapsulation

Most of the serial drivers allow the use of TCP/IP or UDP/IP encapsulation. The encapsulation mode
has been designed to provide communication with serial devices connected to terminal servers on
your ethernet or wireless networks. A terminal server can be seen as a virtual serial port. It converts
TCP/IP or UDP/IP messages on your Ethernet or Wireless network to serial data. Once the message
has been converted to a serial form, you can connect standard devices that support serial
communications to the terminal server. The following diagram provides one example of applying this
solution:

Figure 4. TCP/IP Encapsulation

You can enable the encapsulation by following the steps below:

Right-click on the driver's folder, and then choose Settings from the shortcut menu.

This will give you access to the communication parameters.

1.

In the Serial Encapsulation field, select TCP/IP or UDP/IP:2.

The following fields are available:

IP Address field: Specify the IP Address for the Terminal Server. This field accepts tags in curly
brackets.

Port Number field: Enter the TCP/IP or UDP/IP port number.

Status Tag field: This field is available only when using TCP/IP. The tag on this field receives
the value 1 when the TCP/IP connection is established; otherwise, it receives 0.

Server Mode field: The TCP/IP encapsulation allows the Server Mode, making the remote client
responsible for establishing the connection to enable the communication.

Using Modem Connections

Most of the serial drivers allow the use of modem connections. The modem connection has been
designed to enable communications with remote serial devices connected through a phone line. The
following diagram provides one example of applying this solution:

Figure 5. Modem Connection

You can enable the modem connection by following the steps below:

Right-click on the driver's folder, and then choose Settings from the shortcut menu.

This will give you access to the communication parameters.

1.

In the Serial Encapsulation menu, select Modem:2.

2.

CAUTION:

The Modem option is not supported for Pocket PC v3.00 or older.

The following fields are available:

Name drop-down list: Select the modem that the driver will use to establish the connection. If
you do not know the modem name, use the Auto Detect option. The Auto Detect 1 will use the
first modem available, Auto Detect 2 will use the second, Auto Detect 3 will use the third,
and Auto Detect 4 will use the fourth.

Phone field: Enter a phone number that the driver will use to connect to the remote device.
This field accepts tags between curly brackets.

Settings button: Click on this button to configure the modem settings. The window that
displays when you click on this button depends on the operating system that you are using and
on the modem type.

CAUTION:

The settings configured by clicking on this button are not saved with your
project. The information is saved on the operating system registry, and they are
valid only in the computer that you are interacting with. If you install your
project on another computer, you will have to reconfigure these settings.

Connection button: Click to open the Connection Control window. The default connection
settings should suffice for most of the projects. However, you can take full control over the
connection, and also enable incoming calls, by clicking on this button.

Figure 6. Connection Control dialog

Dial out trigger field: When the value of the tag configured in this field changes, the
driver will try to connect to the remote device. If the connection has already been
established, the command is ignored. You do not have to use this field if you are using
Auto Connect.

Hang up trigger field: When the value of the tag configured in this field changes, the
driver will disconnect from the remote device. If the device is disconnected the command
is ignored. You do not have to use this field if you are using Disconnect call if idle for more
than.

Auto Connect field: When this option is enabled, the driver will try to connect to the
remote device before sending any information. If the connection fails, the next attempt will
be made after the Retry Interval has expired.

Disconnect call if idle for more than field: When this option is checked, the driver will
automatically disconnect from the remote device if no communication is performed after
the time you specified.

Enable incoming calls field: Check this option if you want to enable the driver to receive
calls from the remote device. You can use the Hang up trigger to drop the call once it has
been established. Notice that one driver can use both incoming calls and outgoing calls.

Status area

Code field: Enter with a tag that will receive one of the following codes when the driver is
running:

0 = Disconnected

1 = Connected

2 = Dialing

3 = Dropping

4 = Closing Line

Description field: Enter with a tag that will receive a complete description of the current
status. The description is associated with the Code field; however, it brings some
additional information about the current status.

Serial Encapsulation Tests

Most of the serial drivers should work with every serial encapsulation mode. However, most of the
drivers were developed before the encapsulation modes had been created. The following table lists
the drivers fully tested with certain encapsulation modes; if the driver that you intend to use is not

listed and you are unsure whether it will work, please contact your distributor.

Driver Modem TCP/IP UDP/IP

MODSL X X X

ABKE X X X

MODBU X X

OMETH X

X = Item has been tested

Main Driver Sheet
The development application automatically inserts the MAIN DRIVER SHEET into the driver
folder as soon as you add the driver to your project.

Standard Driver Sheets
In addition to the unique MAIN DRIVER SHEET that is available for each driver, you can create
several STANDARD DRIVER SHEETS for each driver. The STANDARD DRIVER SHEETS provide
additional fields, which you can use to control communication.

Parent topic: Communication with Other Devices
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Communication with Other Devices > Configuring direct communication with a remote device >

Main Driver Sheet
The development application automatically inserts the MAIN DRIVER SHEET into the driver folder as
soon as you add the driver to your project.

Note: The MAIN DRIVER SHEET is not available for all drivers.

To configure the MAIN DRIVER SHEET, right-click on the icon, and select Open from the pop-up or
just double-click on the icon.

The MAIN DRIVER SHEET dialog displays (see the following figure).

Figure 1. Sample MAIN DRIVER SHEET

The MAIN DRIVER SHEET worksheet is divided into two areas:

Header area (top section), contains parameters that affect the all tags configured in the Body
area of this worksheet; and

Body area (bottom section), where you define the relationship between tags in the project and
their field equipment address.

Use the Header area parameters as follows:

Description field: Type a description of the MAIN DRIVER SHEET for documentation purposes.

Disable field: Type a tag or an expression to enable and disable the communication of each
MAIN DRIVER SHEET on the fly.

Type a value (or expression result) that is greater than zero to disable the MAIN DRIVER
SHEET.

Type a zero (or leave this field blank) to enable the MAIN DRIVER SHEET.

Read Completed field: Type in a tag and the communication driver toggles the tag when it
completes a read command.

Read Status field: Type in a tag, which is updated with the status of the last read command.

Write Completed field: Type in a tag and the communication driver toggles the tag when it
completes a write command.

Write Status field: Type in a tag, which is updated with the status of the last write command.

Min and Max checkbox: Click (check) to specify minimum and maximum values for data from
the field equipment.

Min and Max fields (become active only when you enable the Min and Max checkbox): Type a
range of values, which can be converted into an engineering format.

The project uses these fields to determine a minimum/maximum range of values for data from
the field equipment. The scaling is done automatically. You must configure the engineering
range using the Min and Max parameters on the Tag Properties dialog. This range affects all
tags in the worksheet, except those with customized Min and Max values, as specified in the
Body area of the driver sheet (Min and Max columns).

Use the Body area parameters as follows:

Tag Name field: Type the name of a project tag to be used by the communication driver.

Station field: Type the number of the equipment station within the network. The syntax in this
field varies with each communication driver. Refer to the appropriate driver's documentation for
further information.

Tip: For some drivers, if you've configured the driver to do serial encapsulation via TCP/IP
or UDP/IP, then the station may be specified using the following format:

IP_address:port_number|station

For example:

10.169.25.18:1234|Station5

To see if this feature is supported on your selected driver, refer to the driver's
documentation.

Tip: You can configure a tag name (string) between curly brackets in this field. In this
case, the tag value will be the Station used by the driver. Therefore, you can change the
station dynamically during runtime.

Configuring a string tag between curly brackets in the Station field of the Main Driver Sheet
(MDS) is especially useful when configuring projects for redundant PLCs. Changing the
value of the tag configured in the Station field, you can switch automatically from one PLC
to the other in case of a failure of the primary PLC (hot/Stand-by).

I/O Address field: Type the address of the field equipment related to the project tag. The
syntax in this field varies with each communication driver. Refer to the appropriate driver's
documentation for further information.

Action field: Specify the communication direction, using one of the following options:

Read (the project continuously reads the address from the field device and updates the
Tag value.)

Write (the project writes the tag value to the field device when the tag value changes.)

Read+Write (Combines the procedures of both the Read and Writeparameters.)

Scan field: Specify how the read commands are enabled for each tag, using one of the following
options:

Always permanently enables the read command so that the tag updates regularly,
regardless of whether it's currently being used.

Tip: By default, the project will trigger a read every 600 milliseconds, which is the
rate at which the system tag BlinkSlow updates. To change the rate, add the following
key to the project file (i.e., project_name.APP):

[Options]

MainDrvAlwaysTrigger=tagname

tagname can be another system tag (e.g., BlinkFast, Second, Minute) or a tag that
you've created. Whenever the value of the tag changes, the project will read from the
device.

Screen enables the read command only when the tag is used in at least one open screen.

Tip: To improve performance, select Screen whenever possible. The project may not
need to keep updating tags that will not be displayed.

Div field: Specify the division constant when scale adjustment is required. This value is a
division factor in a read operation and a multiplication factor in a write operation. Do not use this
field if you are already using Min or Max in the configuration body.

Add field: Specify the addition constant when scale adjustment is required. This value is an
addition factor in a read operation and a subtraction factor in a write operation. Do not use this
field if you are already using Min or Max in the configuration body.

Parent topic: Configuring direct communication with a remote device
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Communication with Other Devices > Configuring direct communication with a remote device >

Standard Driver Sheets
In addition to the unique MAIN DRIVER SHEET that is available for each driver, you can create
several STANDARD DRIVER SHEETS for each driver. The STANDARD DRIVER SHEETS provide
additional fields, which you can use to control communication.

To open a STANDARD DRIVER SHEET, right-click on a driver subfolder and select Insert from the
resulting popup (see the following figure).

Figure 1. Sample STANDARD DRIVER SHEET

The STANDARD DRIVER SHEET dialog is divided into two areas:

Header area (top section), contains parameters that affect the all tags configured in the Body
area of this worksheet

Body area (bottom section), where you define the relationship between tags in the project and
their field equipment address.

Use the Header area parameters as follows:

Description field: Type a description of the STANDARD DRIVER SHEET for documentation
purposes.

Increase Priority checkbox: Click (check) to keep the reading and writing commands for this
sheet on the top of the communication queue whenever they are triggered.

CAUTION:

You must give special attention to this worksheet when you enable the Increase
Priority option. If the worksheet keeps triggering communication commands, the

project may never be able to execute the other driver sheets.

Read Trigger field: Type a tag that triggers the project to read the worksheet automatically
when you change this tag's value.

Enable Read when Idle field: Type a tag or constant value. Use a tag (or constant) value
greater than zero, to enable reading from the equipment.

CAUTION:

If you use a constant value (other than zero), be sure that your project requires
a continuous reading because this value places a reading request in every
communication scan.

Read Completed field: Type in a tag and the communication driver toggles the tag when it
completes a read command.

Read Status field: Type in a tag and the communication driver updates the tag with the status
of the last read command.

Write Trigger field: Type a tag value to activate a group reading. Whenever you change this
tag value, the program writes an equipment worksheet.

Enable Write on TagChange field: Type a tag or constant value (not zero) to enable the
communication driver to check the worksheet continuously for changes in the tag value. If a
change occurs, the project writes this value to an address in the field equipment.

Write Completed field: Type in a tag and the communication driver toggles the tag in this field
when a write command completes.

Write Status field: Type in a tag and the communication driver updates the tag with the status
of the last write command.

Station field: Type the equipment station number within the network. The syntax in this field
varies with each communication driver. Refer to the appropriate driver's documentation for
further information.

Tip: For some drivers, if you've configured the driver to do serial encapsulation via TCP/IP
or UDP/IP, then the station may be specified using the following format:

IP_address:port_number|station

For example:

10.169.25.18:1234|Station5

To see if this feature is supported on your selected driver, refer to the driver's
documentation.

Header field: Specify the data type and/or initial address to be read or written in the
equipment. The syntax in this field varies with each communication driver. Refer to the
appropriate driver's documentation for further information.

Note: You can use text in the Station and Header fields with tag values using the text
{tag} syntax.

Min and Max checkbox (not labeled): Click (check) to specify the minimum and maximum
values for field equipment data.

Min and Max fields (become active only when you enable the Min and Max checkbox): Type a
range of values to be converted into an engineering format. These fields determine the
minimum and maximum range of values. These values affect all tags in the worksheet.

For example, Memory holds values from 0 to 4095, which means 0% to 100% in the user
interface. So for this example, you must specify 0 to 100 for the min and max tag parameters.

Use the Body area parameters as follows:

Tag Name field: Type a tag name for the communication driver to use.

Address field: Type a field equipment address (or address offset) related to the project tag.
The syntax in this field varies with each communication driver. Refer to the appropriate driver's
documentation for further information.

Div field: Specify a division constant to use when scale adjustment is required. The project uses
this value as a division factor in a read operation and a multiplication factor in a write operation.
Do not use this field if you are already using Min or Max in the configuration body.

Add field: Specify an addition constant to use when scale adjustment is required. The project
uses this value as an addition factor in a read operation and a subtraction factor in a write
operation. Do not use this field if you are already using Min or Max in the configuration body.

Note: The maximum number of tags in each driver communication worksheet is 512. For
some drivers, this number may be smaller. For more information, refer to your driver
documentation.

For read operations:

tag = (value in the equipment) / Div + Add

For write operations:

value in the equipment = (tag - Add) * Div

If you leave the cells empty in the Div and Add fields, this function is ignored.

Parent topic: Configuring direct communication with a remote device
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Communication with Other Devices >

Configuring an OPC Client
connection to an OPC Server
The OPC Client task/worksheet is used to communicate with any system that implements the OPC
Server protocol.

This task implements the OPC standard as described in the OLE for Process Control Data Access
Standard Version 1.0A document, which is available at the OPC Foundation web site.

Note: Before using the OPC Client task/worksheet in your project, you must make sure the OPC
server software is properly installed and configured on the system to which you want to connect.

To configure a new connection, insert a new OPC Client worksheet on the Comm tab of the Project
Explorer.

Figure 1. Sample OPC Client worksheet

Use the following parameters in the configuration table for OPC:

Description text box: Type a description of the OPC task for documentation purposes only.
(The OPC Client task ignores this information.)

Server Identifier: Type the name of the server you want to connect. If the server is already
installed on the computer, you can select the server name from the list.

Disable: Type a tag or a constant with a value other than 0, to disable communication with the
OPC server. Specify 0, or leave the field blank to enable communication.

Read Update Rate: Specify how often the server should update this group (in milliseconds).

Specify 0 to indicate the server should use the fastest practical rate.

Percent Deadband (valid for analog items only): Specify how much percent change in an item
value should cause a notification by the server.

Status: Type the name of a tag to receive the status of the connection. Good status is 1.

Remote Server Name: Node name or IP address of server on node network.

Read before writing checkbox: Check this option to force your project to read the original
values of items on the OPC server just before writing new values to the server. The project does
this by first buffering the new values to be written and then reading the original values from the
server. Only after the project is synchronized with the server are the new values written from
the buffer to the server.

Read after writing checkbox: Check this option to force your project to read back the new
values of items on the OPC server just after the project has written those values.

CAUTION:

The Read before writing and Read after writing options are offered because the
OPC Client/Server specification says that the value of an item on the client — in
this case, your project — should not change unless the server sends the change.
That way, the client always stays in sync with the server.

Your project, however, may be designed to change those values according to
runtime processes or user input. Therefore, the best way to change the values
while staying in sync with the server is to make it seem like the changes
originate on the server. With both options enabled, the following sequence of
events happens on every scan of the OPC worksheet:

The new values on the client are buffered.1.

The original values on the server are read to the client — that is, the client is
synchronized with the server.

2.

The new values are written from the buffer to the server.3.

The new values on the server are read to the client — that is, the client is
again synchronized with the server.

4.

At the end of each scan, the values reflect what's happening in your project even
though, technically speaking, the project is merely staying in sync with the
server.

Both options should be enabled in most projects. In some projects, however, this
may cause items to bounce between the original values and the new values. If
this is a problem, try moving those items to another OPC worksheet where the
Read before writing and Read after writing options are disabled.

Accept Tag Name in the Item column checkbox: When this option is checked, the text
configured between curly brackets in the Item field is resolved as a Tag Name (string tag). In
this case, the value of this tag is used as the name of the item from the OPC Server, allowing
the user to point to different item names during runtime, by changing the value of the tag(s)
configured in the OPC Client worksheet (Item column).

When the Accept Tag Name in the Item column option is unchecked, all characters
configured in the Item column are considered part of the Item name (including the curly
brackets).

Tag Name: Type the names of tags linked to the server items.

Item: Enter the name of the server's items. After selecting an OPC Server, you can select items
from the Server using the OPC Browser. Right-click in the Item field and select the OPC
Browser option.

Tip: You can configure a tag name between curly brackets (e.g., {TagName}) in this field,
allowing the user to change the item names dynamically, during runtime.

Scan: Specify one of the following:

Screen: The project performs an update when you open a screen containing the specified
tag.

Always: The project performs an update in the Read Update Rate specified in the
worksheet header.

Div field: Specify the division constant when scale adjustment is required. This value is a
division factor in a read operation and a multiplication factor in a write operation.

Add field: Specify the addition constant when scale adjustment is required. This value is a
addition factor in a read operation and a subtraction factor in a write operation.

To run the OPC Client runtime task, you can choose to run it automatically on start up, or run the
task manually by clicking Tasks (either local or remote) on the Home tab of the ribbon. After running
this program, a small icon displays in your system tray.

To close the OPC Client runtime task, right-click the icon in the system tray, and click Exit.

Note: IWS and CEView also provide an OPC Server communication task named Studio.Scada.OPC.
This task starts automatically when any OPC Client (local or remote) attempts to connect to the
Studio.Scada.OPC server. An OPC Client can exchange data with the tags database (Project Tags,
System Tags, and Shared tags) using the OPC interface.

In addition, you can start the OPC Server task automatically when you run the project. Select
the OPC Server task in the Execution Tasks dialog (Tasks on the Home tab of the ribbon), click
the Startup button, and specify Automatic.

Tip: You can also use the OPC interface to exchange data between remote stations running
InduSoft Web Studio or CEView. You must configure the OPC Client in one station and you must
execute the OPC Server in the other station.

OPC Troubleshooting

When you are using OPC and have problems establishing communication, you should first verify the
messages in the LogWin.

If you are running the project on a Windows Embedded target system, there are two ways to check
the log:

Remote LogWin1.

Local Log2.

1.

2.

For information about using these logs, please refer to Using the LogWin task.

If you find error messages in the log, look them up in this manual/help system, and follow the
documented steps for solving the problems. (Use <CTRL> + F to find them in the manual; use the
Index to find them in the context sensitive help system.)

If you feel that you need to contact your distributor for technical support, make sure that you provide
them with the following information:

Log file1.

Software vendor and product name of the OPC Server/Client that you are using2.

If possible, a copy or an evaluation version of the OPC Server for testing purposes3.

The contact information for your OPC Server/Client technical support4.

Three possible errors and their resolutions are listed below…

Security

Error Code: 0x80070005 or -2147024891

Reason for error: When the OPC Client tries to connect to the OPC Server, the DCOM layer usually
requires authentication. The computer that is running the OPC Server needs to recognize the user
logged on to the OPC Client computer, and such a user needs to have privileges to access the OPC
Server.

Solution: The first step is to create a single user in both computers that has Administrator privileges
and the same password. Log on with this user to both ends, and then try to establish the connection.

If you cannot use the same user in both computers because of some specific requirement of your
project, or if the problem persists even after you have logged on as the same user, please read the
documents below. They will help you solve the security issues:

DCOM Security Configuration (external link)

Using DCOM with Windows XP + SP2 (external link)

Name Resolution

Error: Couldn't create connection with advise sink, error: -2147022986 (0x80070776)

Reason for error: There is a problem resolving the computer name.

Solution: This problem can be solved by specifying the IP address of the server instead of specifying
the computer name.

Proxy for Windows CE

Error: OPCServer: IIndCP::Advise - Could not query callback interface: 0x80040155

Reason for error: Your Windows Embedded device is missing the OPCCOMN_PS.dll.

Solution: You should download the .dll to the device and register it. The .dll should be available with
your IWS distribution, most probably in […]\InduSoft Web Studio v7.0\Redist\Wince

x.x\processor\

If you do not find the .dll in the folder for your processor, contact your IWS distributor.

Parent topic: Communication with Other Devices
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Communication with Other Devices >

Configuring an OPC UA Client
connection to an OPC UA Server
The OPC UA Client task/worksheet is to communicate with any system that implements the OPC UA
Server protocol.

About OPC UA

The OPC UA Client task/worksheet uses the new OPC Unified Architecture protocol introduced by the
OPC Foundation. According to the foundation:

The existing OPC COM based specifications have served the OPC Community well over the past
10 years, but as technology moves on so must our interoperability standards. Here are the
factors that influenced the decision to create a new architecture:

Microsoft has deemphasized COM in favor of cross-platform capable Web Services and SOA
(Service Oriented Architecture)

OPC Vendors want a single set of services to expose the OPC data models (DA, A&E, HDA ...)

OPC Vendors want to implement OPC on non-Microsoft systems, including embedded devices

Other collaborating organizations need a reliable, efficient way to move higher level
structured data

In other words, OPC UA is intended to be a platform- and language-independent protocol that is also
backwards-compatible with OPC "Classic" systems. For more information, go to
http://www.opcfoundation.org/UA/.

Note: This feature includes cryptographic software written by Eric Young (eay@cryptsoft.com).

Configuring a new OPC UA server connection

To configure a new connection to an OPC UA server:

Do one of the following:

On the Insert tab of the ribbon, in the Communication group, click OPC Client and then
select OPC UA Connection from the drop-down list; or

In the Comm tab of the Project Explorer, right-click OPC UA Connections and then click
Insert on the shortcut menu.

The UA Server Configuration dialog is displayed:

1.

http://www.opcfoundation.org/UA/

Figure 1. UA Server Configuration dialog

In the Connection Name box, type a name for the connection.

This name will be displayed in the OPC UA Connections folder in the Project Explorer, and it is
the name you will look for when you configure the OPC UA Client worksheet.

2.

In the End point box, type the URL of the OPC UA server to which you want to connect.

If you don't know the URL, then click the browse button to the right of the box. The UA
Discovery dialog is displayed:

Figure 2. UA Discovery dialog

Use this dialog to find the discovery server, which publishes a list of OPC UA servers on the
network, and then select the server to which you want to connect.

3.

In the User Name and Password boxes, type your login credentials for the OPC UA server.4.

If the OPC UA server is configured to require a secure connection, then you must take the extra
steps of installing the server certificate in your project and generating a client certificate to be
installed on the server:

Get the server certificate and then save it in the Config sub-folder of your project foldera.

5.

(e.g., […]\My Documents\InduSoft Web Studio v7.0

Projects\project_name\Config\). The method for getting the server certificate depends

on the server, so please consult the server vendor.

a.

In the UA Server Configuration dialog, click Security. The OPC UA Security dialog is
displayed.

b.

In the Server Certificate list, select the server certificate. (All certificates saved in the
Config sub-folder should be listed here.)

c.

In the Security Policy and Message Security Mode lists, select the appropriate options
for how the OPC UA server is configured. Again, please consult the server vendor.

d.

Click Generate Certificate. The client certificate is generated and saved in the Config
sub-folder.

e.

Click OK to close the OPC UA Security dialog.f.

Install the client certificate on the OPC UA server. The method for doing this depends on
the server, so again, please consult the server vendor.

g.

For more information, download the white paper "The OPC UA Security Model for
Administrators" from the OPC Foundation.

Click OK. The connection is saved in the OPC UA Connections folder in the Project Explorer.6.

Configuring a new OPC UA Client worksheet

To configure a new OPC UA Client worksheet:

Do one of the following:

On the Insert tab of the ribbon, in the Communication group, click OPC Client and then
select OPC UA Client from the drop-down list; or

In the Comm tab of the Project Explorer, right-click OPC UA and then click Insert on the
shortcut menu.

A new OPC UA Client worksheet is displayed:

Figure 3. OPC UA Client worksheet

1.

In the Description box, type a description of the worksheet. This is for documentation
purposes only and does not affect the execution of the worksheet.

2.

In the Connection list, select the OPC Server connection that you configured earlier.3.

For more connection options, click Advanced.

The Advanced dialog is displayed:

4.

Review the options and configure as needed:

Area / Element Description

Read actions Enable
subscription

When this value is TRUE (non-zero), the client will constantly
request updates from the server.

Note: This is enabled by default. If it is disabled, then you
must use read triggers (see below).

Maximum
group size

The maximum number of tag reads that may be performed
in a single read operation.

For example, if you have 1000 items/rows configured in the
worksheet and Maximum group size is set to 100, then 10
read operations will be performed during each scan of the
worksheet.

Synchronous
read trigger

When the value of this tag/expression changes, the
worksheet is scanned and all tag values are read from the
server. The project waits for the scan to complete before
continuing.

Area / Element Description

Asynchronous
read trigger

When the value of this tag/expression changes, the
worksheet is scanned and all tag values are read from the
server. The project continues running without waiting for the
scan to complete.

Read count The name of a tag (Integer type) that will receive a count of
the number of read operations performed since the project
was run.

Status The name of a tag (Integer type) that will receive a status
code for the last read operation performed by a trigger.

Status
message

The name of a tag (String type) that will receive the
corresponding status message.

Maximum
aging

The maximum age (in milliseconds) of values that will be
accepted from the server's cache. If a value is older than
this, then the server will be forced to get the latest value
from the target device.

Write
actions

Enable write
on tag
change

When this value is TRUE (non-zero), a write will be
automatically performed whenever the value of the project
tag changes.

Note: This is enabled by default. If it is disabled, then you
must use write triggers (see below).

Maximum
group size

The maximum number of tag writes to be performed in a
single write operation.

For example, if you have 1000 items/rows configured in the
worksheet and Maximum group size is set to 100, then 10
write operations will be performed during each scan of the
worksheet.

Synchronous
write trigger

When the value of this tag/expression changes, the
worksheet is scanned and all tag values are written to the
server. The project waits for the scan to complete before
continuing.

Asynchronous
write trigger

When the value of this tag/expression changes, the
worksheet is scanned and all tag values are written to the
server. The project continues running without waiting for the
scan to complete.

Write count The name of a tag (Integer type) that will receive a count of
the number of write operations performed since the project
was run.

Status The name of a tag (Integer type) that will receive a status
code for the last write operation performed by a trigger.

Status
message

The name of a tag (String type) that will receive the
corresponding status message.

Asynchronous
read trigger

When the value of this tag/expression changes, the
worksheet is scanned and all tag values are read from the
server. The project continues running without waiting for the
scan to complete.

Read count The name of a tag (Integer type) that will receive a count of
the number of read operations performed since the project
was run.

Status The name of a tag (Integer type) that will receive a status
code for the last read operation performed by a trigger.

Status
message

The name of a tag (String type) that will receive the
corresponding status message.

Maximum
aging

The maximum age (in milliseconds) of values that will be
accepted from the server's cache. If a value is older than
this, then the server will be forced to get the latest value
from the target device.

Write
actions

Enable write
on tag
change

When this value is TRUE (non-zero), a write will be
automatically performed whenever the value of the project
tag changes.

Note: This is enabled by default. If it is disabled, then you
must use write triggers (see below).

Maximum
group size

The maximum number of tag writes to be performed in a
single write operation.

For example, if you have 1000 items/rows configured in the
worksheet and Maximum group size is set to 100, then 10
write operations will be performed during each scan of the
worksheet.

Synchronous
write trigger

When the value of this tag/expression changes, the
worksheet is scanned and all tag values are written to the
server. The project waits for the scan to complete before
continuing.

Asynchronous
write trigger

When the value of this tag/expression changes, the
worksheet is scanned and all tag values are written to the
server. The project continues running without waiting for the
scan to complete.

Write count The name of a tag (Integer type) that will receive a count of
the number of write operations performed since the project
was run.

Status The name of a tag (Integer type) that will receive a status
code for the last write operation performed by a trigger.

Status
message

The name of a tag (String type) that will receive the
corresponding status message.

Area / Element Description

Reload trigger Indirect tags (e.g., {MyTag}) configured in the body of the
worksheet will be reloaded only when the value of this
tag/expression changes.

Refresh IDs on startup When this option is selected, the node IDs in the worksheet
will be refreshed from the specified item paths every time the
project is run.

Note: Refreshing IDs like this may cause the project to take
longer to start up, so if you select this option, then you
should also specify a root node (see below) to limit how
much of the server's list of items must scanned.

Note: IWS's OPC UA Client does not normally use the Triggering Mode that is defined the
OPC UA protocol. Instead, it allows any change in any tag/expression to be used as a
trigger. If you want to use Triggering Mode, configure one worksheet to read the trigger
values and then configure another worksheet that specifies the read values as triggers.

Click OK to close the Advanced dialog and return to the worksheet.5.

In the Status box, type the name of a tag (Integer type) that will receive connection status
codes during project runtime.

6.

In the Status Message box, type the name of a tag (String type) that will receive the
corresponding status messages.

7.

In the Publish Rate box, type the frequency (in milliseconds) at which the client will request
updates from the server.

8.

In the Disable box, type a tag/expression. When the value is TRUE (non-zero), the worksheet
will not be executed.

9.

In the Root node or view box, specify the server node that will serve as the root for all items
in the worksheet body. Specifying a root node makes it easier to find items and improves
runtime performance.

10.

For each row of the worksheet body, specify the following:

Tag Name: The name of a project tag.

You may use indirect tags (e.g., {MyTag}), but if you do, then be sure to configure the
Reload trigger option above.

Item: The server item with which the project tag should be associated.

To browse the server's list of items, right-click in this field and then click Browse on the
shortcut menu.

Scan: If Always, then the row is continuously scanned during runtime. If Screen, then
the row is scanned only when a project screen that uses the specified tag is open.

Div: For scaling — the value is divided by this number when reading from the server, and
it is multiplied by this number when writing to the server.

Add: For scaling — this number is added to the value when reading from the server, and it
is subtracted from the value when writing to the server.

11.

12.

Reload trigger Indirect tags (e.g., {MyTag}) configured in the body of the
worksheet will be reloaded only when the value of this
tag/expression changes.

Refresh IDs on startup When this option is selected, the node IDs in the worksheet
will be refreshed from the specified item paths every time the
project is run.

Note: Refreshing IDs like this may cause the project to take
longer to start up, so if you select this option, then you
should also specify a root node (see below) to limit how
much of the server's list of items must scanned.

Note: IWS's OPC UA Client does not normally use the Triggering Mode that is defined the
OPC UA protocol. Instead, it allows any change in any tag/expression to be used as a
trigger. If you want to use Triggering Mode, configure one worksheet to read the trigger
values and then configure another worksheet that specifies the read values as triggers.

Click OK to close the Advanced dialog and return to the worksheet.5.

In the Status box, type the name of a tag (Integer type) that will receive connection status
codes during project runtime.

6.

In the Status Message box, type the name of a tag (String type) that will receive the
corresponding status messages.

7.

In the Publish Rate box, type the frequency (in milliseconds) at which the client will request
updates from the server.

8.

In the Disable box, type a tag/expression. When the value is TRUE (non-zero), the worksheet
will not be executed.

9.

In the Root node or view box, specify the server node that will serve as the root for all items
in the worksheet body. Specifying a root node makes it easier to find items and improves
runtime performance.

10.

For each row of the worksheet body, specify the following:

Tag Name: The name of a project tag.

You may use indirect tags (e.g., {MyTag}), but if you do, then be sure to configure the
Reload trigger option above.

Item: The server item with which the project tag should be associated.

To browse the server's list of items, right-click in this field and then click Browse on the
shortcut menu.

Scan: If Always, then the row is continuously scanned during runtime. If Screen, then
the row is scanned only when a project screen that uses the specified tag is open.

Div: For scaling — the value is divided by this number when reading from the server, and
it is multiplied by this number when writing to the server.

Add: For scaling — this number is added to the value when reading from the server, and it
is subtracted from the value when writing to the server.

11.

12.

Node ID: The node ID is automatically generated from the full path of the server item.

Save and close the worksheet.12.

Enabling the OPC UA Client task

To enable the OPC UA Client task for runtime:

On the Home tab of the ribbon, in either the Local Management or Remote Management group
(depending on where the project server will be), click Tasks.

The Execution Tasks dialog is displayed.

1.

In the list of tasks, select OPC UA Client.2.

Click Startup.

The Startup dialog is displayed.

3.

Select Automatic, and then click OK.4.

Click OK again to close the Execution Tasks dialog.5.

Parent topic: Communication with Other Devices
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Communication with Other Devices >

Configuring an OPC Xi Client
connection to an OPC Xi server
The OPC Xi Client task/worksheet is to communicate with any system that implements the OPC Xi
Server protocol.

About OPC Xi

The OPC Xi Client task/worksheet uses the new OPC Express Interface protocol introduced by the
OPC Foundation. According to the foundation:

The OPC Xi interface is the result of collaboration among several OPC vendor companies from
the process industry to develop an easily integrated and secure solution for a variety of plant
communications. OPC Xi's primary objective was to provide a .NET-based migration path from
OPC Classic. Additionally, OPC Xi may be used as a standard .NET WCF interface for newly
developed OPC servers.

In other words, OPC Xi is intended to be a new version of OPC that leverages Microsoft's latest
technologies. For more information, go to http://www.opcfoundation.org/Xi/.

Configuring a new OPC Xi server connection

To configure a new connection to an OPC Xi server:

Do one of the following:

On the Insert tab of the ribbon, in the Communication group, click OPC Client and then
select OPC Xi Connection from the drop-down list; or

In the Comm tab of the Project Explorer, right-click OPC Xi Connections and then click
Insert on the shortcut menu.

The OPC Server Connection dialog is displayed:

Figure 1. OPC Server Connection dialog

1.

http://www.opcfoundation.org/Xi/

In the Connection Name box, type a name for the connection.

This name will be displayed in the OPC Xi Connections folder in the Project Explorer, and it is the
name you will look for when you configure the OPC Xi Client worksheet.

2.

In the Discovery Server list, type or select the URL of the discovery server that publishes a list
of OPC Xi servers on the network. If no discovery server appears to be available, click Refresh
to scan the network again.

Note: This feature requires that the Peer Name Resolution Protocol service be running on
both the client station and and the discovery server. PNRP has been built into Microsoft
Windows since Windows XP Service Pack 2, so this shouldn't be a problem in most
situations.

3.

In the Server list, type or select the URL of the OPC Xi server to which you want to connect. If
the server you want doesn't appear to be available, click Refresh the update the list from the
discovery server.

4.

In the Protocol list, select the network protocol to be used to connect to the server. (For more
information about the available protocols, please refer to Microsoft's documentation for Windows
Communication Foundation.)

Note: If your OPC Xi configuration has different servers/endpoints for each operation, then
do the following:

In the Protocol list, select custom. The Custom button becomes enabled.a.

Click the Custom button. The Endpoints dialog is displayed.b.

5.

b.

Use the dialog to specify the server/endpoint for each operation.c.

In the User Name and Password boxes, type your login credentials for the OPC Xi server.

Note: If the OPC Xi server is using Microsoft Active Directory, then User Name must be in
the domain\username format.

6.

Select Callback to have the server send values to the client only when the values change, or
select Polling to have the client periodically request values from the server.

In most cases, you should select Polling to keep the connection active.

7.

Click OK. The connection is saved in the OPC Xi Connections folder in the Project Explorer.8.

Configuring a new OPC Xi Client worksheet

To configure a new OPC Xi Client worksheet:

Do one of the following:

On the Insert tab of the ribbon, in the Communication group, click OPC Client and then
select OPC Xi Client from the drop-down list; or

In the Comm tab of the Project Explorer, right-click OPC Xi and then click Insert on the
shortcut menu.

A new OPC Xi Client worksheet is displayed:

Figure 2. OPC Xi Client worksheet

1.

In the Description box, type a description of the worksheet. This is for documentation
purposes only and does not affect the execution of the worksheet.

2.

In the Connection list, select the OPC Server connection that you configured earlier.3.

For more connection options, click Advanced.

The Advanced dialog is displayed:

4.

Review the options and configure as needed:

Area / Element Description

Read actions Enable
subscription

When this value is TRUE (non-zero), the client will constantly
request updates from the server.

Note: This is enabled by default. If it is disabled, then you
must use a read trigger (see below).

Maximum
group size

The maximum number of tag reads that may be performed
in a single read operation.

For example, if you have 1000 items/rows configured in the
worksheet and Maximum group size is set to 100, then 10
read operations will be performed during each scan of the
worksheet.

Synchronous
read trigger

When the value of this tag/expression changes, the
worksheet is scanned and all tag values are read from the
server. The project waits for the scan to complete before
continuing.

Asynchronous
read trigger

N/A for OPC Xi Client.

Area / Element Description

Read count The name of a tag (Integer type) that will receive a count of
the number of read operations performed since the project
was run.

Status The name of a tag (Integer type) that will receive a status
code for the last read operation performed by a trigger.

Status
message

The name of a tag (String type) that will receive the
corresponding status message.

Maximum
aging

N/A for OPC Xi Client.

Write
actions

Enable write
on tag
change

When this value is TRUE (non-zero), a write will be
automatically performed whenever the value of the project
tag changes.

Note: This is enabled by default. If it is disabled, then you
must use a write trigger (see below).

Maximum
group size

The maximum number of tag writes to be performed in a
single write operation.

For example, if you have 1000 items/rows configured in the
worksheet and Maximum group size is set to 100, then 10
write operations will be performed during each scan of the
worksheet.

Synchronous
write trigger

When the value of this tag/expression changes, the
worksheet is scanned and all tag values are written to the
server. The project waits for the scan to complete before
continuing.

Asynchronous
write trigger

N/A for OPC Xi Client.

Write count The name of a tag (Integer type) that will receive a count of
the number of write operations performed since the project
was run.

Status The name of a tag (Integer type) that will receive a status
code for the last write operation performed by a trigger.

Status
message

The name of a tag (String type) that will receive the
corresponding status message.

Reload trigger Indirect tags (e.g., {MyTag}) configured in the body of the
worksheet will be reloaded only when the value of this
tag/expression changes.

Refresh IDs on startup N/A for OPC Xi Client.

Click OK to close the Advanced dialog and return to the worksheet.5.

In the Status box, type the name of a tag (Integer type) that will receive connection status6.

7.

Read count The name of a tag (Integer type) that will receive a count of
the number of read operations performed since the project
was run.

Status The name of a tag (Integer type) that will receive a status
code for the last read operation performed by a trigger.

Status
message

The name of a tag (String type) that will receive the
corresponding status message.

Maximum
aging

N/A for OPC Xi Client.

Write
actions

Enable write
on tag
change

When this value is TRUE (non-zero), a write will be
automatically performed whenever the value of the project
tag changes.

Note: This is enabled by default. If it is disabled, then you
must use a write trigger (see below).

Maximum
group size

The maximum number of tag writes to be performed in a
single write operation.

For example, if you have 1000 items/rows configured in the
worksheet and Maximum group size is set to 100, then 10
write operations will be performed during each scan of the
worksheet.

Synchronous
write trigger

When the value of this tag/expression changes, the
worksheet is scanned and all tag values are written to the
server. The project waits for the scan to complete before
continuing.

Asynchronous
write trigger

N/A for OPC Xi Client.

Write count The name of a tag (Integer type) that will receive a count of
the number of write operations performed since the project
was run.

Status The name of a tag (Integer type) that will receive a status
code for the last write operation performed by a trigger.

Status
message

The name of a tag (String type) that will receive the
corresponding status message.

Reload trigger Indirect tags (e.g., {MyTag}) configured in the body of the
worksheet will be reloaded only when the value of this
tag/expression changes.

Refresh IDs on startup N/A for OPC Xi Client.

Click OK to close the Advanced dialog and return to the worksheet.5.

In the Status box, type the name of a tag (Integer type) that will receive connection status6.

7.

5.

codes during project runtime.
6.

In the Status Message box, type the name of a tag (String type) that will receive the
corresponding status messages.

7.

In the Publish Rate box, type the frequency (in milliseconds) at which the client will request
updates from the server.

8.

In the Disable box, type a tag/expression. When the value is TRUE (non-zero), the worksheet
will not be executed.

9.

In the Root node or view box, specify the server node that will serve as the root for all items
in the worksheet body. Specifying a root node makes it easier to find items and improves
runtime performance.

10.

For each row of the worksheet body, specify the following:

Tag Name: The name of a project tag.

You may use indirect tags (e.g., {MyTag}), but if you do, then be sure to configure the
Reload trigger option above.

Item: The server item with which the project tag should be associated.

To browse the server's list of items, right-click in this field and then click Browse on the
shortcut menu.

Scan: If Always, then the row is continuously scanned during runtime. If Screen, then
the row is scanned only when a project screen that uses the specified tag is open.

Div: For scaling — the value is divided by this number when reading from the server, and
it is multiplied by this number when writing to the server.

Add: For scaling — this number is added to the value when reading from the server, and it
is subtracted from the value when writing to the server.

Instance ID: The instance ID is automatically generated from the full path of the server
item.

11.

Save and close the worksheet.12.

Enabling the OPC Xi Client task

To enable the OPC Xi Client task for runtime:

On the Home tab of the ribbon, in either the Local Management or Remote Management group
(depending on where the project server will be), click Tasks.

The Execution Tasks dialog is displayed.

1.

In the list of tasks, select OPC Xi Client.2.

Click Startup.

The Startup dialog is displayed.

3.

Select Automatic, and then click OK.4.

Click OK again to close the Execution Tasks dialog.5.

Parent topic: Communication with Other Devices
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Communication with Other Devices >

Configuring a TCP/IP Client
connection to another project
The TCP/IP Client task/worksheet is used to communicate with another IWS project server.

TheTCP/IP Client and Server tasks enable two or more projects to keep their databases
synchronized. These tasks use the TCP/IP protocol to provide communication between projects.
Before using the TCP/IP Client and Server tasks, you must make sure that TCP/IP (Ethernet)
communication is properly configured and running on both servers.

To configure the server: You do not have to configure anything on the server itself. You just
have to run the IWS TCP/IP Server task. You can choose to run it automatically on start up, or
run the task manually by clicking Tasks (either local or remote) on the Home tab of the ribbon.
After running this program, a small icon displays in your system tray.

To close the IWS TCP/IP Server task: Right-click the TCP/IP Server icon in the system tray
and click Exit.

To configure the client: You must use the TCP/IP Client Configuration program to specify the
server IP address and the tags you want to share with the server on the client system.

The TCP/IP Client Configuration program is located on the Comm tab and it uses the same
commands as the Driver Configuration program.

Figure 1. TCP/IP Client Worksheet Configuration

Use the following parameters to complete the TCP/IP Client Configuration:

Description field: Type a description of the TCP/IP Client worksheet, for documentation
purposes only. The TCP/IP Client task ignores this information.

Connection Status field: Type a tag name and the TCP/IP Client Configuration task will update
this tag according to its connection status. A tag value of zero indicates the connection is okay.
Any other tag value indicates an error code returned by the Windows Socket library.

Disable: Type a tag name in this field. When this tag has any value other than 0, this TCP/IP
worksheet will be disabled. Using this field, you can enable/disable the TCP/IP Client worksheet
during runtime.

Server IP Address field: Type the IP address and Port (optional) of the target server — for
example, 169.254.182.158:123. The Port should be the same on both the Client and Server
stations.

You can also specify a String tag enclosed in curly brackets (e.g., {tagname}) if you want to

dynamically change this address during runtime.

Send Fields checkbox:

Disable this box and the TCP/IP Client/Server tasks exchange only the tag values, and
their TimeStamp and Quality.

Enable this box and the TCP/IP Client/Server tasks also exchange the Min, Max, Ack, Unit,
LoLoLimit, LoLimit, HiLimit, HiHiLimit, RateLimit, DevSetPoint, DevpLimit, and DevenLimit
tag fields.

Note: It is possible to add other fields to the TCP/IP communication or to disable any field
individually. Contact your vendor for more information.

Tag Name field: Type the tags you want to share with the server.

If the tag is an array or a class (or both), the project automatically enables every array position
and class member for TCP/IP communication by default.

To configure a specific array position and/or a specific class member, type the array position
and/or class member in square brackets following the tag name. For example,level[3].member.

Remote Tag field (optional): Type the name of a tag to be linked with the tag you specified in
the Tag Name field. If you leave this field blank, the project uses the same tag name used in
the client and in the server.

Note: If you need to share an array, the tag in the server should contain the same number of
elements as the tag in the client. If the tag is a class, the class definition should be the same in
both server and client programs. If you do not follow these rules, unpredictable results can
occur.

You can run the TCP/IP Client task automatically on start up or run the program manually by clicking
Tasks (either local or remote) on the Home tab of the ribbon. After running this program, a small
icon displays in your system tray.

Only the Client task uses the ConnectionRetryTimeout parameter.

Parent topic: Communication with Other Devices
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Communication with Other Devices >

Configuring a DDE Client connection
to a DDE Server
The DDE Client task/worksheet is used to configure a DDE Client connection to a DDE Server
application such as Microsoft Excel (or any other Windows program supporting this interface).

Dynamic Data Exchange (DDE) is a protocol for dynamic data exchange between Windows
applications, such as Excel. A DDE conversation is an interaction between server and client programs.
IWS provides interfaces that run as clients or as servers. See DDE Client Runtime and DDE Server in
the Runtime Tasks (Tasks on the Home tab of the ribbon).

To run as a server, start the DDE or NetDDE server task as described in Runtime Tasks.

To run as a client, configure the DDE interface worksheet on the Comm tab.

Network Dynamic Data Exchange (NetDDE) is an extension of DDE that works across computers on a
network.

To run IWS as a server to a NetDDE connection, you must start the DDE Server application.

To run IWS as a client to a NetDDE connection, use the same DDE interface worksheets with
the proper configuration to address a IWS project.

Note: When running NetDDE, IWS accepts the WRITE triggers only. To read data, you must
configure a write command on the server computer.

To open a new DDE worksheet, right-click on the DDE folder and click the prompt screen.

A new DDE worksheet displays, as in the following figure.

Figure 1. DDE Worksheet

The DDE worksheet dialog is divided into two areas:

Header area (top section), contains information for the whole group and defines the tags to
start the reading and writing and to receive connection status

Body area (bottom section), where you define tags in the project and items related to the DDE
server application

Every DDE interface is based on addressing an application using the following three structures:

Application Name

Topic

Item

The first task is to find these identifiers in the DDE Server application.

Use the parameters in the DDE client worksheet Header area as follows:

Description field: Type a description of the DDE worksheet for documentation purposes.

Application Name field: Type the DDE server application name.

Topic field: Specify a topic in the server application.

Connect field: Type a tag to control the connection of the IWS DDE client and DDE server
application. When this tag is set to 1, it requests a connection to the server. If the connection is
not possible or if it fails, IWS sets the tag to zero again. If the connection is OK, this value
remains set to 1.

Read Trigger field: Type a tag to command a reading of the table. When this tag changes
value, IWS generates polling to the DDE server. You can use this parameter with local DDE
only; you cannot use it with NetDDE servers.

Enable Read when Idle field: Type a tag value higher than zero to enable a reading of the
equipment.

Read Status field: Contains the status of the reading command.

Write Trigger field: Type a tag enabling IWS to generate poke commands to the server.

Enable Write on Tag Change field: Type a tag value higher than zero to enable the
communication driver to check continuously for changes in a tag value in the worksheet. When
the driver detects a change occurs, it writes the changed tag on the equipment, along with the
tag's address.

Write Status field: Contains the status of the writing command.

Use the DDE client Body area parameters as follows:

Tag Name field: Type a tag to read or write the IWS database from the DDE server application.

Item field: Type the ITEM part of the DDE address on the server. Refer to your server software
documentation for information about the proper syntax for APP, TOPIC, and ITEM.

You can configure the Topic and Item fields with tags on the address using the syntax:
text{tag}. IWS evaluates the value of {tag} to a string and uses it on the address. For example:

Topic: topic_{tag_topic_name}_example

Item: {tag_item_name} or A{tag_number}

Configuring a NetDDE connection is similar to configuring a DDE connection, except for the Header
Application name and topic. Before starting your tests, verify that you enable the DDE Server on the
station with which you want to exchange data.

Note: When connecting to servers other than IWS, please refer to the server documentation for
information about the proper syntax of APP, TOPIC, and ITEM.

Use the NetDDE Client worksheet Header parameters to define the tags that start reading and
writing, and tags that receive the connection status, as follows:

Application Name field: Type computer name\NDDE$, where computer name must be a valid

network computer name.

Topic field: Type the UNISOFT$ topic name to connect to another IWS station.

Use the DDE client worksheet Body parameters to relate each tag to each ITEM part of the DDE
server address, as follows:

Tag Name field: Specify the IWS local database tag name that is related to some remote tag
name.

Item field: Specify the remote tag name that is related to the local tag name.

Note: By default, the DDE Client module supports DDE Servers that handle string data in the
UNICODE format. If the DDE Server handles string data in the ASCII ANSI format, the following
setting must be configured manually in the project_name.app file (you can use Notepad to edit

this file):

[Options]

DDEANSI=1

Parent topic: Communication with Other Devices
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Project Security
InduSoft Web Studio includes a project security system that manages how users and user groups can
access a project, during both development and runtime.

About security modes
In addition to managing users and groups locally, entirely within a single project, you can also
get pre-defined users and groups from other IWS projects or from an LDAP-compliant domain
server.

About security access levels
Almost every item in a project — screen object, object animation, project screen, task
worksheet — can be assigned a security access level. That access level determines which user
groups can edit the item during development and/or use the item during runtime.

Using the security system configuration wizard
The security system configuration wizard helps you through the steps of configuring the project
security system.

Configuring server settings for security modes
If you set your project's security mode to either Distributed – Client or Domain (LDAP), then
you must also configure server settings.

Group Account dialog
The Group Account dialog is used to create and delete user groups, as well as to configure the
access privileges for a selected group.

Creating and configuring users
To create and maintain accounts for project users, click the Users button on the Security
System dialog. (Alternately, to configure a user, open the Users folder located in the Security
folder.)

Security System dialog
The main Security System dialog is used to manage the project security system after it has
been initially configured.

Backing up the security system configuration
You can back up your project's security system configuration by exporting it to a file. You can
also import a configuration either from a file or from another runtime project.

Logging on/off
If the project security system has been enabled and the default "Guest" user's privileges have
been restricted, then you must log on to fully use the development application and/or the
runtime project.

Blocking or unblocking a user
An individual user in the project security system may be completely blocked from accessing the
project, and a blocked may subsequently be unblocked.

Password-protecting screens, symbols, and worksheets
Screens, symbols, and worksheets in the Project Explorer can be password-protected. You can
assign individual passwords to each file, or you can assign a single password to all files in the
project

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Project Security >

About security modes
In addition to managing users and groups locally, entirely within a single project, you can also get
pre-defined users and groups from other IWS projects or from an LDAP-compliant domain server.

IWS supports four security modes:

Local Only

This is the standard mode for most projects: users and groups are created in the development
application, and they apply only to the project for which they're created.

Distributed – Server

This is similar to Local Only, except that the project's security system configuration is also
made available to other IWS projects (that are set to Distributed – Client) on the same
network. Furthermore, if the project loses its security system configuration for some reason,
then it can reimport the configuration from one of its client projects.

Distributed – Client

When this mode is selected, the project gets its entire security system configuration from
another IWS project (that is set to Distributed – Server) on the same network. The project
caches this configuration and can continue to run even if it loses communication with the server
project.

Domain (LDAP)

The Lightweight Directory Access Protocol (LDAP) is a recognized standard for managing users
and groups across many different applications on a network. When this mode is selected, the
project gets its users and groups from an LDAP-compliant domain server, such as Microsoft
Active Directory for Windows or OpenLDAP for Linux. However, only the user names,
passwords, and group memberships are taken from the domain; specific rights must still be
configured within the project.

Parent topic: Project Security
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Project Security >

About security access levels
Almost every item in a project — screen object, object animation, project screen, task worksheet —
can be assigned a security access level. That access level determines which user groups can edit the
item during development and/or use the item during runtime.

There are 255 possible access levels, allowing a large amount of granularity. Each user group is
configured with ranges of levels for both development and runtime, and the groups' ranges may
overlap.

Figure 1. Example of security access levels

This means that for a user to be able to edit and/or use an item, the item's access level must fall
within the range specified for that user's group.

For example, UserA of GroupA has a security access level range of 1-10 and UserB of GroupB has a
security access level range of 5-15. To continue the example:

Item #1 has Access Level = 1

Item #2 has Access Level = 7

Item #3 has Access Level = 12

Item #4 has Access Level = 20

Consequently,

Only UserA can access Item #1

Both users can access Item #2

Only UserB can access Item #3

Neither user can access Item #4

Note: The default access level for all items is 0, and all users can use all items at that level.

Setting access levels for different types of items

For project screens, the access level can be set in the Screen Attributes dialog.

Figure 2. Security (access level) setting in Screen Attributes dialog

For screen objects and object animations, the access level can be set in the individual Object
Properties dialog. (If the option is not available in the main dialog, then it should be available in one
of the sub-dialogs.)

Figure 3. Security (access level) setting in Object Properties dialog

For task worksheets, do the following:

Open the worksheet for editing.1.

Click anywhere in the body of the worksheet. The Access Level control, on the Project tab of
the ribbon, is enabled.

2.

Click Access Level. The Security dialog is displayed.3.

Figure 4. Security dialog

3.

In the Access Level box, type an access level for editing the worksheet.4.

Click OK.5.

Parent topic: Project Security
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Project Security >

Using the security system
configuration wizard
The security system configuration wizard helps you through the steps of configuring the project
security system.

Start the wizard.

If you are configuring the security system for the first time, then the wizard will start
automatically when you do one of the following:

On the Project tab of the ribbon, in the Security tab, click Configure; or

In the Global tab of the Project Explorer, right-click Security and then click Settings
on the shortcut menu.

Note: After the first time, doing one of these will open the Security System dialog
instead.

If you have already configured the security system, click Configure on the ribbon to open
the Security System dialog and then click Run Wizard.

The first page of the wizard is displayed.

Figure 1. Security System Configuration Wizard

This page always shows how the security system is currently configured.

1.

2.

Click Next. The second page of the wizard is displayed.2.

Select Enable Security System.3.

Click Next. The third page of the wizard is displayed.4.

Select the security mode.5.

6.

5.

For Distributed – Client and Domain (LDAP), click Server Settings and then configure the
settings as needed.

6.

Click Next. The fourth page of the wizard is displayed.7.

If you need to create or configure groups, click Create/Configure Groups. The Group Account
dialog is displayed. When you're done with that dialog, it will automatically return to the wizard.

8.

Click Next. The fifth page of the wizard is displayed.9.

10.

If you need to create or configure users, click Create/Configure Users. The User Account
dialog is displayed. When you're done with that dialog, it will automatically return to the wizard.

10.

Click Next. The sixth page of the wizard is displayed.11.

Review your configuration, and then click Finish to close the wizard.12.

Parent topic: Project Security
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Project Security >

Configuring server settings for
security modes
If you set your project's security mode to either Distributed – Client or Domain (LDAP), then you
must also configure server settings.

When you click Server Settings in either the security system configuration wizard or the main
Security System dialog, the appropriate Server Settings dialog will be displayed.

Configuring server settings for Distributed – Client

To configure the server settings:

Figure 1. Server Settings dialog for Distributed – Client

In the Server IP and Server Port boxes, type the IP address of a runtime project that is set to
Distributed – Server.

1.

In the Connection timeout box, type the timeout (in seconds) after which the client will
attempt to reconnect to the server. (A typical connection timeout is 3 seconds.)

2.

In the Synchronization Period box, type the frequency (in seconds) at which the client will
synchronize its security system configuration with the server's. (A typical synchronization period
is 10 seconds.)

3.

In the Force Cache Reload box, type the name of a project tag (Integer or Boolean type). If
the tag value is TRUE (non-zero) and the specified server has a timestamp older than the client,
then the local security system will be updated with outdated server information.

4.

In the Status Tag box, type the name of a project tag (Integer type) that will receive server
connection status codes during runtime:

5.

Status Description

0 No cache

1 Updated cache

2 Outdated local cache

3 Outdated server cache

4 Disconnected from server

5.

Click OK.6.

Configuring server settings for Domain (LDAP)

To configure the server settings:

Figure 2. Server Settings dialog for Domain (LDAP)

In the Domain box, type the domain name of the LDAP server.1.

In the User and Password boxes, type your logon credentials for the LDAP server.

Note: You must have sufficient privileges to get lists of groups and users. Please consult
your LDAP administrator.

2.

3.

4.

In the Connection timeout box, type the timeout (in seconds) after which the client will
attempt to reconnect to the LDAP server. (A typical connection timeout is 4–5 seconds.)

3.

In the Retry interval box, type the frequency (in seconds) at which the client will try to
connect to the LDAP server if the connection could not be established.

4.

Click Check Connection to confirm that the project can connect to the specified domain. If it
cannot, review and correct your settings.

5.

Click OK.6.

Note: The project security system will cache the most recent users in case the project loses its
connection to the LDAP server. These users will still be able to log onto the project. You can
make the cache size unlimited by setting Cache size to 0, and you can make the cache never
expire by setting Cache expiration to 0.

In the LDAP Advanced Settings tab of the dialog, there are additional settings that should be
configured only by experienced LDAP administrators:

Figure 3. LDAP Advanced Settings

Server Address Manual Configuration

If for some reason the LDAP server cannot be accessed using its domain name, then you can
manually configure the server's IP address: select Enable, and then type the IP address and
port number of the LDAP server.

Note: The default port for LDAP is 389. However, please verify the port number with the
server administrator.

Save Rights to Server

By default, IWS security rights are saved entirely within your project. However, you can save
those rights back to the LDAP server, either to make them available to other projects that use
the same LDAP server or for simple redundancy.

To make this option work, you must first extend the server's LDAP schema to contain
additional information about the project security system. See Extending the LDAP schema to
allow saving of security rights.

Once that is done, click Modify to provide your LDAP server credentials and then select
Enable.

LDAP Query Customization

By default, the LDAP server provides a list of all registered users and groups, so in a large or
complex network environment, that can result in an impractically long list to manage when
you're configuring your project security system.

To restrict the list of users and groups, you may customize the LDAP query to eliminate anyone
who should never have access to your project: click Modify to provide your LDAP server
credentials, select Enable, and then configure the Search Base and Filter Query settings.
For the proper syntax, consult the LDAP server documentation.

Extending the LDAP schema to allow saving of security rights
In order to save IWS project security rights back to a Domain (LDAP) server, the server's LDAP
schema must be extended to contain the additional information.

Parent topic: Project Security
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Project Security > Configuring server settings for security modes >

Extending the LDAP schema to allow
saving of security rights
In order to save IWS project security rights back to a Domain (LDAP) server, the server's LDAP schema must be
extended to contain the additional information.

The server must already be configured and running on your network, and you must have sufficient privileges to
make changes to the server configuration.

In this procedure, you will create a new attribute called "proprietarySCADAInfo" to contain the IWS project
security rights, and then you will add the attribute to the "person" and "group" classes in the server
configuration. These classes correspond to users and groups in the project security system.

Please note this procedure only shows how to extend the schema in Microsoft Active Directory running on
Windows Server 2003. The exact procedure is different for other LDAP servers and operating systems, but the
basic steps should be essentially the same. Please consult your LDAP server documentation.

CAUTION:

Extending a server's LDAP schema cannot be undone.

Register the schema management DLL.

Click Start > All Programs > Accessories > Command Prompt . A Command Prompt window is
displayed.

a.

At the prompt, type cd %SystemRoot%\System32 and then press Return. The working directory is changed.b.

Type regsvr32 schmmgmt.dll and then press Return. If the DLL is successfully registered, then a
confirmation message is displayed.

c.

Click OK to dismiss the message.d.

e.

1.

d.

Close the Command Prompt window.e.

Add the Active Directory Schema snap-in to the console root.

Click Start > All Programs > Accessories > Run . A Run dialog is displayed.a.

In the Open box, type mmc , and then click OK .

(If you have User Access Control (UAC) enabled, then you will be asked if you want to allow Microsoft
Management Console to make changes. Click Yes .) A console window is displayed.

b.

In the console window, click File > Add/Remove Snap-in .c.

2.

The Add/Remove Snap-in dialog is displayed.

c.

In the Snap-ins added to list, select Console Root , and then click Add . The Add Standalone Snap-
in dialog is displayed.

d.

In the list of available snap-ins, select Active Directory Schema , and then and click Add .e.

The snap-in is added to Console Root.

e.

Click OK to close the Add/Remove Snap-in dialog.f.

Create the proprietarySCADAInfo attribute in the Active Directory Schema snap-in.

In the Console Root tree-view, expand Active Directory Schema .a.

3.

a.

Right-click Active Directory Schema > Attributes , and then click Create Attribute on the
shortcut menu. A message is displayed explaining that your schema will be permanent changed.

b.

Click Continue . A Create New Attribute dialog is displayed.c.

In the dialog, complete the fields as follows.

Common Name : proprietarySCADAInfo

LDAP Display Name : proprietarySCADAInfo

Unique X500 Object ID : 0.7.7777.77777777.777.7.7

Note: An unique Object ID should be used.

Description : proprietarySCADAInfo

Syntax : Octect String

Minimum : 0

Maximum : 10240

d.

Click OK to close the dialog.e.

The proprietarySCADAInfo attribute is added to the list.

Add the proprietarySCADAInfo attribute to the person and group classes.

In the Console Root tree-view, select Active Directory Schema > Classesa.

4.

a.

In the list of classes, right-click person , and then click Properties on the shortcut menu. The
Properties dialog is displayed.

b.

In the dialog, click the Attributes tab.c.

c.

Click Add . The Select Schema Object dialog is displayed.d.

In the list of schema objects, select proprietarySCADAInfo , and then click OK .e.

The attribute is added to the class properties.

e.

Click OK to close the Properties dialog.f.

Repeat steps b through f for the group class.g.

In the Console Root tree-view, right-click Active Directory Schema , and then click Refresh on the
shortcut menu.

5.

Click File > Exit to close the console window.6.

Restart the server.7.

Parent topic: Configuring server settings for security modes
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Project Security >

Group Account dialog
The Group Account dialog is used to create and delete user groups, as well as to configure the access
privileges for a selected group.

Accessing the dialog

Assuming the project security system has already been enabled (i.e., you have used the security
system configuration wizard at least once), then you can access this dialog by doing one of the
following:

Open the Security System dialog, and then click Groups; or

In the Global tab of the Project Explorer, right-click Groups and then click Groups properties
on the shortcut menu.

The dialog in detail

Figure 1. Group Account dialog

Area / Element Description

Group Account The user group that you are currently configuring.

Note: There are two default groups for all projects: Guest and
(Default Rights).

Note: If the security mode is set to Domain (LDAP), then
please note that the built-in groups in Microsoft Active Directory
will not appear in this list of groups and cannot be added to the
project.

New Creates a new group. In the New Group Account dialog, type the
name of the new group and then click OK.

Delete Deletes the currently selected group.

Reset Resets the privileges of the currently selected group to match the
(Default Rights) group.

This does not lock the group to the default; you can make further
changes. To lock the group, see Use Default Rights below.

Advanced Opens the Group Account Advanced dialog (see below).

Security
Rights –
Development

Use Default
Rights

Locks the development privileges of the currently selected group
to those configured for the (Default Rights) group. If changes
are made to the (Default Rights) group, then they also apply to
this group.

Security
Level –
Development

Range The range of access levels that this group may access in the
development application.

Engineering
Access

Project
Settings

Members of the group may modify the project settings.

Drivers, Data
Sources

Members of the group may create, modify device drivers and
external data sources.

Network
Configuration

Members of the group may create, modify TCP/IP Client
worksheets.

Create,
modify tags

Members of the group may create, modify project tags.

Create,
modify
screens

Members of the group may create, modify project screens.

Create,
modify task
sheets

Members of the group may create, modify task worksheets.

Area / Element Description

Security
Rights –
Runtime

Use Default
Rights

Locks the runtime privileges of the currently selected group to
those configured for the (Default Rights) group. If changes are
made to the (Default Rights) group, then they also apply to this
group.

Security
Level –
Runtime

Range The range of access levels that this group may access in the
runtime project.

Runtime
Access

Start Project Members of the group may run the project.

Close Project Members of the group may stop the project.

Database Spy
(write)

Members of the group may write values to the project database
using the Database Spy window.

Note: This only applies to projects running locally. For projects
running remotely, see Enable Remote Debugging Tools below.

Task switch
enabled

Members of the group may switch away from the runtime project
to another Windows task.

(This option does not apply to projects running on Windows
Embedded target systems; the user may always switch away
from the runtime project.)

Edit Security
System

Members of the group may make changes to the project security
system during runtime.

Note: Be careful not to clear this option for your own group, or
you may not be able to undo your own changes.

Enable
Remote
Debugging
Tools

Members of the group may use Remote Database Spy and
Remote LogWin.

Windows
Task Manager

Members of the group may open the Windows Task Manager.

(This option does not apply to projects running on Windows
Embedded target systems; the user may always open the
Windows Task Manager.)

Note: Clearing this option means disabling the Task Manager
during runtime, which requires Administrator privileges. You will
need to run the project with elevated privileges.

Runtime group A user created during runtime by calling the CreateUser function
may be assigned to this group.

Web Thin Client Access Members of the group may access the runtime project by using a
Web Thin Client.

Security
Rights –
Runtime

Use Default
Rights

Locks the runtime privileges of the currently selected group to
those configured for the (Default Rights) group. If changes are
made to the (Default Rights) group, then they also apply to this
group.

Security
Level –
Runtime

Range The range of access levels that this group may access in the
runtime project.

Runtime
Access

Start Project Members of the group may run the project.

Close Project Members of the group may stop the project.

Database Spy
(write)

Members of the group may write values to the project database
using the Database Spy window.

Note: This only applies to projects running locally. For projects
running remotely, see Enable Remote Debugging Tools below.

Task switch
enabled

Members of the group may switch away from the runtime project
to another Windows task.

(This option does not apply to projects running on Windows
Embedded target systems; the user may always switch away
from the runtime project.)

Edit Security
System

Members of the group may make changes to the project security
system during runtime.

Note: Be careful not to clear this option for your own group, or
you may not be able to undo your own changes.

Enable
Remote
Debugging
Tools

Members of the group may use Remote Database Spy and
Remote LogWin.

Windows
Task Manager

Members of the group may open the Windows Task Manager.

(This option does not apply to projects running on Windows
Embedded target systems; the user may always open the
Windows Task Manager.)

Note: Clearing this option means disabling the Task Manager
during runtime, which requires Administrator privileges. You will
need to run the project with elevated privileges.

Runtime group A user created during runtime by calling the CreateUser function
may be assigned to this group.

Web Thin Client Access Members of the group may access the runtime project by using a
Web Thin Client.

Area / Element Description

Secure Viewer Access Members of the group may access the runtime project by using a
Secure Viewer.

Figure 2. Advanced dialog – Password Options

Area / Element Description

Min password size To make user passwords more complex and therefore more
secure, you can require that they contain a certain number of
alpha (A-Z, a-z), numeric (0-9), and special (punctuation)
characters. When the user is prompted to change his password —
for example, when his old password expires (see Password
aging below) — the new password will not be accepted unless it
meets these requirements.

Min number of special
characters

Min number of numeric
characters

Min number of alpha
characters

Case-sensitive If this option is selected, then passwords are case sensitive — that
is, passwords created with both upper and lowercase characters
must be entered the same way by the user.

Note: In projects created with InduSoft Web Studio v6.1+SP2
through v6.1+SP6, all passwords were case sensitive.

Password aging Longevity (in days) of the password for all users in this group.
After the specified number of days, the project will force the user
to change his password: when the user tries to log in, the Change
Password dialog is automatically displayed and the user cannot
complete the logon process until he provides a new password.

Secure Viewer Access Members of the group may access the runtime project by using a
Secure Viewer.

Figure 2. Advanced dialog – Password Options

Area / Element Description

Min password size To make user passwords more complex and therefore more
secure, you can require that they contain a certain number of
alpha (A-Z, a-z), numeric (0-9), and special (punctuation)
characters. When the user is prompted to change his password —
for example, when his old password expires (see Password
aging below) — the new password will not be accepted unless it
meets these requirements.

Min number of special
characters

Min number of numeric
characters

Min number of alpha
characters

Case-sensitive If this option is selected, then passwords are case sensitive — that
is, passwords created with both upper and lowercase characters
must be entered the same way by the user.

Note: In projects created with InduSoft Web Studio v6.1+SP2
through v6.1+SP6, all passwords were case sensitive.

Password aging Longevity (in days) of the password for all users in this group.
After the specified number of days, the project will force the user
to change his password: when the user tries to log in, the Change
Password dialog is automatically displayed and the user cannot
complete the logon process until he provides a new password.

Area / Element Description

By default, the user must choose a new password that is different
from the old password. To change this so that the user can re-use
the same password, manually edit the project file
(project_name.app) to include the following setting:

[Security]

ChangePasswordMode=1

To make passwords never expire, set Password aging to 0.

E-signature time-out Timeout period (in minutes) of the E-sign prompt for all users in
this group. The user must enter his user name and password
before the specified timeout to use project features that require
an e-signature.

Disable e-signature When the value in this box is TRUE (non-zero), users in this group
cannot use any project features that require an e-signature.

You can configure a project tag in this box, so that e-signature is
dynamically enabled/disabled during runtime.

Figure 3. Advanced dialog – Auto LogOff/LockUp

Area / Element Description

Auto Log Off Log Off after Number of minutes after which the current user must be logged
off automatically. If this field is left in blank (or with the value 0),
the current user is never logged off automatically.

By default, the user must choose a new password that is different
from the old password. To change this so that the user can re-use
the same password, manually edit the project file
(project_name.app) to include the following setting:

[Security]

ChangePasswordMode=1

To make passwords never expire, set Password aging to 0.

E-signature time-out Timeout period (in minutes) of the E-sign prompt for all users in
this group. The user must enter his user name and password
before the specified timeout to use project features that require
an e-signature.

Disable e-signature When the value in this box is TRUE (non-zero), users in this group
cannot use any project features that require an e-signature.

You can configure a project tag in this box, so that e-signature is
dynamically enabled/disabled during runtime.

Figure 3. Advanced dialog – Auto LogOff/LockUp

Area / Element Description

Auto Log Off Log Off after Number of minutes after which the current user must be logged
off automatically. If this field is left in blank (or with the value 0),
the current user is never logged off automatically.

Area / Element Description the current user is never logged off automatically.

Counting
from logon

When this option is selected, the current user is automatically
logged off after the period of time configured in the Log Off after
field elapsed since when the current user was logged on the
system.

Counting
from user's
last action

When this option is selected, the current user is automatically
logged off after the period of time configured in the Log Off after
field elapsed since the last action (mouse, touchscreen, or
keyboard action) was performed by the current user.

Disconnect
Web Thin
Client on auto
logoff

If the user logged on through a Web Thin Client, then when the
user is logged off, the client is automatically disconnected from
the data server.

Auto Lock-up Enable Enables the auto lock-up features described below.

Lock up
account after

Maximum number of times a user can try to log on to an account.
If the user exceeds the specified maximum number of attempts
(provides an invalid password) within the period of time specified
in the Reset counter after field, the project will automatically
block the user.

Reset counter
after

Defines how long after an invalid log-on attempt the project will
wait (in minutes) until it resets the log-on attempts counter.

Note: If a user is assigned to more than one group (see Creating and configuring users), then
the groups' settings may conflict with each other. How the settings are resolved depends on
which settings they are:

The settings in the Group Account dialog above are permissive — that is, the most
permissive setting from all of a user's groups applies to the user. For example, if any of the
groups can create and modify tags, then the user can create and modify tags.

The settings in the Group Account Advanced dialog (both tabs) are restrictive — that is, the
most restrictive setting from all of a user's groups applies to the user. For example, if one
group has a minimum password size of 8 and another group has a minimum password size
of 12, then the user's minimum password size is 12. (For Auto Log Off in particular,
Counting from logon overrides Counting from user's last action.)

Parent topic: Project Security
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

the current user is never logged off automatically.

Counting
from logon

When this option is selected, the current user is automatically
logged off after the period of time configured in the Log Off after
field elapsed since when the current user was logged on the
system.

Counting
from user's
last action

When this option is selected, the current user is automatically
logged off after the period of time configured in the Log Off after
field elapsed since the last action (mouse, touchscreen, or
keyboard action) was performed by the current user.

Disconnect
Web Thin
Client on auto
logoff

If the user logged on through a Web Thin Client, then when the
user is logged off, the client is automatically disconnected from
the data server.

Auto Lock-up Enable Enables the auto lock-up features described below.

Lock up
account after

Maximum number of times a user can try to log on to an account.
If the user exceeds the specified maximum number of attempts
(provides an invalid password) within the period of time specified
in the Reset counter after field, the project will automatically
block the user.

Reset counter
after

Defines how long after an invalid log-on attempt the project will
wait (in minutes) until it resets the log-on attempts counter.

Note: If a user is assigned to more than one group (see Creating and configuring users), then
the groups' settings may conflict with each other. How the settings are resolved depends on
which settings they are:

The settings in the Group Account dialog above are permissive — that is, the most
permissive setting from all of a user's groups applies to the user. For example, if any of the
groups can create and modify tags, then the user can create and modify tags.

The settings in the Group Account Advanced dialog (both tabs) are restrictive — that is, the
most restrictive setting from all of a user's groups applies to the user. For example, if one
group has a minimum password size of 8 and another group has a minimum password size
of 12, then the user's minimum password size is 12. (For Auto Log Off in particular,
Counting from logon overrides Counting from user's last action.)

Parent topic: Project Security
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Project Security >

Creating and configuring users
To create and maintain accounts for project users, click the Users button on the Security System
dialog. (Alternately, to configure a user, open the Users folder located in the Security folder.)

The User Account dialog displays.

Figure 1. User Account dialog

After the project initializes, if no users log on (or when the current user logs off), then the project
automatically logs on the default user (Guest). In addition to the default Guest user, there is a
Guest group, which has default privileges that enable all tasks. We recommend that you evaluate
and edit the Guest group's privileges to specify a minimal amount of privileges for the start up
procedure.

To create a new user, click New to open the New User Account dialog.

To delete a user, click the User combo-box button, select the user name from list, and then click
Delete.

To configure a user, use the following procedure:

Click the User combo-box button and select a user from the list.1.

If necessary, click the User is blocked checkbox to block the selected user.

Note: The Runtime user option indicates that a user was created during runtime using
the CreateUser function. It cannot be selected for a user created using the procedure
described here.

2.

Click the new Settings button to open the User Settings dialog:

Figure 2. User Settings dialog

3.

3.

Configure the parameters on this dialog as follows:

User Full Name text box (optional): Type the user's full name.

New Password text box: Type the user's password.

Confirm Password text box: Re-type the user's password.

4.

In the Available Groups list, select the group(s) to which the user should be assigned, and
then click > to move those group(s) to the Assigned Groups list.

5.

When you are finished, click OK to apply the changes and close the Settings dialog.6.

Parent topic: Project Security
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Project Security >

Security System dialog
The main Security System dialog is used to manage the project security system after it has been
initially configured.

Accessing the dialog

Assuming the project security system has already been enabled (i.e., you have used the security
system configuration wizard at least once), then you can access this dialog by doing one of the
following:

On the Project tab of the ribbon, in the Security group, click Configure; or

In the Global tab of the Project Explorer, right-click Security and then click Settings on the
shortcut menu.

If you do either of these before the security system has been enabled, then the security system
configuration wizard will open automatically.

If you've already configured the security system and set a main password, then you'll be prompted to
enter it.

The dialog in detail

Figure 1. Security System dialog

Area / Element Description

Enable Security System Indicates whether the project security system is currently
enabled. If it is, then the users and groups' specified access
privileges are enforced.

Main Password Opens a dialog where you can specify a main administrative
password for the entire project.

Security
Mode

Mode The current security mode of the project.

Server
Settings

Opens the Server Settings dialog, where you can configure the
server settings for Distributed – Client or Domain (LDAP).

Run Wizard Opens the security system configuration wizard.

Backup Opens the Import/Export dialog, where you can export or import
the security system configuration.

Accounts
Management

Groups Opens the Group Account dialog, where you can create and
configure groups.

Users Opens the User Account dialog, where you can create and
configure users.

Display list of
users at
logon

Displays a list of available users (in the Log On dialog) when a
user is prompted to log on. The user may select from this list
rather than type his user name.

Log On on E-
Signature

Forces a user to log on with their own user account when they're
prompted to e-sign an event. If this is not selected, then the
current user account remains logged on regardless of who e-signs
the event.

Default User This user is automatically logged on when no other user is logged
on, such as when the previous user times out or manually logs
off.

Note: This user's privileges should be heavily restricted, to
prevent your project from being left vulnerable.

Virtual Keyboard The type of virtual keyboard that is displayed on the client when
the user is prompted to log on.

Parent topic: Project Security
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Project Security >

Backing up the security system
configuration
You can back up your project's security system configuration by exporting it to a file. You can also
import a configuration either from a file or from another runtime project.

Exporting the configuration to a file

To export the security system configuration:

In the main Security System dialog, click Backup. The Import/Export dialog is displayed.1.

Click Export to file. A standard Save As dialog is displayed.2.

Specify a file name and location for the file, and then click OK.3.

The exported file is encrypted, using the main password configured in the Security System dialog.

Tip: You can also export the configuration during runtime by calling the ExportSeruritySystem
function.

Importing the configuration from a file

If your project's security mode is set to Local Only, then you can import a configuration from a
previously exported file.

To import the security system configuration:

In the main Security System dialog, click Backup. The Import/Export dialog is displayed.1.

Click Import from file. A standard Open dialog is displayed.2.

Locate the configuration file (*.dat) that you want to import, and then click OK. You will be

prompted for the configuration's main password.

3.

Type the password, and then click OK. The Import from File dialog is displayed.4.

Select an import method:

Import only settings that do not conflict: Merge the imported settings with the
current project settings. In the case of conflicts, keep the current settings.

Import all settings and replace conflicts: Merge the imported settings with the project
settings. In the case of conflicts, use the imported settings.

Replace the current settings: Completely replace the current project settings with the
settings imported from the file.

5.

Click OK.6.

6.

Tip: You can also import the configuration during runtime by calling the ImportSecuritySystem
function.

Importing the configuration from another project

If your project's security mode is set to Distributed – Server, then you can import a configuration
from another project if:

The other project's security mode is set to Distributed – Client, and its server settings are
configured to use your project as the server; and

The other project is currently running on the same network.

To import the security system configuration:

In the main Security System dialog, click Backup. The Import/Export dialog is displayed.1.

Click Import from client station. The Import Security from Client Station dialog is
displayed.

The dialog shows a list of runtime projects that are using your project as their security system
server. Each project/client listing includes a time stamp that shows when it last cached the
security system configuration.

2.

Select a client station, and then click Import from client. You will be prompted for the
configuration's main password.

3.

Type the password, and then click OK.4.

Parent topic: Project Security

Related reference
ExportSecuritySystem
ImportSecuritySystem

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Project Security >

Logging on/off
If the project security system has been enabled and the default "Guest" user's privileges have been
restricted, then you must log on to fully use the development application and/or the runtime project.

Note: The project security system must be enabled before you can use this feature.

To log on to the development application, click Log On on the Project tab of the ribbon.

To prompt a user to log on to the runtime project, do one of the following:

Call the LogOn function somewhere that an expression can be configured — for example, draw a
Button object in a screen and then apply the Command animation to it, so that pressing the
button shows a logon prompt; or

Select the Log On on E-Signature option (in the main Security System dialog), which forces
the user to log on whenever he performs some action that requires an e-signature.

In either the development application or the runtime project, the Log On dialog is displayed:

Figure 1. Log On dialog

Use this dialog as follows:

To log on as yourself, type your user name and password in the appropriate boxes and then
click OK.

To log on as the default "Guest" user, type guest in the User Name box and then click OK.

Note: By default, "Guest" has no password, so you can leave the Password box empty.
However, if you've changed the password or you're getting your security settings from a
server (either Distributed or Domain), then you will need to enter a password for "Guest."

To log off, simply click Log Off. The default user (typically "Guest," but this may be changed in
the main Security System dialog) is automatically logged on to replace you.

CAUTION:

If the security mode is set to Domain (LDAP) and a user created on the LDAP server is
required to change his password the first time he logs onto the domain, then he must
do that before he will be able to log onto the IWS project.

Parent topic: Project Security
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Project Security >

Blocking or unblocking a user
An individual user in the project security system may be completely blocked from accessing the
project, and a blocked may subsequently be unblocked.

A user may be blocked in the following ways:

By manually selecting the User is blocked option in the User Account dialog;

By calling the BlockUser function during runtime; or

Automatically if the user enters the wrong password too many times. (The number of attempts
allowed is configured in the Group Account dialog.)

To check whether a user is blocked, do one of the following:

Look at their user icon in the Project Explorer, which will be marked with a red circle; or

Call the GetUserState function during runtime.

Figure 1. User is blocked

To unblock a blocked user, do one of the following:

Clear the User is blocked option in the User Account dialog; or

Call the UnblockUser function during runtime.

Parent topic: Project Security
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Project Security >

Password-protecting screens,
symbols, and worksheets
Screens, symbols, and worksheets in the Project Explorer can be password-protected. You can assign
individual passwords to each file, or you can assign a single password to all files in the project

Almost all project files are encrypted as a matter of course, to prevent unauthorized analysis by
third-party tools. (Screen files are not encrypted, because decrypting them during runtime would
decrease performance.) However, you can take the extra step of password-protecting your files to
prevent unauthorized changes or re-use by other IWS project developers.

Note: These passwords are always case sensitive.

Assigning a password to a single file

To assign a password to a single project file:

In the Project Explorer, find and right-click the desired file, and then click Password
Protection on the shortcut menu. The Edit Protection dialog is displayed.

1.

Type the new password, and then type it again to confirm.2.

Click OK to close the dialog.3.

The file is now protected. The next time you try to open it, you will be prompted for the password.

Clearing the password from a single file

To clear a password from a single project file:

In the Project Explorer, find and double-click the desired file to open it. You will be prompted for
the password.

1.

With the file open for editing, right-click the file in the Project Explorer and then click Password
Protection on the shortcut menu. The Edit Protection dialog is displayed.

2.

Leave the New password and Confirm password boxes empty.3.

Click OK to close the dialog.4.

The file is no longer protected. You can open the file without being prompted for the password.

Assigning a password to all files

To assign a single password to all files in your project:

1.

2.

On the Home tab of the ribbon, in the Tools group, click Verify. The Verify Project dialog is
displayed.

1.

Click Set password for all files. The Edit Protection dialog is displayed.2.

Type the current password for your project, if any.3.

Type the new password, and then type it again to confirm.4.

Click OK. The verification routine proceeds.5.

Click Close to close the Verify Project dialog.6.

All files in your project are now protected. The next time you try to open one, you will be prompted
for the password.

Clearing the password from all files

To assign a single password to all files in your project:

On the Home tab of the ribbon, in the Tools group, click Verify. The Verify Project dialog is
displayed.

1.

Click Set password for all files. The Edit Protection dialog is displayed.2.

Type the current password for your project.3.

Leave the New password and Confirm password boxes empty.4.

Click OK. The verification routine proceeds.5.

Click Close to close the Verify Project dialog.6.

Your project files are no longer protected.

Parent topic: Project Security
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Automatic Translation
You can quickly translate your project's user interface to multiple languages, leveraging the power of
automatic translation through Google Translate, and you can switch your project's language during
runtime with a simple function call.

Adding a language to the Translation Table
The Translation Table is used to manage the languages to which you want to translate your
project. Adding a language to the table can be as simple as selecting it from a list and then
automatically translating your project texts.

Setting the project's language at startup
Even when you have multiple languages configured for your project, you must still specify which
language you want your project to start in at runtime.

Setting the project's language during runtime
You can set your project's language during runtime by using the SetLanguage function
anywhere that an expression can be configured.

Disabling translation of selected screen objects
By default, translation is enabled for all screen objects that have text to be translated. However,
you can disable translation of selected objects if you need to preserve their original text.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Automatic Translation >

Adding a language to the
Translation Table
The Translation Table is used to manage the languages to which you want to translate your project.
Adding a language to the table can be as simple as selecting it from a list and then automatically
translating your project texts.

Open the Translation Table worksheet by doing one of the following.

On the Insert tab of the ribbon, in the Global group, click Translation; or

In the Global tab of the Project Explorer, double-click Translation.
The Translation Table worksheet is opened for editing, with the Source column already
populated with all of the translatable text strings in your project.

Figure 1. Translation Table worksheet

1.

Make sure the Enable Translation option is selected.2.

In the Target languages area, click Add. The Languages dialog is displayed.3.

In the Languages dialog, select the language to which you want to translate your project and
then click OK. The language is added to the Select list.

4.

Configure Date order and Date separator as desired for the target language. For example,5.

for English-United States (i.e., American English), Date order is typically MDY and Date
separator is typically /, resulting in a date format of MM/DD/YYYY.

5.

Click Auto Translate. The Automatic Translation dialog is displayed.

Figure 2. Automatic Translation dialog

6.

Confirm the source and target language codes. Language codes are defined by ISO 639-1.7.

If you want to overwrite any previous translations, select Replace existent translations.
Please note that this will overwrite both automatic translations and manual edits.

8.

Click OK. The application processes the Source column of the worksheet through Google
Translate and then populates the Target column with the results.

9.

Review and manually edit the translation results as needed. Use the Filters to search the
worksheet for a text string; as you type a few characters, the list is dynamically filtered to show
only the strings that match.

10.

Save and close the worksheet.11.

Changes made to the Translation Table will not take effect until you either call the SetLanguage
function or restart the runtime project.

Tip: The Translation Table is saved as a tab-delimited text file in your project folder, at […]\My

Documents\InduSoft Web Studio v7.0 Projects\project_name\Web\Translation.trn. You

can open and directly edit this file with Microsoft Excel, if you choose to do so.

Parent topic: Automatic Translation

Related reference
SetLanguage

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Automatic Translation >

Setting the project's language at
startup
Even when you have multiple languages configured for your project, you must still specify which
language you want your project to start in at runtime.

This procedure assumes that you have already added at least one target language to the Translation
Table. For more information, see Adding a language.

Open the Translation Table worksheet by doing one of the following.

On the Insert tab of the ribbon, in the Global group, click Translation; or

In the Global tab of the Project Explorer, double-click Translation.
The Translation Table worksheet is opened for editing.

1.

In the Startup target language list, select the language in which you want your project to
start. The list of available languages includes the source language in which you developed the
project and any target languages that you've added.

2.

Save and close the worksheet.3.

Parent topic: Automatic Translation
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Automatic Translation >

Setting the project's language
during runtime
You can set your project's language during runtime by using the SetLanguage function anywhere that
an expression can be configured.

This procedure assumes that you have already added at least one target language to the Translation
Table. For more information, see Adding a language.

The SetLanguage function takes one parameter: a numeric code representing the target language.
The codes are shown in parentheses in the list of languages — for example, English-United States is
1033.

The following very basic example shows how to draw two Button objects that switch the project's
language between English and French.

In the Graphics tab of the Project Explorer, double-click a project screen to open it for editing.1.

On the Graphics tab of the ribbon, in the Active Objects group, click Button.2.

Draw a Button object in the project screen.3.

Double-click the Button object. The Object Properties dialog is displayed.4.

In the Caption box, type English.5.

Click Command. The Command animation properties are displayed in the dialog.6.

In the first row of the On Down tab, in the Expression field, type SetLanguage(1033).7.

8.

9.

Close the Object Properties dialog.8.

Duplicate the Button object, either by copy-and-paste or by Ctrl+Click.9.

Repeat steps 4 through 8, replacing the caption with French and the expression with
SetLanguage(1036).

10.

Save and close the project screen.11.

During project runtime, clicking each button will set the language of the entire project to that
language, using the translated text from the Translation Table.

Parent topic: Automatic Translation

Related reference
SetLanguage

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Automatic Translation >

Disabling translation of selected
screen objects
By default, translation is enabled for all screen objects that have text to be translated. However, you
can disable translation of selected objects if you need to preserve their original text.

Double-click a screen object to open its Object Properties dialog.1.

In the dialog, look for the Enable translation option. If the option is not available in the
object's basic properties, then click Advanced to access the advanced properties

2.

Clear the Enable translation option.3.

Close the Object Properties dialog.4.

Once the option is cleared on an object, its text will no longer be translated during project runtime.
The text is still added to the translation table and may be processed though the automatic translation
engine, along with all other project texts, but the resulting translation will not actually be applied to
the object during runtime.

Parent topic: Automatic Translation
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Using the LogWin Module
This module provides a continuous record of activities and tags for debugging over long periods of
time. It creates a file into which you can dump the data collection results, and this file continues to
grow in size until you stop the logging (data collection) process. Use the LogWin module (local and
remote) to record DDE, OPC, and TCP/IP transactions, activate modules, trace tags, and so forth.

To enable the LogWin module as a part of your project:

On the Home tab of the ribbon, in either the Local Management group or the Remote
Management group (depending on where the project is being served from), click Tasks. The
Execution Tasks dialog is displayed:

Figure 1. Execution Tasks dialog

1.

Select LogWin from the Task list.2.

With the LogWin task selected, click Startup. The Startup dialog is displayed.

Figure 2. Startup dialog

3.

3.

Click the Automatic radio button.4.

Click OK to apply your choice and close the Startup dialog.5.

Click OK again to close the Execution Tasks dialog.6.

Note:

To start the LogWin module directly on your Windows Embedded device, choose Tools >
LogWin from the CEView menu bar.

To enable logging in the Thin Client version of a project, use the Log feature in the project
settings (Thin Client on the Project tab of the ribbon).

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Remote Database Spy
You can use the Remote Database Spy tool (located in the Tools menu) to monitor the Database
Spy of an IWS project running on a remote computer. The project must have the Database Spy
execution task enabled, and the remote computer must be in runtime.

To use the Remote Database Spy tool:

On the Home tab of the ribbon, in the Remote Management group, click Database Spy. The
Remote Computer dialog is displayed.

1.

Enter the IP address of the remote computer, as shown below.

Figure 1. Entering a Remote IP

Note: The IP address 192.168.1.52 is only an example. Please verify the IP address of the
computer to which you want to connect.

2.

Click OK to connect to the specified address. If the connection is good, then the Remote
Database Spy window is displayed.

Figure 2. Remote Database Spy

Note: You cannot add or remove tags remotely; the Database Spy tag list must be
configured on the remote computer itself.

3.

When you are done, click Close to disconnect from the remote computer.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Remote LogWin
You can use the Remote LogWin tool (located in the Tools menu) to monitor the Output log
(LogWin) of an IWS project running on a remote computer. The project must have the LogWin
execution task enabled, and the remote computer must be in runtime.

To use the Remote LogWin tool:

On the Home tab of the ribbon, in the Remote Management group, click LogWin. The Remote
Computer dialog is displayed.

1.

Enter the IP address of the remote computer, as shown below.

Figure 1. Entering a Remote IP

Note: The IP address 192.168.1.52 is only an example. Please verify the IP address of the
computer to which you want to connect.

2.

Click OK to connect to the specified address. If the connection is good, then the Remote LogWin
window is displayed.

Figure 2. Remote LogWin

3.

When you are done, just close the window to disconnect.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Introduction to Thin Clients
IWS is built on a Client/Server architecture, and you can support both Thin Clients and Thick Client.
The choice of the type of Client architecture depends upon your system requirements.

Thick Client

A Thick (Fat) Client is a computer that performs most, if not all, of the processing activity. The Thick
Client has sufficient processing power, memory, memory, graphics, etc. to run the project. The Thick
Client can exchange data with the Server as required (e.g., archival of data, program
synchronization). A Server can also be a Thick Client to another Server.

Thin Client

A Thin (Lean) Client is a computer that depends primarily on the central Server for processing
activities. The Thin Client needs to have a processor with minimal memory, a browser (Internet
Explorer) and a network connection (e.g., to the Internet or Intranet). We use the term "Web Client"
to refer to a Thin Client solution. IWS lets you choose the type of browser that is best for your
runtime environment:

Microsoft Internet Explorer. This type of browser is best for desktop or remote access
environments.

InduSoft's Secure Viewer, a dedicated viewer for IWS projects. Secure Viewer does not let the
user browse to other websites, and will only connect to a specified IWS Server. Secure Viewer is
intended for plant floor environments were browsing to other web sites is not required or
desired.

In this chapter, we will explore using Thin Clients with IWS. Thick Clients will be covered in a
subsequent chapter.

Thin Clients in IWS

IWS allows you to create screens that can be visualized in a remote station a regular web browser
(e.g., Internet Explorer). The station where the user can visualize the graphical interface (screens)
on the web browser is called the Thin Client. The Thin Client (Browser) is the host.

Figure 1. Typical Thin Client Architecture

IWS is installed on the Server station only. Also, the project (screen files, tags database,
configuration worksheets, etc.) is stored on the Server only. You do not need to install the
development application or the runtime project on the Thin Client. This solution provides a high level
of flexibility because any computer physically linked to the Server station (via a TCP/IP link) can
access the graphical screen and online/history data from the Server without installing the
development application or the runtime project on the Thin Client stations.

All background tasks (Math, Scheduler etc) and communication tasks (e.g., Driver, OPC, DDE TCP/IP)
are executed only on the Server station. The Thin Client is able to load the graphical interface
configured on the Server (screens with objects and animations) and display the online values from
the tags configured in the server, as well as history data (Alarm, Events and Trend history data).

Note: Since VBScript and the IWS Scripting Language can be associated with a screen as well as
a Command animation for an Object, these Scripts can execute on a Thin Client.

Any computer or device (e.g., a PDA powered by Windows Mobile 5.0) running Microsoft Internet
Explorer 6.0 (or later) or our Secure Viewer program can be a Thin Client for your project. Moreover,
IWS provides a sophisticated Security System to prohibit unauthorized access to the project.

From the Thin Client, you are able to visualize data from the Server and capable of changing set
points, acknowledging alarms and/or sending commands to the Server. When configuring the project,
you can optionally enable or disable all commands from the Thin Client to the Server. Even if the
Server has disabled all command from the Thin Client, the Thin Client can still read data from the
Server but cannot send any data to the Server.

Thin Client Competitive Advantages

IWS is built on a Client/Server architecture that supports true Thin Clients. This capability is built into
IWS and is not an add-on. This means that:

The IWS Server supports a large number of concurrent Thin Clients (up to 128 IE-based and
128 Secure Viewer-based). Each Thin Client can view the same or different screens as another
Thin Client.

The IWS Server knows which display each Thin Client viewing and automatically "pushes" any
updated Tag values to the Thin Client, keeping the Thin Client display current and eliminating
the need for screen refreshes

The IWS Server can support runtime language switching for each Thin Client. This means that
one Thin Client can be viewing a screen in English while another Thin Client can display the
same screen in Spanish.

Many competitive products offer either a static display on a Thin Client (i.e., it must be manually
"refreshed" to get the latest data), a Terminal Server solution (requires the Server to build multiple
instances of the project to support each Thin Client), or offer a Thin Client solution similar to IWS but
with expensive "add-on" software products.

Other Thin Client advantages include:

Optional Secure Viewer that does not allow navigation outside the IWS project. Secure Viewer is
not based on Microsoft's Internet Explorer.

Ability to run VBScript and the Built-in Scripting Language on the Thin Client

Can build Thin Client projects using Windows Embedded devices as the Server.

Ability to support redundant Web Servers and Data Servers, with automatic switchover.

Thin Client Licensing

The maximum number of Thin Client stations connected simultaneously to the Server depends on the
settings of the license installed on the Server. The user does not have to install any license on the
Thin Client. For more information, see License Settings.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Building a Simple Thin client
program
As we will see shortly, there is no one way to build a Thin client program. The following procedures allow you
to develop a simple, unsecured Thin client program.

Procedure A: Thin Client using NTWebServer, Local Loopback

An easy way to initially develop and test a Thin client program is to use the light-weight Web server
NTWebServer on your development PC, initiate the runtime project and use Microsoft Internet Explorer on
the same PC to display the Web pages.

Step 1: Configure IWS Settings

On the Project tab of the ribbon, in the Web group, click Thin Client .

In the Data Server IP Address field, enter 127.0.0.1

1.

Check the Auto Screen Scaling , Enable File Compression , and Enable Tooltips checkboxes
are checked

Click on the IP Security Button . Be sure then Enable checkbox is unchecked. Click OK .

Click on the Advanced Button . Be sure the Web Tunneling Gateway Enabled checkbox is
unchecked. Click OK.

Open the Execution Tasks dialog (Tasks on the Home tab of the ribbon) and be sure the TCP/IP
Server task is set to Automatic.

2.

Step 2: Configure Database

In the Development Environment, select the Global tab of the Project Explorer. Open the Project Tags
folder.

1.

Be sure the project tags are properly set to either Server or Local. If the tags are to be exposed to the
Web Client, then set them to Server , otherwise set to Local .

2.

Step 3: Develop your Screens and create HTML screens

Develop your project screen. Depending on your Thin Client screen size, you may want to develop a
separate set of screens with a different resolution. Auto Screen scaling is supported (enabled in a prior
step), but auto screen scaling naturally has limitations.

1.

Save and close all project screens.2.

Be sure you have defined a Startup Screen (Viewer on the Project tab of the ribbon).3.

You can save individual screens as HTML by selecting the Save as HTML or Save Screen Group as
HTML options in the Application menu, or save all Screens and Screen Groups as HTML by selecting the
Save All as HTML option.

4.

5.

4.

If you are just updating a Screen, and especially when you make any configuration changes to the Web
settings, you should run the Verify Project tool (i.e., on the Home tab of the ribbon, in the Tools group,
click Verify).

5.

The HTML (web) pages will be stored in the Web sub-folder of your project folder.6.

Step 4: Install NTWebServer

NTWebServer is InduSoft 's lightweight Web Server for Windows NT/XP/2000/Server 2003/Vista
environments. NTWebServer.exe is found in […]\InduSoft Web Studio v7.0\ Bin

1.

Copy NTWebServer.exe from the \Bin folder and paste it into the Web sub-folder of your project folder.2.

From the Web sub-folder, double click on NTWebServer to start it.3.

A new window should pop-up. At the bottom, there should be a message indicating that NTWebServer is
listening. If a message appears that NTWebServer failed to open a socket, it is most likely caused by
Microsoft IIS (Web Server) running in a background mode. If this is the case, you will need to stop IIS,
and then restart NTWebServer

Tip: A Web server typically operates on, or "listens to," a computer's TCP/IP port 80. Only one
running process can listen to a given port, so if another process on your computer — for example,
some third-party SCADA software — is already listening to port 80, then it and the Web server
process may conflict with each other. You must either configure one of the processes to listen to a
different port or use Task Manager to end the conflicting process. If you cannot identify the
conflicting process, then in Windows, open Command Prompt and enter the following command to
get a list of all networking processes:

netstat -a -o

4.

Step 5: Start the runtime project

On the Home tab of the ribbon, click Run .1.

Step 6: Launch Microsoft Internet Explorer and connect to the Web Server

Click on the Start button (or Alt Tab) to access the Microsoft Internet Explorer program.1.

Start Internet Explorer, and type the address of the starting (home webpage). E.g.
http://127.0.0.1/startup.html

2.

Note that the startup.sg (or whatever your startup display or screen group name is) will have a HTML
file extension on it when accessed from Internet Explorer.

3.

Sign on as Guest with no password, assuming no security has been enabled.4.

Procedure B: Thin Client using NTWebServer, Network IP

Once Procedure A has been completed, the next step is to enable network connected Thin Clients, instead of
using the local loopback. You need to know the IP address of your PC, as seen from the network. You can get

http://127.0.0.1/startup.html

this information from the Network Settings in the Control Panel, or putting the function GetComputerIP() in
a Rectangle Object on a screen and running the project.

Step 1: Configure IWS Settings

Stop any active runtime project.1.

On the Project tab of the ribbon, in the Web group, click Thin Client . In the Data Server IP Address
field, enter the IP address of your PC (as viewed from the network). E.g. 192.168.1.100

2.

Run the Verify Project tool (Verify on the Home tab of the ribbon). This will set change the Data
Server IP address in the web pages, so that the Thin Client will automatically exchange data with the
correct Data Server.

3.

Step 2: Start the runtime project

On the Home tab of the ribbon, click Run .1.

Be sure NTWebServer is still running.2.

Step 3: Launch Microsoft Internet Explorer and connect to the Web Server

Click on the Start button (or Alt Tab) to access the Microsoft Internet Explorer program.1.

Start Internet Explorer, and type the address of the starting (home webpage). E.g.
http://192.168.1.100/startup.html

2.

Sign on as Guest with no password, assuming no security has been enabled.3.

Procedure C: Thin Client using IIS, Network IP

Once Procedure B has been completed, the next step is to enable IIS to become the Web Server for your Thin
Clients instead of NTWebServer. The following are the basic steps to configuring IIS, although depending on
your network and Operating System environment, additional settings may need to be configured such as user
security.

Step 1: Configure IWS Settings

Be sure NTWebServer is terminated.1.

Click the Start button, then Control Panel > Administrative Tools .2.

Select (click on) Internet Information Services .3.

Expand the Web Sites tree structure to see the Default Web Site .4.

http://192.168.1.100/startup.html

4.

Right click on the Default Web Site and select Properties to get the Default Web Site Properties dialog.5.

5.

Click on the Home Directory tab. Click on the Local Path Browse button and point to your project's
Web subfolder.

6.

Click on the Web Site tab. Make sure the TCP port is set to 80. You can click the Advanced button to
enable the IIS Web Server to respond to specific IP addresses and IP Port numbers.

7.

If your Web Server is behind a Proxy, be sure to check the HTTP Keep-Alives Enabled checkbox. It does
not hurt anything if this is always checked.

8.

Click on the HTTP Headers tab. Click on the MIME Map File Types button to open the File Types
dialog. Next, click on the New Type button to add a new MIME type. Put the file extension in the
Associated Extension field. In the Content type (MIME) field, put MIME type followed by a /
character, followed by the file extension name (application/studio). E.g.

Associated Extension: .scc

Content Type: application/studio

9.

Click on the Directory Security tab. From this tab, you can change the settings for Anonymous User
Access and Authentication Control as well as Secure Communications (i.e., using SSL 3.0).

10.

Click on the Anonymous User Access and Authentication Control Edit button to get the
Authentication Methods dialog. Normally, you do not have to do anything in this dialog but depending
on the Security system your network administrator has installed, you may need to adjust settings in this
dialog.

11.

The Secure Communications Server Certificate button opens a wizard that lets you define a12.

Certificate for support of secure communications using SSL.
12.

About MIMEs

MIME, or Multipurpose Internet Mail Extensions, types instruct a Web browser how to handle files
received from a server. For example, when a Web browser requests an item on a server, it also
requests the MIME type of the object. Some MIME types, like graphics, can be displayed inside the
browser. Others, such as word processing documents, require an external helper program to be
displayed.

When IIS delivers a Web page to a client Web browser, it also sends the MIME type of the data it is
sending. If there is an attached or embedded file in a specific format, IIS also tells the client program
the MIME type of the embedded or attached file. The client program then knows how to process or
display the data being received from IIS.

IIS serves only files with known extensions registered in the MIME types list or with the operating
system. IIS allows you to configure additional MIME types and change or remove MIME types. Removing
a MIME type in IIS does not block access to that MIME type by other programs if it is also registered
with the operating system.

IIS is preconfigured to recognize a default set of global MIME types. These MIME types are recognized
by all Web sites you create in IIS. MIME types can also be defined at the Web site and directory levels,
independent of one another or the types defined globally. When you view MIME types at the Web site or
directory level, only the types unique to that level are displayed, not all types inherited from the next
level up.

IIS returns a 404.3 error if a client request refers to a file name extension that is not defined in the
MIME types

MIME configuration is usually only required for Windows Server 2003, not Windows XP or Vista due to
Windows 2003 default settings.

MIME types should include all file extensions found in the Web directory. These include:

.app

.bin

.csv

.gis

.html

.ico

.ini

.lst

.scc

.sg

.stmp

.tra

.txt

Step 2: Start IIS and start the IWS Project

Be sure NTWebServer is terminated.1.

Click on the IIS Start button.2.

Run the project.3.

3.

Notes:

If IIS is not installed on your PC, you can add it (to Windows XP Pro/Windows 2000 or Windows Server
2003) by opening the Control Panel, then selecting Add/Remove Programs > Add/Remove
Windows Components and checking the Internet Information Services (IIS) checkbox in the Windows
Components Wizard. You can click on the Details button to select various components of IIS to install.
Note that you may need to have your Windows installation disk.

You can get more information on IIS by opening a browser and entering http://localhost/iishelp in the
browser navigation address bar. Note that IIS must be running.

NTWebServer is a Windows program, while IIS is a Windows service.

It is STRONGLY SUGGESTED that you use IIS instead of NTWebServer in a runtime mode. It is more
reliable and higher performance than NTWebServer.

Troubleshooting:

If you get a Cannot find Server error message,

From the browser, ping the server IP address (primary and/or backup). You can ping using the IP
address or use the NetBios name to ping the server (e.g., from a command prompt enter

Ping 152.57.100.25 or Ping ServerName.

Be sure IIS is running

Be sure your project is running

Make sure the TCP/IP Server (in the project's Tasks) is running

Be sure IIS is set to the correct Home Page (root directory).

Be sure the Port addresses are correct (HTTP – Port 80, HTTPS (SSL) – Port 443, Data – Port
1234)

Make sure you firewall has these ports open

If you are using a Windows Embedded device, be sure ISSymbol is properly loaded and registered

Be sure your runtime license supports the Web Client configuration

If you get a Page cannot be displayed error message,

From the browser, ping the server IP address

Stop and restart IIS

Be sure the MIME types are properly set

Make sure you updated your web pages (i.e., Save as HTML) and use the Verify Project tool if
you change any Web settings.

Verify the Windows security settings are properly set

Be sure that the Screen name (and Web Page name) do not have any spaces in the name

If the web pages are incorrect:

Be sure you are pointing to the correct primary URL

Be sure your backup URL (if you use it) has the correct (updated) web pages

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

The Underlying Technology
In a IWS project, there are several components used to implement the Thin Client capability.

These components are:

Data Server

The Data Server is built-in to the IWS runtime. The Data Server has direct access to the IWS
Project Tags Database (runtime) and is responsible for working with ISSymbol to make sure
any Tag data being displayed on a Web page at any Thin Client is updated with the latest
value(s).

IWS can support a backup or secondary Data Server that will be used should the Primary Data
Server become unavailable. The Thin Client will automatically switch over to the Secondary
without user intervention required.

Web Server

The Primary Web Server is responsible for providing Web pages on demand (i.e., when
requested by the Client) through navigation to various project screens by the Thin Client. The
Web Server communicates with the Thin Client via HTTP protocol over TCP/IP. SSL (Secure
Socket Layer) encrypted communications can be enabled. The Web Server does not need to
reside on the same PC as the IWS runtime project. In fact, the Web Server could be a non-
Windows corporate Web Server. However, the Web Server needs to have access to the HTML
files that are the project Web pages.

IWS supports a Secondary Web Server that will be automatically switched to (by the Client) in
case the Primary Web Server becomes unavailable.

Web Browser

The Web Browser is located on the Thin Client PC and provides the graphical interface function
with the user. Web pages (HTML) is passed to the browser via demand ("pull") and data is
"pushed" to the browser by the Data Server whenever a Tag or Tags referenced on the Screen
displayed on the Web Client is updated in the Tag Database.

ISSymbol

ISSymbol is a InduSoft-provided ActiveX Control that facilitates the interaction between the
browser on the Web Client and the Web Server as well as the Data Server. There are ISSymbol
ActiveX Control versions for Windows XP/Vista/7 and all Windows Embedded platforms.

The ISSymbol ActiveX Control is used for both the Internet Explorer-based and Secure Viewer-
based browsers.

Web Tunneling Gateway

The (Primary) Web Tunneling Gateway is a bridge between the Web Server and the Data

Server that is used in one of two situations. The first is whenever data security is required
(e.g., IWS data exchanged with the Thin Client needs to be encrypted). The second situation is
when the Data Server is "hid" behind a corporate firewall, and only the Web Server IP address
(or URL) is exposed.

IWS supports a backup (Secondary) Web Tunneling Gateway to be used if the Primary Web
Tunneling Gateway becomes unavailable. The Thin Client will automatically switch over to the
secondary Web Tunneling Gateway.

The Web Tunneling Gateway is automatically installed when InduSoft Web Studio is installed on
your PC if the installation program detects that IIS is present.

Note:

The Web Tunneling Gateway is automatically installed if IIS is detected during the
installation process. Otherwise, it must be manually installed.

The main function of the Web Tunneling gateway is to encapsulate data packets in HTTP or
HTTPS for communication through a firewall.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

ISSymbol Control Layer
ISSymbol is a component designed by InduSoft that is able to display the screens created with IWS
in the Web browser and exchange data (tag values and history data) with the TCP/IP server module
of the project. On the Thin Client station, the Web browser (e.g., Internet Explorer) is the container
that hosts the ISSymbol control.

ISSymbol works as a control layer between the project and the Web browser — equivalent to the
Java Virtual Machine for Java-based applications. This approach provides a high level of security
because ISSymbol does not allow the project to access the operating system directly.

When the Web browser downloads the HTML page specified by the user, it checks for ISSymbol
control registration on the current computer. If it does not find it, the browser attempts to download
registration from the URL specified in the project settings (Thin Client on the Project tab of the
ribbon). The Web browser is not able to display the screens from the project if the ISSymbol control
is not properly registered in the Thin Client station.

CAUTION:

Make sure your Web browser is enabled to download signed ActiveX controls, in order
to download ISSymbol automatically. Otherwise, you will need to register ISSymbol
manually in the Thin Client station. Check your Web browser's documentation about
security settings if you have questions about how to configure these settings.

Manually Installing the ISSymbol Control

You can also install the ISSymbol control manually in the Thin Client station. The procedure to install
ISSymbol in each operating system is described below:

Windows PC

Copy the following files…

[…]\InduSoft Web Studio v7.0\Bin\ISSymbolReg.exe

[…]\InduSoft Web Studio v7.0\Bin\ISSymbolVM.cab

…into any directory of the Thin Client station. Make sure that both files are stored in the same
directory.

1.

Run ISSymbolReg.exe to register the ISSymbol control on the PC.2.

Windows Embedded

Determine the OS version and processor type of the Windows Embedded device, and then find
the corresponding redistribution folder in the IWS program directory:

1.

[…]\InduSoft Web Studio v7.0\Redist\CE_version\processor_type\Bin\

For example, for a MIPS IV processor running Windows CE 5.0 or later:

2.

[…]\InduSoft Web Studio v7.0\Redist\WinCE 5.0\MIPSIV\Bin\

From that directory, copy the following files…

IndHTTP.dll

IndVkStd.dll

ISSymbolCE.ocx

…and one of the following Virtual Keyboard layouts…

VKEN.ini (for English)

VKGE.ini (for German)

…into any directory in non-volatile memory on the Windows Embedded device. Make sure that
all files are stored in the same directory.

2.

At the Windows command prompt, execute the following command:3.

regsvrce.exe "\ISSymbol_directory\ISSymbolCE.ocx"

For example:

regsvrce.exe "\Storage Card\ISSymbolCE.ocx"

Save the registry settings to keep ISSymbolCE.ocx registered when you reboot the Windows
Embedded device.

4.

Windows Mobile / Pocket PC

Follow steps 1 and 2 of the instructions for Windows Embedded (above).1.

Run the program RegSvrCE.exe on the Windows Mobile device. While in the program, do the

following:

Locate the file ISSymbolCE.ocx in the directory to which you copied it.a.

Select the Register option.b.

Click OK.c.

2.

Tip: Your Windows Mobile device may not come with the program RegSvrCE.exe, because such

consumer devices (i.e., smartphones and PDAs) are typically not meant to be used like this. If
you need to acquire this program — or VBScript.dll, which is also left off most Windows Mobile

devices — then please contact Customer Support.

How It Works

After you open the Web browser, you must type the URL for one web page available in the Web
Server station (e.g., http://127.0.0.1/main.html) into the Address field. At this point, the Thin Client
executes the following process:

1.

2.

http://127.0.0.1/main.html

The Web browser downloads the HTML page of the screen you specified.1.

The Web browser checks for ISSymbol control registration in the local computer. If it does not
find it, the Web browser attempts to download the ISSymbol component from the URL
configured in the project (settings saved in the HTML page). Since the ISSymbol control is
properly registered in the Thin Client station, the Web browser loads it.

From this point on, ISSymbol takes over the communication with the server station, and the
Web browser is used only as a host for ISSymbol.

2.

ISSymbol connects to the data server. You configure the data server IP Address in the project
settings (Thin Client on the Project tab of the ribbon). This setting is embedded in the HTML
page.

3.

ISSymbol prompts a window on the Thin Client, asking for the User Name and Password. The
data you enter is codified by Binary Control and sent to the server. The server station checks
the validity of the data and whether you have the rights to open the startup screen. If so, the
process continues. If not, you are prompted with an error message indicating that the User
Name and Password are invalid. In this case, the process will not continue.

Note: Step 4 is skipped if the Security System is disabled during the configuration of the
project.

4.

ISSymbol downloads the necessary files to display the screen specified by the user (screen files,
tags database, translation files and so forth).

5.

ISSymbol connects to the data server and reads the value of the tags that are displayed in the
screen you specified.

6.

ISSymbol displays the screen on the Web browser and keeps updating the objects according to
the values read from the server. Whenever the value of any tag displayed on the open
screen(s) changes on the server, the new value is sent to the Thin Client (and vice-versa).
Therefore, there is no pooling between the Thin Client and the server station. This method
increases the communication performance and optimizes the traffic in the network.

7.

Notice that there are two servers in this process:

Web server (HTTP Server): Provides the files from the server to the Thin Client via HTTP
protocol over TCP/IP.

Data server (TCP/IP Server module from IWS): Provides tag values and/or history data from
the project running on the server to the Thin Client station(s).

Although both servers are usually running in the same computer, IWS provides the flexibility to run
each server in a different station, if necessary. See Web-based application typical architectures for
further information.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Examples of Client/Server
Architecture
This section describes some example architectures applied for web-based solutions and provides
information on how to configure the project for each architecture. This section does not describe all
possible architectures, but it provides the concepts necessary to design and configure different
scenarios based on the basic architectures illustrated below

The Web Settings are configured by the Web tab of the Project Settings dialog. To open this dialog:
on the Project tab of the ribbon, in the Web group, click Thin Client . By pressing the Advanced
button, you access additional settings. The following pictures illustrate these dialoges:

The following table describes the meaning of the main Web settings illustrated in the above dialoges:
Data Server IP Address

When the Web Tunneling Gateway is disabled : The Thin Client Control (ISSymbol) uses the Data
Server IP Address to connect to the IWS TCP/IP Server Task.

When the Web Tunneling Gateway is enabled : The Web Tunneling Gateway uses the Data Server IP
Address to connect to the IWS TCP/IP Server Task.

Secondary Data Server IP Address
Same as the Data Server IP Address. However, the Secondary IP Address is used only when the
connection with the Data Server IP Address fails.
Web Tunneling Gateway IP Address
The Thin Client Control (ISSymbol) uses the Web Tunneling Gateway IP Address to connect to the
Web Tunneling Gateway.
Web Tunneling Gateway Secondary IP Address
Same as the Web Tunneling Gateway IP Address. However, the Web Tunneling Gateway Secondary
IP Address is used only when the connection with the Web Tunneling Gateway IP Address fails.

Setting Description

The Secondary addresses can be used in the following scenarios:

When the Thin Clients can connect to either one of two redundant Servers (Web or Data); or

When the Thin Clients can connect to the Server through the Intranet (LAN – Local Area
Network) or through the Internet (WAN – Wide Area Network). In this case, the Primary
addresses should be configured based on the network used more often by the Thin Clients. In
the following examples, the LAN addresses are used as Primary and the WAN addresses are
used as Secondary.

The following table describes the meaning from some terms used in the next examples:
LAN
Local Area Network (for example, Intranet)
WAN
Wide Area Network (for example, Internet)
Server

Station where the following components are running:

IWS (TCP/IP Server task)

Web Server (for example, Internet Information Services from Microsoft – IIS)

Web Tunneling Gateway for IIS (if enabled)

Although IWS does not need to run in the same station where the other components are running, the
following examples assume that it is.

Thin Client LAN
Thin Client station (Web Browser + ISSymbol control) that connects the Server via the LAN.
Thin Client WAN
Thin Client station (Web Browser + ISSymbol control) that connects the Server via the WAN.
IP_SERVER_LAN
IP Address of the Server on the LAN.
IP_SERVER_WAN
IP Address of the Server on the WAN.
IP_ROUTER_LAN
IP Address of the Router on the LAN.
IP_ ROUTER_WAN
IP Address of the Router on the WAN.
ScreenName
Name of the project screen, saved as HTML, that is open on the Thin Client station.

Term Description

Example 1: Web Server and Thin Client in the same Intranet (LAN)

Figure 1.

This is the very common architecture, as well as the simplest to configure. In this architecture, both

the Web Server (e.g., Microsoft IIS) and the Data Server (i.e., the IWS TCP/IP Server module) are
running on the same PC. The Thin Client connects to the Web Server to download the HTML screen
file(s). Then it connects to the Data Server to exchange data with the IWS runtime project. Since
both the Thin Client and the Server station are connected to the same network, the Thin Client can
access the Server station directly through its IP address (or host name).

Configuration :
Data Server IP Address
IP_SERVER_LAN
IP_SERVER_LAN
Secondary Data Server IP Address
-
-
Web Tunneling Gateway IP Address
IP_SERVER_LAN
-
Web Tunneling Gateway Secondary IP Address
-
-

Setting WTG
Enabled

Web
Gateway
Disabled

Note:

URL From Thin Client LAN: http://IP_SERVER_LAN/ScreenName.html

Home directory of the web server (HTTP server) on the server station: Web sub-folder of

the project

Example 2: Web Server with Intranet (LAN) and Internet (WAN)
Connections

Figure 2.

http://IP_SERVER_LAN/ScreenName.html

This architecture has both the Web Server (e.g., Microsoft IIS) and the Data Server (i.e., the IWS
TCP/IP Server module) running on the same PC. Thin Clients can connect to the Server through
either an Intranet (LAN) connection to the Server or an Internet (WAN) connection to the Server
(e.g., two different Ethernet ports).

Configuration :
Data Server IP Address
IP_SERVER_LAN
IP_SERVER_LAN
Secondary Data Server IP Address
IP_SERVER_LAN
IP_SERVER_WAN
Web Tunneling Gateway IP Address
IP_SERVER_LAN
-
Web Tunneling Gateway Secondary IP Address
IP_SERVER_WAN
-

Setting Web
Gateway
Enabled

Web
Gateway
Disabled

Note:

URL From Thin Client LAN: http://IP_SERVER_LAN/ScreenName.html

URL From Thin Client WAN: http://IP_SERVER_WAN/ScreenName.html

Home directory of the Web Server (HTTP server) on the Server station: Web sub-folder of

your project folder

You must assign a Fixed IP address to the Web Server on the Internet (WAN), and the
project must be running in this Server. Consult your ISP provider or IT department for
further information about how to get a Fixed IP address for your Server.

http://IP_SERVER_LAN/ScreenName.html
http://IP_SERVER_WAN/ScreenName.html

Example 3: Web Server with Intranet (LAN) and Router Internet (WAN)
Connections

Figure 3.

This architecture has both the Web Server (e.g., Microsoft IIS) and the Data Server (i.e., the IWS
TCP/IP Server module) running in the same PC. Thin Clients can connect to the Server through either
an Intranet (LAN) connection or an Internet (WAN) connection. There is a Router between the
Intranet (LAN) and the Internet (WAN).

Configuration :
Data Server IP Address
IP_SERVER_LAN
IP_SERVER_LAN
Secondary Data Server IP Address
IP_SERVER_LAN
IP_ROUTER_WAN
Web Tunneling Gateway IP Address
IP_SERVER_LAN
-
Web Tunneling Gateway Secondary IP Address
IP_ROUTER_WAN
-

Setting Web
Gateway
Enabled

Web
Gateway
Disabled

Note:

URL From Thin Client LAN: http://IP_SERVER_LAN/ScreenName.html

URL From Thin Client WAN: http://IP_ROUTERR_WAN/ScreenName.html

The Router must be configured to forward the TCP Port(s) from its public IP
(IP_ROUTER_WAN) to the Server private IP (IP_SERVER_LAN).

http://IP_SERVER_LAN/ScreenName.html
http://IP_ROUTERR_WAN/ScreenName.html

If the Web Gateway is enabled , only the HTTP Port (80, by default) or the HTTPS Port
(SSL Port 443, by default) must be forwarded from IP_ROUTER_WAN to the
IP_SERVER_LAN.

If the Web Gateway is disabled , both the HTTP Port (80, by default) and the Studio
TCP/IP Server Port (1234, by default) must be forwarded from IP_ROUTER_WAN to the
IP_SERVER_LAN. Consult the Router documentation for further information about how to
configure Port Forwarding on it.

Home directory of the Web Server (HTTP server) on the Server station: Web sub-folder of

your project folder

You must assign a Fixed IP address to the Router on the Internet (WAN), and the project
must be running in this Server. Consult your ISP provider or IT department for further
information about how to get a Fixed IP address for your Server.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring the Data Server
IWS has a couple dialoges that are used for configuration of the Data Server and the Web Server
configuration to be used. This information is embedded in the HTML web pages that correspond the
screens. The Data Server is part of the IWS runtime project and uses the TCP/IP Server module.
There are three (3) basic steps to this configuration:

Step 1: Web Settings dialog configuration

On the Project tab of the ribbon, in the Web group, click Thin Client.1.

In the Data Server IP Address field, type the IP address of the PC where the runtime project
will reside.

2.

Check the checkboxes for Auto Screen Scaling, Enable File Compression and Enable
Tooltips. If you want to disable the Web Client from issuing commands to the Server, check
the Disable Remote Client Commands checkbox.

3.

If the Web Client is to use a Virtual Keyboard, check the Virtual Keyboard checkbox and any4.

5.

additional settings for the Virtual Keyboard at the Thin Client.
4.

By clicking on the Advanced button, you can define a backup URL (i.e., backup Website for
web pages) and a Secondary Data Server IP address. This is for a redundant Web Server and/or
a redundant Data Server, respectively. Web Tunneling can also be enabled in this dialog. The
URL for the ISSymbol OCX can also be defined if it is not found on the Web Server.

5.

By clicking on the IP Security button, you can define a range of IP addresses that will be
accepted by the Data Server. If a request for data comes from an IP address outside of the
defined ranges, the request will not be acknowledged. This is an Embedded Firewall function.

6.

Step 2: Communication Settings dialog configuration

On the Project tab of the ribbon, in the settings group, click Communication.1.

Enter the Port number (1234 is the default) for the Data Server. You can also define the Data
Send Period (i.e., time period for updated communication of data values to the Web Client).

2.

Optionally enable Binary Control of the data. It is more secure, but is slower. The default is
disabled.

3.

Step 3: Enable the TCP/IP task

On the Home tab of the ribbon, click Tasks (local or remote, depending on the project's target
system).

1.

Be sure the TCP/IP Server is set to Automatic. This should be the default state, but can be
manually configured by selecting the Startup button.

2.

Be sure the TCP Port number is properly set (see Communication Settings above), otherwise
the TCP/IP Server will start then stop.

3.

Note:

This configuration information (from Step 1 & 2) gets embedded in the Web Pages
generated from the IWS development environment when you Save As HTML.

If you change any of these settings, you MUST run the Verify Project tool.

Using the SetWebConfig Function

The SetWebConfig() built-in function allows the developer to programmatically configure the Data
Server and Web Client configuration, and the resulting configuration settings are automatically
updated in your project's HTML files (located in the Web sub-folder). This function always runs on the

IWS Server, and works in both a Windows and Windows Embedded environment.

For more information, see SetWebConfig() function.

Configuring the Web Server to Support IE and Secure Viewer

IWS is capable of supporting both Interned Explorer (IE)-based browsers and Secure Viewer-based
browser at the same time. To do this however, you need to take some care in how you configure
your system.

From the Web-server side

All HTML files go into the project Web sub-folder.

Configure your Web Server (e.g., IIS) to have its root folder point to the project folder.

Put ISSymbolVM.cab in the project folder if an Internet connection to InduSoft's Web site is not
available and the ISSymbol ActiveX control is not installed on the IE-based Web Client.

From the Web-Client side

The Secure Viewer-based browser should be configured to point to the .APP file in the project
folder

The IE-based browser should have as an initial URL something like as follows:

http://192.168.1.100/Web/startup.html

…where startup.html is your startup web page.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

http://192.168.1.100/Web/startup.html

Configuring a Web server to host
your project pages
As part of deploying your IWS project over the Web, you must configure a Web server to host your
project screens.

You are not required to use a Windows PC or a Windows Embedded device to host your project
pages. The pages are essentially static files waiting to be downloaded; all runtime processing is
handled by the project viewer (i.e., Internet Explorer with ISSymbol installed, or Secure Viewer) on
the Thin Client. As such, you can use any standards-compliant Web server on any computer platform
to host your pages.

For example, if you already have a Unix-based intranet server, then you can copy your project's Web

sub-folder (or whatever folder in which you've saved your project pages) to the server and have your
Thin Clients point to that server's address.

Please note, however, that the Web server you choose may not be robust enough to serve your
project in a production environment and/or it may not support all features of InduSoft Web Studio. If
you want to use these features, then in most cases you should use Microsoft IIS as described below.
Specifically:

To support Mobile Access (SMA), the server must be able to process Collaborative Data Objects
(CDO) and Active Server Pages (ASP); and

To support Web Tunneling Gateway (WTG), the server must allow Internet Service API (ISAPI)
extensions.

Before you install and configure any software, please review its documentation thoroughly.

Tip: A Web server typically operates on, or "listens to," a computer's TCP/IP port 80. Only one
running process can listen to a given port, so if another process on your computer — for
example, some third-party SCADA software — is already listening to port 80, then it and the
Web server process may conflict with each other. You must either configure one of the processes
to listen to a different port or use Task Manager to end the conflicting process. If you cannot
identify the conflicting process, then in Windows, open Command Prompt and enter the following
command to get a list of all networking processes:

netstat -a -o

NTWebServer and CEWebServer

NTWebServer and CEWebServer are lightweight, zero-configuration Web servers included free with
InduSoft Web Studio. You can use them to demonstrate your project and run basic tests without
making the financial and technical investment in a full-featured Web server. However, they are not

robust and they do not support SMA or WTG. For real-world applications, we recommend that you
use Microsoft IIS as described below.

NTWebServer can be run on any supported Windows PC, and it can be found in the IWS program
directory at […]\InduSoft Web Studio v7.0\Bin\NTWebServer.exe. Copy it to your project's Web

sub-folder before you run it; it must be located in the same folder as the pages it will serve. After you
run it, that folder becomes the top level (or "home" directory) of the Web site.

CEWebServer can be run on any supported Windows Embedded device, and it can be found in the
IWS program directory at […]\InduSoft Web Studio

v7.0\Redist\CE_version\CE_processor\CEWebServer.exe. Assuming you've already copied your
project's Web sub-folder to the device's non-volatile memory, copy CEWebServer.exe to the same

folder and then run it. Again, that folder becomes the top level of the Web site.

Note: Both NTWebServer and CEWebServer must run as normal programs; they cannot run as
Windows services.

Microsoft IIS

Internet Information Services (IIS) is the full-featured server software that is bundled with Windows
Server and "professional" versions of Windows:

Table 1. Versions of IIS

Version of Windows Version of IIS Notes

Windows XP Professional IIS 5.1 Maximum of 10 simultaneous connections.

Windows Server 2003

Windows XP Professional x64
Edition

IIS 6.0 No limit on connections.

Windows Server 2008

Windows Vista (most versions)

IIS 7.0 No limit on connections.

Windows Server 2008 R2

Windows 7 (all versions)

IIS 7.5 No limit on connections.

Windows CE and Windows
Mobile 5.0 and later

IIS for CE .NET Must be included in Platform Builder. Default is
maximum of 10 simultaneous connections.

IIS supports all features of InduSoft Web Studio and it is robust enough to serve almost any IWS
project in a production environment. It's the Web server that we recommend for most users.
However, to properly install and configure it, you should be experienced with administering Windows
on a network.

For the sake of system security, IIS is turned off by default when the operating system is installed.
To turn it on, use the Windows Features dialog (in Windows 7, Control Panel > Programs >
Programs and Features > Turn Windows features on or off):

Figure 1. Turning on IIS in the Windows Features dialog

If you want to use SMA and/or WTG in your IWS project, then make sure ASP and ISAPI Extensions
are also turned on:

Figure 2. Turning on ASP and ISAPI Extensions in the Windows Features dialog

Once IIS is turned on, you can use Administrative Tools (in Windows 7, Control Panel > System
and Security > Administrative Tools) to configure it. For more information, please refer to
Microsoft's extensive documentation.

Apache for Windows

If IIS is not available to you or if you choose not to use it, then the second most popular Web server
for Windows is the open-source Apache. However, it requires even more expertise than IIS to
properly install and configure, so please review the documentation thoroughly before you attempt it.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring the Web Tunneling
Gateway
Thin Clients are commonly connected to the Web Server via the Internet. However, the Data
Server(s) (PC where the IWS is running) is often not directly connected to the Internet. In this case,
the Data Server computer does not have an IP address recognized on the internet. Therefore, the
Data Server cannot be connected directly through the Internet.

The Web Tunneling Gateway (WTG), developed by InduSoft, provides the routing capabilities to solve
this problem. The WTG must be installed in the PC with the Fixed IP Address on the Internet.
Generally, this is the Web Server. Consult your ISP provider for further information about how to get
a Fixed IP Address for your PC on the Internet. The PC where the WTG is running must have the
Microsoft IIS Web Server installed and running. The WTG is an ISAPI extension for IIS.

The Web Tunneling Gateway also provides the ability to encapsulate the data packets between the
Data Server and the Web Client in HTTP or HTTPS.

Follow the procedure below to install the WTG on the Web Server computer:

Copy the WebGtw.exe file from the \BIN sub-folder of IWS into any directory of the web
server computer.

1.

Execute the WebGtw.exe file on the web server computer.2.

The WTG works as a router between the Thin Clients (connected to the Internet) and the Data Server
PC (connected to the Intranet). The same WTG can route information for more than one Data Server
simultaneously.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring the Thin Client
IWS supports two types of Web Browsers for use with Thin Clients; Microsoft Internet Explorer, which
supports ActiveX Controls, and the InduSoft-developed Secure Viewer. Both browsers can use used
concurrently with the Web Server, and the choice of browser depends on the project requirements.
The Secure Viewer is targeted at plant floor use, while the Internet Explorer browser is generally
more appropriate for desktop applications or where the Thin Client needs to connect to different
project servers.

Configuring Microsoft Internet Explorer

There is really very little that needs to be done to configure Microsoft Internet Explorer to be used as
a Web Browser for a Thin Client. The primary items are:

Make sure ActiveX Controls are enabled.

The settings to control this are generally found in Tools > Internet Options > Security. Click
on the Custom Level button and be sure to allow the ISSymbol ActiveX Control to be installed,
then you can return to a higher security level. (Otherwise, be sure to install the ISSymbol
ActiveX Control manually).

Be sure VBScript is supported on your PC. This is generally not an issue with desktop PCs, but it
can be an issue on Windows Embedded devices. You will need to be sure the VBRun.dll is
installed and registered on your PC.

If you are going to use Microsoft Internet Explorer as your Web browser for Thin Client projects, you
may want to remove some navigation bars and buttons to reduce the amount of space taken up by
these items.

You can create an icon on the desktop that is a shortcut to your startup web page on the Web
Server. This will take you to the web page when you click on the icon. Additionally, you can put this
shortcut in the Startup folder so that the Web page is automatically started whenever the browser is
started.

Installing the Secure Viewer

Installing on Windows PC

You will need to install the Secure Viewer from your CD (or download from the InduSoft Web site).
Follow the following steps:

Request the Secure Viewer installer from your software vendor, save it to the designated
computer, and start it.

1.

Follow the instructions of the installation wizard. There are only two settings that must be
configured during installation:

URL: Enter the URL or filepath of the project file (project_name.app) on the Web Server.

Server IP: Enter the IP address or hostname of the Data Server (a.k.a. TCP/IP Server).

2.

3.

Finish the installation and click Finish to close the installer.3.

The installation wizard automatically installs and registers the Thin Client ActiveX component
(ISSymbol.ocx), so if you have correctly configured the URL and Server IP settings, then the Secure
Viewer should be ready to go.

Note: For additional security of the runtime environment, add a shortcut to the Secure Viewer
(Viewer.exe) to the Startup directory in Windows. Viewer.exe will install into the \Bin sub-folder
where the IWS program installs.

Installing on Windows Embedded

You can also install the Secure Viewer on a Windows Embedded device, by copying the necessary files
to the device's non-volatile memory. To install Secure Viewer:

Determine the OS version and processor type of the Windows Embedded device, and then find
the corresponding sub-folder in the IWS program directory. For example, for Windows CE 5.0
running on a MIPS processor, find the […]\InduSoft Web Studio v7.0\Redist\WinCE
5.0\MIPS\Bin sub-folder.

1.

Select the following files in the sub-folder:

IndVkStd.dll

ISSymbolCE.ocx

Tagi.bin

Viewer.exe

ViewerCfg.exe

2.

Copy the files to non-volatile memory on the Windows Embedded device.3.

Register the ISSymbol control on the Windows Embedded device by executing the following
command from the Prompt window:

4.

regsvrce.exe "\ISSymbolPath\ISSymbolCE.ocx"

Example:

regsvrce.exe "\Storage Card\ISSymbolCE.ocx"

Save the registry settings to keep ISSymbolCE.ocx registered when you reboot the Windows
Embedded device.

Tip: Check the device manufacturer's documentation for how to save the registry settings.

5.

Start the Secure Viewer by running Viewer.exe.6.

Changing the Secure Viewer Configuration

After initial installation, the configuration of the Secure Viewer is saved in the viewer.ini file, which
should be in the same directory as Viewer.exe. (This should be in the \Bin sub-folder where the
Secure Viewer program is installed). There are two ways to change the configuration of the Secure
Viewer after it has been installed. First, you can run the Viewer configuration utility (ViewerCfg.exe)
that was also installed.

Figure 1.

Note: On WIndows Vista and Windows 7, the Secure Viewer configuration utility must have
Administrator privileges to run properly. It should be installed with those privileges by default,
but if you still have problems, then check the file properties for ViewerCfg.exe and make sure

Run as Administrator is selected.

The configuration utility provides the following options:

Save button: Immediately save the current settings to a viewer.ini in the same directory as
the ViewerCfg.exe utility.

Import button: Load a viewer.ini file from another directory.

Export button: Save the viewer.ini file to another directory.

Data Server IP field: Enter the IP address (or host name) of your data server station.

The data server station is the computer or device where the TCP/IP Server module is running.

TCP Port field: Enter the port number of the Data Server, if it is different than the default port
of 1234.

URL field: Enter the URL or filepath of the project file (*.app) on the Web Server.

Enable Splash Window option: Check (enable) this option to see a splash window when you
start the Secure Viewer.

Enable Progress Bar option: Check (enable) this option to see a progress bar while the Secure
Viewer loads the project file.

Advanced button: Click to access additional configuration options:

Figure 2. Secure Viewer Configuration Utility — Advanced Settings

Secondary Data Server IP field: Type the IP address (or host name) of the secondary
data server station. If the primary data server fails, the Secure Viewer will attempt to
connect to the secondary data server automatically.

Backup URL field: Type the URL of the backup location of the project file.

Date Format: Adjust the date format on the Secure Viewer station to match the Data
Server. This is to maintain compatibility with any Alarm/Event Control or Trend Control
objects that you have in your project.

Timeout for switching stations field: Enter the number of seconds that the Secure
Viewer should wait before attempting to connect to the secondary Server, in the event
that the primary Server fails. (For more information, see Web tab.)

Log on as Guest option: Check (enable) to have the Secure Viewer automatically log on
as Guest, eliminating the need to enter a Username or Password.

Disable Commands option: Check (enable) to prevent the Secure Viewer from sending
user commands back to the Server. It will only display current information from the
Server.

Web button: If you have configured a Web Tunneling Gateway to bridge your intranet to
the Internet, then enter the addresses for the gateway here.

The second way to change the configuration of the Secure Viewer is to manually edit the viewer.ini
file with a text editor. The structure of the file is as follows:

[Options]

nosplash= // Enable (0) or disable (1) the splash window

noprogressbar= // Enable (0) or disable (1) the progress bar

ds1= // Data Server Primary

ds2= // Data Server Secondary

dsp= // Data Server Port

wtg1= // Web Tunneling Gateway Primary

wtg2= // Web Tunneling Gateway Secondary

url= // URL from project file (*.app)

proxyip= // Proxy Address

proxyp= // Proxy Port

ceemul= // Enable (1) or disable (0) CEView emulation

Example

PC with IWS runtime project (has both Web Server (NTWebServer or IIS) and Data Server):

IP Address is 192.168.1.106

Project name is SecureViewerTest

Project file is SecureViewerTest.app

Secure Viewer configuration dialog:

Data Server IP = 192.168.1.106

TCP Port = 1234

URL = http://192.168.1.106//SecureViewerTest.app

Alternatively, you could edit the viewer.ini file:

[Options]

url=http://192.168.1.106//SecureViewerTest.app

noprogressbar=1

ds1=192.168.1.106

nosplash=1

ds2=

dsp=1234

wtg1=

wtg2=

user=Guest

[OEM]

Splash=Splash.bmp //this is a splash screen

Note:

Your InduSoft Web Studio runtime license must support a Secure Viewer (Thin Client)
otherwise the connection to the Data Server will be refused.

Be sure to put NTWebServer in your project folder (not Web sub-folder) or point IIS to your

project folder.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Implementing Security for Web-
based Applications
There are various methods for implementing security of Web-based applications. The approach that you
require can depend on a number of factors, and may involve one or more methods of implementing
Security.

Method 1: Password Protection

IWS provides the ability to create Groups of Users and individual Users within a Group. Each Group (e.g.,
Operators, Supervisors, Maintenance) can have different security levels and access different levels of
functionality. Individual passwords can be configured for each User.

Figure 1. Security Groups and Users

In addition, Groups can have advanced settings, allowing features like minimum password size, password
aging, e-signature on Objects with Command animations, Account Auto-lockup (e.g., lock up after a
number of invalid attempts to access), and User Account blocking (temporarily disable – e.g., when
employee is on vacation).

Figure 2.

If System Security is enabled, these Password Protection features are also available at the Thin Client
station. When a User at a Thin Client station attempts to connect to the Web Server, they will be prompted
for a User Name and a Password. If either is invalid, the User will not be let on to the system.

Figure 3. Log On dialog

Within a project, the various screen objects and their animations, and Screen access can have a security
level assigned to it. The current User logged on must have a access level range which matches the desired
Object or Screen. The following is a representative method of assigning security access levels by Group.

For more information, see Security .

Method 2: Disabling Thin Client Commands

IWS allows bi-directional data exchange between the Thin Client and the Data Server. However, for
security reasons it may be advantageous to only allow the Thin Client to view the process or machine
data, and not send any data back to the Data Server.

Selecting (checking) the Disable Remote Client Commands option in the project settings (Thin Client
on the Project tab of the ribbon) ensures that all commands coming from a Thin Client station are blocked.
The communication becomes unidirectional (from the Server to the Thin Clients):

Figure 4. Project Settings — Web tab

Method 3: Embedded Firewall

This feature allows the user to filter access to the project based on the Thin Clients IP Address. When a
Thin Client attempts to connect to the Server station, the Server checks if the IP Address of the Thin Client
station is authorized to access the project. The ranges of authorized IP Addresses can be configured in the
Server station by clicking IP Security in the project settings (Thin Client on the Project tab of the
ribbon):

Figure 5. IP Security dialog

Figure 6. Access allowed by IP address

Method 4: Encrypted Communications (SSL)

By enabling the Web Tunneling Gateway (WTG), you can enable all communications between the Data
Server + Web Server and the Thin Client to be encrypted using RC6, a highly-secure 128-bit encryption
standard. To use SSL, you must do the following:

Click Advanced in the project settings (Thin Client on the Project tab of the ribbon). Select (check)
the Web Tunneling Gateway Enabled option. Click on the SSL radio button and be sure the SSL
port is set to 443. Click OK .

Figure 7. Project Settings — Web — Advanced dialog

1.

In your Web Server, be sure SSL capabilities are enabled and that a SSL Certificate of Authentication
is present.

2.

Be sure SSL is enabled in the Web Client3.

Set up all other Web configurations to support the WTG.4.

Method 5: VPN

A VPN is a Virtual Private Network. It is called virtual since it really uses the public Internet to transport
data from one computer to another. But since this network is encrypted and uses other security
mechanisms enabled by the ISP, is it a very secure Private Network. While VPN's are inherently secure,
they are more costly that a simple public Internet connection.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Port Usage

There are various ports that are used by IWS and/or related software. These are:

Port # Program

20 FTP Server (Data)

21 FTP Server (Command)

25 SMTP Server

80 Microsoft IIS Server for HTTP packets

110 POP3

118 Microsoft SQL Server Services

161 SNMP

162 SNMP Trap

389 LDAP

443 Microsoft IIS Server for HTTPS packets
(SSL)

502 Modbus TCP/IP protocol

663 LDAP over SSL

1028 FTP Client (Command)

1029 FTP Client (Data)

1234 Project TCP/IP Server

1443 Microsoft SQL Server

1444 Microsoft SQL Server default port (Monitor)

1521 Oracle

1526 Oracle

2030 Oracle

3001 A-B Ethernet TCP/IP Protocol (default)

3306 MySQL (can be configured to use 3306-
3309)

3872 Oracle Management Remote Agent

3997 Studio ADO Gateway

4322 Remote Agent (CEServer)

Port # Program

5432 PostgreSQL

47808 BACNet UDP Protocol (default)

You may need to accommodate one or more of these port's usage in your Firewall settings.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

5432 PostgreSQL

47808 BACNet UDP Protocol (default)

You may need to accommodate one or more of these port's usage in your Firewall settings.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Exercise: Viewing Your Project on
the Web

To view your project, use the following steps:

Expand the Screens folder and double-click on your Main.scr screen.1.

To save the screen in HTML format, click Save as HTML on the Application menu.

Web files are stored in the Web folder, so open the folder and verify that you saved the Main
screen successfully. You should see main.html.

2.

On the Project tab of the ribbon, in the Web group, click Thin Client.

Figure 1. Open the Project Settings dialog

3.

Configure the Data Server IP Address to use the IP Address of the Server station (computer
on which you are running) at runtime.

The Thin Client station exchanges on-line data (tag values) with the station specified in this
field.

4.

5.

Type the URL path to your main.html file (in the Web folder) into the URL field.

The URL depends on the Home directory configured in the Web Server of your Server station.

Note: Microsoft provides Web Servers for any Microsoft operating system. Consult your
Microsoft documentation about installing and configuring a Web Server.

5.

After configuring the Web settings, click OK to close the Project Settings dialog.6.

Save and close all screens and worksheets, and then verify the project (Verify on the Home tab
of the ribbon) to update the Web settings to your Web page.

CAUTION:

You must verify the project again any time you change the project settings.

7.

To test your Web-based application, use the following steps:

Click Run (on the Home tab of the ribbon, in the Local Management group) to run your project
locally on the Server station.

1.

Open an Internet Browser (Microsoft Internet Explorer or Netscape) and type the URL address
to open your main.html screen from the Server station.

2.

When the Log On dialog displays in the Browser, type guest into the User Name field, then
click OK to open the main.html screen in the Browser.

Figure 2. Log On dialog

Notice that you can modify the level of any tank locally (Server station) using the Viewer run-
time module or remotely (Thin Client) using the Browser.

3.

Note: A Thin Client requires an ActiveX component (ISSymbol.ocx) to handle screens on the
Browser. If you connect the Thin Client to the Internet, this component is downloaded and
registered automatically.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring the Target System

After configuring a project and testing it locally (on your development workstation), you can
download the project to a remote runtime workstation that is running IWS on Windows XP/Vista/7 or
running CEView on a Windows Embedded device.

Before you begin, verify that the Remote Agent (CEServer.exe) is running on the target

(remote) workstation.

On a Windows platform, the CEServer.exe file is located in the […]\InduSoft Web Studio

v7.0\Redist\CE Version\Processor Type\Bin folder.

On a Windows Embedded device, the file is located in the \non-volatile folder.

1.

Run the CEServer.exe on the target workstation, and when the Remote Agent dialog is displayed,
click Setup.

Figure 1. Remote Agent dialog

The Setup dialog opens:

Figure 2. Setup dialog

2.

Use the parameters on this dialog to configure communication between the development and
target systems:

Serial Port: To establish a serial connection to the project server, select Serial Port and
then select the specific port from the drop-down combo box.

If you click Advanced, the Serial Advanced Settings dialog is displayed.

Figure 3. Serial Advanced Settings dialog

You can use the parameters on this dialog to control the flow of data between your target
and development stations:

Baud Rate: Select a baud rate from this drop-down combo box.

Control RTS: Select (check) this to use a "Request to Send" control, where IWS
sends an RS-232 signal from the transmitting station to the receiving station
requesting permission to transmit.

Control CTS: Select (check) this to use a "Clear to Send" control, where IWS sends
an RS-232 signal from the receiving station to the transmitting station to indicate the
receiving station is ready to accept data.

When you finish setting these parameters, click OK to close the Serial Advanced Settings
dialog.

TCP/IP: Enable this button to establish a TCP/IP connection to the development station.

Tip: For better performance, we recommend using a TCP/IP connection instead of a
Serial Link connection.

When you are finished, click OK to close the Setup dialog, but leave the Remote Agent program
running in the remote workstation.

3.

Continue to "Configuring the Development Station."

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Configuring the Development
Station

After configuring the target system to receive data, use the following steps to configure the
development station to send the project data:

On the Home tab of the ribbon, in the Remote Management group, click Connect. The Remote
Management dialog is displayed:

Figure 1. Remote Management dialog

1.

Select the Target tab and use the following options to specify the target system to which you
are going to connect.

Network IP: Select this button and type the IP address of the target system into the text
box if you specified a TCP/IP connection when you configured the target system.

Serial Port: Select this button and select a port from the combo-box list if you specified a
Serial Port connection when you configured the target system.

Microsoft ActiveSync: Select this button to connect to devices on which ActiveSync is
enabled.

2.

Click the Connect button to connect to the target system.

If the target system is a Windows Embedded device, then you can click Install System Files
to install the CEView runtime engine on the station.

3.

Select the Project tab.4.

In the Target box, verify the directory for the project files on the target system. If the path is
incorrect, then click the browse button to the right of the Target field to select a new directory.

5.

4.

(Assuming you are properly connected to the target system, you should be able to browse it like
any network drive.)

Note: You can download the project files only to folders that are below where the CEServer
is installed and running. For example, if CEServer is installed at \Storage Card\CEView\,

then the project files should be installed at \Storage Card\CEView\project_name\.

5.

Click Send to Target to download the entire project to the target system. (Or click Send File
to select an individual file to send.)

CAUTION:

When you send a project to the target system, the new project replaces the old
one automatically and immediately, even if the old project is still running. Also, if
you uncheck (disable) the Only newer files option, then the development
application will delete all of the old files in the project folder before downloading
the new files. As such, you may want to manually stop the old project (by
clicking Stop) before you send the new one. That way, you can make sure it stops
gracefully and doesn't disrupt any other processes.

It's not strictly necessary to stop the project, however, so if your project is
robust enough to handle the switch then you can send new files whenever you
need to.

Note:

Once you've initially configured the Remote Management settings, you can use Send
project to target (on the Home tab of the ribbon) to send updated project files at
any time without opening this dialog.

You can compress the project files to make them download more quickly over a slow
network connection. To do this, select the Enable File Compression check box in
the Communication tab of the Project Settings dialog.

If the download is interrupted, then the development application will request
confirmation to continue and advise you that the project may not run properly.

6.

After the download is complete, click Run to start the project on the target system.7.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Automatically Running a Project
By default, you must manually run your finished project on the Windows Embedded device, either
from your PC by using the Project tab of the Remote Management dialog (see above) or on the
device itself by clicking the Start button in the Remote Agent dialog.

However, you can configure the Windows Embedded device to automatically run a specified project.
To do this, edit the file CEServer.ini on the WIndows CE device to include the following setting:

[Setup]

AppName=Applicaion Path

Where project_name is the location of the IWS project files on the Windows Embedded device. For

example:

[Setup]

AppName=\Harddisk\Test\CEserverTest

The next time the Windows Embedded device boots up and opens the Remote Agent dialog
(CEServer.exe), it will read this setting and automatically run the specified project.

There are three ways to edit the CEServer.ini file:

Edit the file directly on the Windows Embedded device using an attached keyboard or the
touchscreen keypad. The file should be located in the same directory as the CEServer.exe file,
which was installed earlier.

Mount the Windows Embedded device as a shared volume on your PC and edit the file there.

Edit the file in the […]\InduSoft Web Studio v7.0\Redist directory before you install the

system files on the Windows Embedded device.

CAUTION:

This last method changes the default copy of CEServer.ini that is included with

IWS. Use this method only if:

You back up the file before editing it;

You are installing the same system files on multiple, identical Windows
Embedded devices; and

You already know the location (file path) of the IWS project files on the
device (perhaps by using the normal installation method on a test device).

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Database Interface
Configuring a database interface with IWS is basically linking tasks from IWS (Alarms, Events or
Trends) to tables of external databases via a specific Database Provider that supports the database
you have chosen.

Each history task (Alarm, Events or Trend) can be configured to save data either to files with the
proprietary format from IWS or to external SQL Relational Databases. Use the Options tab to
configure the database to save Alarm and Event history. (See the Trend Folder for instructions for
saving history for the trend tasks.)

IWS supports ADO.NET to provide an intuitive, simple, flexible and powerful interface with standard
technologies from MDAC (Microsoft Data Access Components) such as OLE-DB (Object Linking
Embedded — Database) and ODBC (Open Database Connectivity). By using this capability, you can
connect to any database that is MDAC compatible (please see the Conformance Table for the list of
databases already tested)

The following tasks support the database interface:

Alarms : The project can save and/or retrieve the alarm history messages in a relational
database.

Events : The project can save and/or retrieve the event messages in a relational database.

Trends : The project can save and/or retrieve the Trend history values in a relational database.

Viewer : Database information can be displayed both in table format (Alarm/Event Control and
Grid objects) or in a graphical format (Trend Control object).

Web : Because the items listed below are already available in IWS Web interface, you can
deploy a project that stores/saves data in a relational database and have it working over the
Web.

Using its embedded database interface, IWS can easily provide data from the plant floor to third-
party systems (e.g., ERP) or get data from them.

IWS can interface with any relational database supported by a valid ADO.NET Provider, OLE DB
provider or ODBC driver. However, the conformance tests were executed with the following
databases:
Microsoft SQL Server 2000
8.0
System.Data.SqlClient
1.0.5000.0
Microsoft Access 2000
9.0.3821 SR-1
System.Data.OleDbClient
1.0.5000.0
Microsoft Excel 2000
9.0.3821 SR-1
System.Data.OleDbClient
1.0.5000.0
Oracle

10g Release 1 for Windows
System.Data.OracleClient
1.0.5000.0
Sybase
Anywhere 9.0.1.1751
iAnywhere.Data.AsaClient
9.0.1.1751
MySQL
4.0.20a
ByteFX.MySqlClient
0.7.6.15073

Table 1. Conformance Test Table

Database Database Version ADO.NET Provider Assembly Version

Note: For information about how to configure a specific database, please refer to the following:

Database Appendix A: Using ODBC Databases

Database Appendix B: Using Microsoft SQL Server

Database Appendix C: Using ORACLE Databases

Database Appendix D: Using Microsoft Access Databases

Database Appendix E: Using SQL Server CE

Database Appendix F: Using Sybase

Database Appendix G: Using Microsoft Excel

Database Appendix H: Using MySQL

SQL Relational Databases
A SQL Relational Database is a set of information stored in tables with fields and registers,
which support SQL commands.

Linking the Database Through a Remote DB Provider

Studio Database Gateway

Database Configuration

Configuring a Default Database for All Task History

Database Troubleshooting

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.
Database Interface >

SQL Relational Databases
A SQL Relational Database is a set of information stored in tables with fields and registers, which support
SQL commands.

Each database can have one or more tables. Each table is composed of fields (columns) and registers
(rows). Typically, the fields are pre-defined and the project adds or reads one or more registers, according
to the query condition.

IWS uses Database Providers (ADO.NET) to interface with SQL Relational Databases. Database Providers
are libraries developed to access data from different databases through SQL commands. The ADO.NET
Provider for a specific database can be supplied by the operating system or by the database manufacturer.

The following picture illustrates how IWS can interface with different databases using a different Database
Provider for each database.

Figure 1.

The previous picture shows some of the most popular ADO.NET Providers for databases. Notice that the
Microsoft ADO.NET Provider for ODBC Drivers allows you to access the database through an ODBC driver.
See Database Appendix A: Using ODBC Databases for information about how to use this provider. It is also
possible that you do not have an ADO.NET provider, but an OLE DB provider is available. By using the
Microsoft ADO.NET Provider for OLE DB you can get access to the database; the Microsoft Jet OLE DB
provider gives access to applications in the Microsoft Office package by using this approach.

Note: It is important to note that IWS provides the interface for ADO.NET Providers. However, the
ADO.NET Providers and/or the ODBC Driver/OLE DB Provider must be supplied either by the operating
system or by the database manufacturer. If your Connection String does not refer to a valid ADO.NET
Provider, the OLE.DB Provider will be used.

Although most projects typically link to only one type of database, IWS gives you the flexibility to link each
task to a specific database supported by a Database Provider. Furthermore, by using this architecture, you
do not need to worry about the specific characteristics of each database (it is mostly handled by the
Database Provider for each database or by the IWS Database Gateway interface). Therefore, the project
settings are mostly uniform, regardless of the specific database chosen by you.

Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.
Database Interface >

Linking the Database Through a
Remote DB Provider

Depending on the architecture of your project, the ADO.NET Provider for the SQL Relational Database
may not be available in the same stations where IWS is running. This scenario is especially common
when the project is run on a Windows Embedded target system (currently, most of the Providers are
not supported for Windows Embedded). In order to solve this problem, we have designed a flexible
solution that allows you to configure distributed systems, as illustrated in the picture below:

The project is running on the Server station (where InduSoft Web Studio or CEView is installed). The
project can communicate with the IWS Database Gateway (running in a remote computer) via
TCP/IP. The Gateway implements the interface with the Database through the Database Provider
available in the computer where it is running.

The Studio Database Gateway does not require complex configuration. Just copy the files STADOSvr.exe
and StADOSrv.ini from the \BIN sub-folder of IWS and paste them under any directory of the

computer that will be used as the Gateway station and execute the STADOSvr.exe program. There are
advanced settings associated with the IWS Database Gateway, but they should be changed only
under special circumstances. See Studio Database Gateway for information on how to configure the
IWS Database Gateway advanced settings.

Note: The Studio Database Gateway is a TCP/IP Server for the IWS project and it uses the TCP
Port 3997 by default. You can specify a different port number when executing the STADOSvr.exe
program according to the following syntax:

STADOSvr.exe Port Number

Example: STADOSvr 3998

Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.
Database Interface >

Studio Database Gateway
The Studio Database Gateway is a TCP/IP server that interacts with databases using the Microsoft
.Net Framework. It can run on the same computer that is running the IWS project, or on a different
computer. The Database Gateway Host in the Advanced Settings (see Database Configuration dialog
) specifies whether the gateway will be running on the local computer or not. If you are using the
local computer you should enter either localhost or 127.0.0.1 in the Host name. You do not need to
worry about starting or stopping the gateway because it will be done automatically by IWS tasks. On
the other hand, when running the gateway remotely, you need to start the gateway manually. To do
so, copy the files StADOSvr.exe and StADOSvr.ini from the \BIN folder to the remote computer, and

then execute the StADOSvr.exe .

The gateway can be started multiple times for different TCP/IP port numbers. The default port
number is 3997, and it is changed by specifying the desired port number in the command prompt
(e.g., StADOSvr 1111). When running the StADOSvr, it will add the following icon to the system tray:

Figure 2.

When you right-click on the icon, the following shortcut menu is displayed:

Figure 3.

The Hide option controls whether the Studio Database Gateway window is displayed on the desktop.
(The gateway software runs continuously after you launch it, regardless of whether the window is
displayed.) If you disable the Hide option, then the window is displayed:

Figure 4. Studio Database Gateway

Any failure that occurs during operations with databases will be displayed both in this window and
also in the LogWin window. The messages are reported by exceptions generated by the ADO.NET
Provider. (Please refer to Database Troubleshooting for more information about error messages in
the gateway module.)

You can configure the output in this window by using the Log menu:

Show Log menu option: Shows the IWS Database Gateway log files.

Options menu option: Open the Configure Messages dialog.

Figure 5. Studio Database Gateway: Configure Messages dialog

Show Messages pane: Select Errors Only to show only error messages in the log, or
select All Messages to show all database messages.

Additional Information pane: Configure to show additional information about each
database message.

Message Type checkbox: Click (check) this option to show the type of the message.

Date/Time checkbox: Click (check) this option to show the timestamp of the

message.

Advanced Settings

The Studio Database Gateway has Advanced Settings that are configured in the StADOvr.ini file. If
you are having problems interfacing with a specific database, you will probably need to change some
of these settings or add new providers to the file. The following parameters are available:
Providers
SaveMSec
1 : Disable 2 : Enable 3 : Separate Column
This setting specifies the default behavior for the provider when saving milliseconds. The default can
be changed on the Advanced Settings in the Database Configuration Dialogs.
Assembly
Any string that contains a .Net Framework assembly
Assembly option for all providers. The assembly has all the classes required to interface with the
database. Most of the providers are inside the System.Data assembly.
ConnectionClass
Any connection class inside the assembly
The Connection Class is the one that implements the System.Data.IDbConnection interface.
DateAdapterClass
Any data adapter class inside the assembly
The Data Adapter class is used on operations where updates to the database are necessary. It must
be compatible with the connection class specified and it should implement IDbDataAdapter.
CommandBuilderClass
Any command builder class inside the assembly
The Command Builder class is also responsible for updates on databases. It must be compatible with
the connection class.
Provider
Name of the provider
One of the parameters in the connection string is the "Provider". The Studio ADO Gateway compares
the value on the connection string with the value for this parameter in each provider and defines the
proper one to be used.
ColumnDelimiterPrefix
Any character or group of characters
Specify a character that will be placed before column names on SQL statements
ColumnDelimiterSuffix
Any character or group of characters
Specify a character that will be placed after column names on SQL statements
TableDelimiterPrefix
Any character or group of characters
Specify a character that will be placed before table names on SQL statements
TableDelimiterSuffix
Any character or group of characters
Specify a character that will be placed after table names on SQL statements
ValueString
Any string
This value indicates how constant values are identified on SQL statements. For Microsoft SQL
databases for instance, the value should be @Value, for ODBC question mark (?)
ValueStringPrefix
Any string
This value indicates a prefix to be used before the values. Oracle values, for instance, require the

prefix. The SQL statements use value identifiers by using their prefixes, but the parameters in the
Connection class do not use the prefix.
ValueAddNumber
0 or 1
Indicates whether a sequential number should be added to the ValueString to identify the parameter
or not. For Microsoft SQL database, this parameter should have the value 1, because parameters are
identified by using @Value1, @Value2, …, @ValueN. For ODBC, this parameter should be 0.
BoolType
Any string representing a valid data type for the database
When trying to create columns to store boolean values, the data type specified on this parameter will
be used. You need to make sure that the data type specified is able to save boolean values.
IntegerType
Any string representing a valid data type for the database
When trying to create columns to store integer values, the data type specified on this parameter will
be used. You need to make sure that the data type specified here is able to store 32 bit values.
RealType
Any string representing a valid data type for the database
When trying to create columns to store real values, the data type specified on this parameter will be
used. You need to make sure that the data type specified here is able to store 64 real values.
StringType
Any string representing a valid data type for the database
When trying to create columns to store string values, the data type specified on this parameter will
be used. You need to make sure that the data type specified is able to save the number of characters
that you are willing to save on your project.
TimeStampType
Any string representing a valid data type for the database
When trying to create columns to store TimeStamp values, the data type specified on this parameter
will be used.
EnableTop
0 or 1
When this field is set to 1, the ADO will place the TOP in the SQL statement to limit the amount of
registers required.
SingleConnection
0 or 1
When this field is set to 1, the ADO will open only one connection with the database, regardless of
how many tasks or computers are requesting services from it. The synchronization between the tasks
will be performed by the gateway, and they will not be able to be executed simultaneously if this
option is enabled.
Communication
TimeOut
2
Time out to perform insert and update operations
TimeOut
5
Time out to perform connection and query updates
TimeOut
60
Time out to perform synchronization
Connection
RegBufSize
128
Size of the internal buffer used by the database API.

Section of .INI File Parameter Accepted Values Description

The paramters are grouped into three sections — Providers , Communication , and Connection — but all
of the parameters for configuring database providers are listed in the Providers section of the file. The
default values are specified in the beginning of the file, using the prefix "Default" in each parameter
as shown below:

[Providers]

DefaultSaveMSec=3

DefaultAssembly=System.Data

DefaultConnectionClass=System.Data.OleDb.OleDbConnection

DefaultDataAdapterClass=System.Data.OleDb.OleDbDataAdapter

DefaultCommandBuilderClass=System.Data.OleDb.OleDbCommandBuilder

DefaultValueString=@Value

DefaultValueAddNumber=1 DefaultBoolType=INTEGER

DefaultIntegerType=INTEGER DefaultRealType=REAL

DefaultStringType=VARCHAR(255) DefaultTimeStampType=DATETIME

DefaultSingleConnection=0

The next item on the file lists the amount of providers:

Count=5

The providers are identified by the "Provider" parameter followed by a number. When connecting to a
database, the Provider parameter in the connection string is compared to the provider's identification,
in order to determine which provider will be used. If there is no provider with the value on the
connection string, all the default values are assumed. Besides its identification, each provider can
have its own value per each parameter. Again, if no value is specified, the default is used. Below is an
example with seven providers:

Count=7

Provider1=MICROSOFT.JET.OLEDB

SaveMSec1=3

ColumnDelimiterPrefix1=[

ColumnDelimiterSuffix1=]

SingleConnection1=1

Provider2=SQLOLEDB

ConnectionClass2=System.Data.SqlClient.SqlConnection

DataAdapterClass2=System.Data.SqlClient.SqlDataAdapter

CommandBuilderClass2=System.Data.SqlClient.SqlCommandBuilder

ColumnDelimiterPrefix2=[

ColumnDelimiterSuffix2=]

TableDelimiterPrefix2=[

TableDelimiterSuffix2=]

RealType2=FLOAT

Provider3=MSDASQL

ConnectionClass3=System.Data.Odbc.OdbcConnection

DataAdapterClass3=System.Data.Odbc.OdbcDataAdapter

CommandBuilderClass3=System.Data.Odbc.OdbcCommandBuilder

ValueString3=?

ValueAddNumber3=0

StringType3=VARCHAR(128)

EnableTop3=0

Provider4=ORAOLEDB

Assembly4=System.Data.OracleClient

ConnectionClass4=System.Data.OracleClient.OracleConnection

DataAdapterClass4=System.Data.OracleClient.OracleDataAdapter

CommandBuilderClass4=System.Data.OracleClient.OracleCommandBuilder

ValueString4=Value

ValueAddNumber4=1

ValueStringPrefix4=:

BoolType4=Number(1)

IntegerType4=Number(10)

RealType4=Number

StringType4=VARCHAR(255)

TimeStampType4=TIMESTAMP(0)

EnableTop4=0

Provider5=ASAPROV

Assembly5=iAnywhere.Data.AsaClient

ConnectionClass5=iAnywhere.Data.AsaClient.AsaConnection

DataAdapterClass5=iAnywhere.Data.AsaClient.AsaDataAdapter

CommandBuilderClass5=iAnywhere.Data.AsaClient.AsaCommandBuilder

ValueString5=?

ValueAddNumber5=0

ColumnDelimiterPrefix5=[

ColumnDelimiterSuffix5=]

TableDelimiterPrefix5=[

TableDelimiterSuffix5=]

Provider6=MYSQLPROV

Assembly6=ByteFX.MySqlClient

ConnectionClass6=ByteFX.Data.MySqlClient.MySqlConnection

DataAdapterClass6=ByteFX.Data.MySqlClient.MySqlDataAdapter

CommandBuilderClass6=ByteFX.Data.MySqlClient.MySqlCommandBuilder

ValueString6=@Value

ValueAddNumber6=1

StringType6=VARCHAR(128)

EnableTop6=0

Provider7=MSDAORA

Assembly7=System.Data.OracleClient

ConnectionClass7=System.Data.OracleClient.OracleConnection

DataAdapterClass7=System.Data.OracleClient.OracleDataAdapter

CommandBuilderClass7=System.Data.OracleClient.OracleCommandBuilder ValueString7=Value

ValueAddNumber7=1

ValueStringPrefix7=:

BoolType7=Number(1)

IntegerType7=Number(10)

RealType7=Number

StringType7=VARCHAR(255)

TimeStampType7=TIMESTAMP(0)

EnableTop7=0

Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Database Interface >

Database Troubleshooting

IWS database interface provides powerful tools that will help you to identify configuration problems
with databases. If you are having problems interfacing with a database, you should first enable the
Database Messages in the Logwindow. You can do so by following the steps below:

In the IWS Development environment, make sure to show the Output window (Output
Window check box on the View tab of the ribbon).

1.

Right-click in the Outputwindow (usually located in the lower-right corner of the development
environment), and then click Settings on the shortcut menu:

2.

In the Log Settings dialog, check the Database Messages option:

Figure 1. enabling Database Messages

3.

After enabling this option, the Output window will display error messages related to the database.
The FAQ section below lists some common errors that you can see in the Output window.

GENERAL QUESTIONS
Q: I configured my database, but the runtime modules (Alarm, Trend, and Events) are not being
saved to the database. I only see the following error message in the Output window:
Database: Error: Error to add new register[CMD_ADD].

A: Most of the database errors in the Output window will be followed by additional information such
as the SQL command being executed, the Connection String and the Table name. Error messages
such as the one described above, will usually happen after a more detailed message. For example, if
your Trend task fails to add a register in the database because the cable is disconnected, you should
first receive a network error; if the task tries to add more registers before the time specified in the
Retry field (see Database Configuration dialog), it will only display Database: Error: Error to add new
register[CMD_ADD]. If you think that your configuration is correct, and you want to debug this type of
problem, reduce the Retry. Then you should see more detailed information.

Q: When I try to access the MySQL database server, I get the following message:
Object is not set to an instance of an object.

A: This problem was detected under the following conditions:

A known bug in MySQL Connector/Net v6.1.2 would not correctly specify the charset; and

The database table you are trying to access doesn't exist.

To solve this problem, make sure you are using MySQL Connector/Net v6.2.0 and that the table you
are accessing exists in the database.

Q: Why is the Database Interface automatically closing some connections?

A: By default, the Database Interface can have a maximum of 1000 connections. When this
maximum is exceeded, the oldest connection is automatically closed to allow the new connection and
the Output window displays an extended message describing which connection was closed and what
was the last command executed.

To increase the maximum number of database connections, open the project file
(project_name.app) in a text editor and change the following setting:

[StDB]

MaxConnections=number_of_connections

Keep in mind that increasing the maximum number of connections may decrease project
performance.

Q: I configured my Connection String using the browser and the Data Link Properties Window. When
I click the Test button, it says "Test succeeded". However, when I run my project, the Database
Interface displays error messages, and I am not able to save data.

A: The Data Link Properties Window uses OLE DB to interface with the Database. IWS Database

Interface uses ADO.NET; therefore, you can have the OLE DB provider on your machine and be
missing the ADO.NET provider. It is also possible that you are using an ADO.NET provider that is not
listed in the StADOSvr.ini file. Please refer to Studio Database Gateway for more information about
adding ADO.NET providers to the StADOSvr.ini file.

Q: Why, when I update information in one line in the Grid object, is it updating more than one line in
my database?

A: The grid object issues an update command in the database using the values in all the columns for
the specific row that you are trying to update. If you have rows with duplicate values, you might see
this problem. If your table has a primary key or any other unique field that you do not want to
display in the Grid object, you can add it to the Columns but specify the Width 0. This will fix the
problem.

Q: Why do I have to use a separate Column to store the milliseconds on my database?

A: Some databases do not support milliseconds in the Time Stamp field. IWS Database interface, by
default, requires another column for the milliseconds. If your database can handle milliseconds, or if
you do not want to record the milliseconds, you can change the default behavior in the Advanced
settings. Note that some databases are able to store milliseconds, but they have lower precision. If
you mix different databases with different precisions in redundant mode, you can get synchronization
problems.

Q: My project works fine when I run in emulation mode. But when I send to the Windows Embedded
device, it cannot communicate with my database.

A: It might be the case that your Windows Embedded device does not have the .Net Framework or
that it does not have the provider that you are using. Try to use the gateway remotely by following
the instructions in Linking the Database Through a Remote DB Provider.

Q: When I try to connect to the database, why do I receive the message, Error to create connection
class?

A: The .Net Provider that you are trying to use is not installed on your machine. This error message
is usually followed by the provider name; if you are using the Sybase database, for instance, the
message is followed by [iAnywhere.Data.AsaClient.AsaConnection]. The Provider is the
iAnywhere.Data.AsaClient. You can check if the provider is installed on your machine by going to the
Control Panel > Administrative Tools > Microsoft .Net Framework x.x Configuration. The
provider should be listed in the Assembly Cache.

Q: What if I have the provider assembly (usually a .dll file) but it is not listed in the AssemblyCache?

A: If your assembly has a strong name, you can register it in the Assembly Cache using the gcautil
program. Or it should work if you copy your assembly to the same folder as the StADOSvr.exe
(usually the […]\InduSoft Web Studio v7.0\Bin folder).

Q: I am not able to access my table from the Grid when I use a specific condition. But if no condition
is applied, it works fine. Why is that?

A: You should check for the following items:

Follow the Troubleshooting steps, and look for error messages in the log. An error message can
tell you if you have made a mistake, such as entering with a wrong column name or specifying

1.

2.

an invalid data format.

1.

Some databases have problems when you use reserved words as column names. Therefore, you
should avoid using column names such as Time, Date, Numeric, etc.

2.

If your column name starts with AND or OR (e.g., ORange), enter the name surrounded by
square brackets. For example, instead of ORange=10, enter [ORange]=10.

3.

If you are using SQL Server CE, you might have some problems when querying string fields. It
has been identified that filters do not work with NCHAR data types; however, they do work if
you declare these fields as NVARCHAR(<Number>). You might try to recreate your table by
using this data type. An example of a command that creates a table with strings that can be
queried is displayed below:

4.

CREATE TABLE Table1 (Name NVARCHAR(128), Age Numeric, Sex NVARCHAR(1))

ORACLE

Q: When I lose the connection with an ORACLE database, it does not recover. I receive the following
message in the logwin: Database: Error: ORA-03114: not connected to ORACLE. Is that a problem with
the IWS Database Interface?

A: The Oracle .Net Provider has a problem managing the connection pool. You need to install a QFE
830173. At the time that this document was written, more information about this problem could be
found at this site (external link).

Q: When I try to access the database, I get the following error message: ORA-00162: external dbid
length 19 is greater than maximum (16). What should I do?

A: At the time that this document was written, there was a problem on the Oracle .NET Provider; the
Server Name (SERVER/TNS) could not exceed 16 characters. In order to fix this problem, you
should try to reduce your Server Name field. One way of doing this is to edit the file
\WINDOWS\system32\drivers\etc\hosts to add an entry with a smaller server name. For instance, the
server name specified by 192.168.89.98, has 13 characters, it could be reduced to 3 by adding the
following line in the file:

192.168.89.98 ora

Now you can configure the Server Name configuration using ORA/TNS instead of 192.168.89.98/TNS.

MYSQL

Q: When I try to access the database from my local machine it works fine, but when I move my
project to a remote machine, it says Access Denied.

A: Each user on a MySQL database has a property associated with it that indicates the computer
fromwhich it can get access to the database. By default, this property is set to localhost, so you will

only be able to access the database if you are accessing from the local computer. You should read
the MySQL manual for information about changing this setting.

Q: Sometimes when I try to synchronize a remote MySQL database with a local MySQL database, or
if I try to use application redundancy, a connection to the ADO.NET interface is opened and never
closed.

A: Go to the Database Configuration dialog and uncheck the Automatically Create option.

SYBASE

Q: I configured my Sybase database using the Browse button. When I click the test button, the test
succeeds, but when I try to run my project I get the following error: Database: Error: Parse error:
DSN 'MyDatabase' does not exist. What am I doing wrong?

A: Please refer to Database Appendix F - Using Sybase for more information about this problem.

Q: Why, when I try to connect to the Sybase database, am I receiving the error Error to create
connection class [iAnywhere.Data.AsaClient.AsaConnection]?

A: You do not have the ADO.NET Provider installed on your computer. The database setup program
has an option to install the Provider. Rerun the setup program, and make sure to check that option.

SQL SERVER CE

Q: Why does the gateway show TypeLoad failure when I try to access my SQL Server CE database?

A: This problem usually happens when you do not have the SQL Server CE .NET Provider installed on
your CE Device.

Q: Why am I getting the error message, There is a file sharing violation. A different process might
be using the file?

A: You have another progarm with the SQL Server CE database open. For instance, this will happen if
you are using the SQL Server CE configuration software.

Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Database Interface >

Using ODBC Databases
Almost every database provides an ODBC interface that can be used to interface with it. The
database features provided by IWS can be used with ODBC drivers through the ADO.NET interface for
ODBC. In order to use this capability, you must use Microsoft .NET Framework 1.1 or higher.

Note: Microsoft .NET Framework 2.0 is automatically installed with InduSoft Web Studio
v6.1+SP5 and later.

The Database Configuration dialog allows you to provide connection strings that will connect to an
ODBC DSN. The connection string can be built automatically by clicking on the Browse button (…).
When the Data Link window displays, you should select the option Microsoft OLE DB Provider for
ODBC Drivers as shown below:

Figure 1. Data Link Properties, Provider - ODBC

When you click Next, the following window will display:

Figure 2. Data Link Properties, Provider - Connection

Select the DSN that you want to connect to and click OK. If you want to specify the user name and
password on this window instead of specifying on the Object Properties dialog, remember to check
the Allow saving password checkbox.

Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Database Interface >

Using Microsoft SQL Server

IWS Database Interface allows you to retrieve and store information on Microsoft SQL Server
relational databases. You should follow the steps below in order to configure the SQL Server database:

Click on the Browse button in the Database Configuration Dialog window . The following window
will display:

Figure 1. Data Link Properties, Provider - SQL Server

1.

Select the Microsoft OLE Provider for SQL Server and click Next . The following window will
display:

Figure 2. Data Link Properties, Connection - SQL Server

2.

Fill out the fields on this window with your database information. If you are not using Windows
NT Integrated security, remember to check the Allow saving password checkbox to save the
password when the Data Link Properties window is closed.

3.

Click OK to finish the Connection String configuration.4.

Your connection string should be very similar to this one:

Provider=SQLOLEDB.1; Integrated Security=SSPI; Initial Catalog=MyDatabase; Data Source=192.168.23.200

Note: These procedures were tested using Microsoft SQL Server 2000.

Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Database Interface >

Using ORACLE Databases

IWS Database Interface allows you to retrieve and store information on ORACLE relational databases.
You should follow the steps below in order to configure the ORACLE database:

Click on the Browse button in the Database Configuration Dialog window. The following window
will display:

Figure 1. Data Link Properties, Provider - Oracle

1.

Select the Microsoft OLE Provider for Oracle and click Next. The following window will display:

Figure 2. Data Link Properties, Connection - Oracle

2.

2.

Fill out the fields on this window with your database information. Remember to check the Allow
saving password checkbox to save the password when the Data Link Properties window is
closed. The server name information has the following format:

3.

Server/TNS

Where:

Server: Computer where the Oracle Database is running4.

TNS: Oracle TNS name5.

CAUTION:

At the time that this document was written, the Server Name field could not be
configured with more than 16 letters. If more than 16 letters were specified, you
would receive the following error: ORA-00162: external dbid length 19 is greater than
maximum (16), where 19 is the number of letters in the Server Name. Please see
Database Troubleshooting for more hints to work around this problem.

Click OK to finish the Connection String configuration.

Note: These procedures were tested using ORACLE 10g Release 1.

Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Database Interface >

Using Microsoft Access Databases
IWS 's database interface lets you store information in and retrieve information from Microsoft Access database
(ACCDB) files.

You do not need to have Access installed on the same computer as IWS ; IWS can directly read from and write to an
existing ACCDB file. However, you do need to use Access to create the initial file — either a blank database for new
data or a populated database for reference data. Once you've created the file, you can move it to any location and
establish a connection to it there.

Note: This procedure was last tested using Microsoft Access 2007 (12.0.6211.1000).

To establish a connection between your IWS project and your ACCDB file:

In the Database Configuration property sheet , click the Browse button (…).

The Data Link Properties property sheet is displayed:

Figure 1. Selecting the OLE DB Provider

1.

2.

Select the appropriate OLE DB Provider for your database:

For a Microsoft Access 2003 database file, select Microsoft Jet 4.0 .

For a Microsoft Access 2007 database file, select Microsoft Office 12.0 Access Database Engine .

2.

Click Next .

The Connection tab of the property sheet is displayed:

Figure 2. Specifying the location of the file

3.

In the Data Source text box, type the complete file path for your ACCDB file.

Although the file can be located anywhere on your computer or network, it may be useful to keep it in your
project folder. For example:

C:\Users\username\My Documents\InduSoft Web Studio v7.0 Projects\project_name\Database1.accdb

If you do this, however, then you must update the file path whenever you move the project folder.

4.

Specify the User name and Password , if any, for the ACCDB file.5.

Click Test Connection .

If a connection can be successfully established, then an appropriate message is displayed.

6.

Click OK to save your changes and return to the Database Configuration property sheet.7.

Note: Be sure to select (check) the Disable Primary Keys option in the Database Configuration dialog. If you
do not, then IWS will not be able to connect to your Access database

Important: Desktop office applications such as Microsoft Access and Microsoft Excel cannot efficiently handle

large amounts of data. If you try to save all of your project's historical data in an Access database or Excel
spreadsheet, then the queries will become slow and you might get unexpected results. Therefore, we
recommend that Access or Excel be used only as a Secondary Database, with the Store and Forward option
enabled, or to relay data to third-party software.

To handle large amounts of historical data, we recommend that you use either IWS 's proprietary format or a
dedicated relational database such as Microsoft SQL Server or ORACLE.

Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Database Interface >

Using SQL Server CE
IWS projects running in CEView can interface with Microsoft SQL Server CE (SQL CE) databases on
the same device by using the OLEDB Provider for SQL Server CE. This provider must be installed on
your Windows Embedded device.

Because the provider is only installed on the device and not on your development workstation, you
cannot select it in the Data Link Properties dialog when you develop your project. Instead, you must
manually enter the connection string using the following format:

Version Connection String

SQL CE 2.0 Provider=SQLCE; Data Source=database_path

SQL CE 3.0 Provider=SQL_CE3.0; Data Source=database_path

SQL CE 3.5 Provider=SQL_CE3.5; Data Source=database_path

Note: The database interface was fully tested with these versions of SQL CE. However, other
versions might also be supported; please contact Customer Support for more information.

Examples:

Access a database file at the fixed location \Harddisk\MyDatabase.sdf:

Provider=SQLCE; Data Source=\Harddisk\MyDatabase.sdf

The exact path depends on how your device's non-volatile memory is organized. Please consult
the manufacturer's documentation.

Access a database file at the location specified by the String tag DatabaseFile:

Provider=SQLCE; Data Source={DatabaseFile}

The curly brackets ({}) indicate that it's a tag reference.

Please keep in mind that SQL CE is only intended for lightweight databases and simple transactions.
It cannot efficiently handle large amounts of data, such as the Alarm and Event histories. In those
cases, we recommend that you either use the Proprietary history format or use a more powerful
relational database like the full version of Microsoft SQL Server. If you must use SQL CE, then we
recommend that you use it only as a Secondary database with the Store and Forward option
selected. For more information, see Configuring the Alarm and Event History databases.

CAUTION:

When using a Database worksheet or the DB/ERP functions to access a SQL CE
database, remember…

Column/field names must match exactly or the database commands will fail; and

IWS data types will be converted into possibly unexpected SQL data types. The
following table shows how they're converted:

IWS SQL CE

 Boolean int

 Integer int

 Real real

 String nvarchar

Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Database Interface >

Using Sybase
You need to install the AsaClient provider on your computer; the tests with IWS were performed
using the architecture explained in the topic Linking the Database Through a Remote DB Provider.

If you are using the browse button to automatically generate the connection string, the string
returned will have the following format:

Provider=ASAProv.90; Data Source=Test

This format requires that you create an ODBC DSN with the same name as the Data Source (in this
case, Test) in order to communicate with the database. If the DSN is not created, the following error
will display in the LogWin when connecting to the database:

Database: Error: Parse error: DSN 'Test' does not exist

To void an ODBC DSN, you can enter with the connection string manually as shown in the example
below:

Provider=ASAProv.90; DBF=C:\ Test.db

Note: These procedures were tested using Sybase Server Anywhere 9.0.1.1751.

Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Database Interface >

Using Microsoft Excel
IWS 's database interface lets you store information in and retrieve information from Microsoft Excel
spreadsheet (XLS or XLSX) files.

You do not need to have Excel installed on the same computer as IWS ; IWS can directly read from and write to
an existing XLS/XLSX file. However, you do need to use Excel to create the initial file — either a blank
spreadsheet for new data or a populated spreadsheet for reference data. Once you've created the file, you can
move it to any location and establish a connection to it there.

Note: This procedure was last tested using Microsoft Excel 2007 (12.0.6331.5000).

To establish a connection between your IWS project and your XLS/XLSX file:

In the Database Configuration property sheet , click the Browse button (…).

The Data Link Properties property sheet is displayed:

Figure 1. Selecting the OLE DB Provider

1.

2.

Select the appropriate OLE DB Provider for your database:

For a Microsoft Excel 2003 spreadsheet file, select Microsoft Jet 4.0 .

For a Microsoft Excel 2007 spreadhseet file, select Microsoft Office 12.0 Access Database
Engine .

2.

Click Next .

The Connection tab of the property sheet is displayed:

Figure 2. Specifying the location of the file

3.

In the Data Source text box, type the complete file path for your XLS/XLSX file.

Although the file can be located anywhere on your computer or network, it may be useful to keep it in
your project folder. For example:

C:\Users\username\My Documents\InduSoft Web Studio v7.0 Projects\project_name\Book1.xlsx

If you do this, however, then you must update the file path whenever you move the project folder.

4.

Click the All tab.5.

Select Extended Properties and then click Edit Value .

The Edit Property Value dialog is displayed.

6.

In the Property Value text box, type one of the following values:

For a Microsoft Excel 2003 spreadsheet file, type Excel 11.0 .

For a Microsoft Excel 2007 spreadhseet file, type Excel 12.0 .

7.

Click OK to close the Edit Property Value dialog.8.

Editing the value of Extended Properties

8.

Click the Connection tab.9.

Click Test Connection .

If a connection can be successfully established, then an appropriate message is displayed.

10.

Click OK to save your changes and return to the Database Configuration property sheet.11.

Note: Be sure to select (check) the Disable Primary Keys option in the Database Configuration dialog. If
you do not, then IWS will not be able to connect to your Excel spreadsheet.

Important: Desktop office applications such as Microsoft Access and Microsoft Excel cannot efficiently
handle large amounts of data. If you try to save all of your project's historical data in an Access database
or Excel spreadsheet, then the queries will become slow and you might get unexpected results. Therefore,
we recommend that Access or Excel be used only as a Secondary Database, with the Store and Forward
option enabled, or to relay data to third-party software.

To handle large amounts of historical data, we recommend that you use either IWS 's proprietary format
or a dedicated relational database such as Microsoft SQL Server or ORACLE.

Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Database Interface >

Using MySQL
IWS can interface with MySQL databases, but to do so, you must install an ADO.Net provider for MySQL.

The provider required by IWS is MySQL Connector/Net, and at the time of this writing, the necessary
software can be downloaded from the official MySQL site . (Please note that the linked site is beyond our
control and may change without notice.)

Once the provider is installed, you can use the Database Configuration property sheet to configure a MySQL
database connection. However, unlike for other database types, you cannot use the Data Link Properties
dialog (which is accessed by clicking ... to the right of the Connection string box) to form the connection
string. Instead, you must directly enter the connection string using this basic format:

Provider=MYSQLCLIENT; Server=myServerAddress; Database=myDataBase; Uid=myUsername; Pwd=myPassword;

The following optional parameters can be appended to the connection string:
Port=number ;

Specifies what port to use for the connection. The default port is 3306, but any port can be specified as long
as it matches the server configuration.

If a port of -1 is specified, then the connection will use the named pipes network protocol (see Protocol
below).

Server=myServerAddress1 & myServerAddress2 & … & myServerAddressN ;

Use any server in a replicated server configuration.
Encryption=true;

Enables SSL encryption for all data sent between the client and the server. The server must have a valid
certificate installed.
Encrypt=true;

An alternative to Encryption above, in case there are errors.
Default Command Timeout=milliseconds ;

Specifies a default command timeout for the connection. This does not supercede any timeout properties on
individual commands.
Connection Timeout=seconds ;

Specifies how long the client will wait for a server connection before terminating the attempt.
Ignore Prepare=true;

Instructs the database provider to ignore Command.Prepare statements, to prevent corruption from server-side
prepared commands.
Protocol=myProtocol ;

Specifies which network protocol to use. The default is socket or tcp , but you can specify pipe to use a named
pipes connection or memory to use a shared memory object.
Shared Memory Name=MySQL;

Specifies the name of the shared memory object to be used for communication. (This parameter applies only
if the Protocol parameter above is set to memory .)
CharSet=UTF8;

Specifies which character set to use to encode queries to the server.

Please note that query results are encoded in the same character set that the data itself is recorded.

Table 1. Optional
parameters for the MySQL
Connector/Net connection

string

Parameter Description

Note: These procedures were tested using MySQL v5.1.11 and MySQL Connector/Net v6.2.0.

Parent topic: Database Interface
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Troubleshooting

General Troubleshooting

Frequently Asked Questions

Using the Help Menu

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Troubleshooting >

General Troubleshooting
If you do find yourself in need of technical assistance, there are certain things that you will need to
know before you contact technical support. Regardless of the problem, you will need to know the
sequence of events that led to you discovering the problem. It must be explained in as much detail as
possible and you should be careful not to ad-lib, as it may drastically affect troubleshooting time and
procedures. It's also best to be in front of the computer you are having problems with, and to keep a
pen and paper handy.

Before Contacting Technical Support

Some things you should try before you contact technical support are:

Check out the documentation

The application help and release notes can be accessed on the Help tab of the ribbon, and more
documentation is available on our website. You may find that your particular issue has already
been documented.

Consider recent changes on your system

If something used to work, think about what may have changed. New software installation or
general system changes can affect performance and general functionality of other software on your
system.

Try reproducing the problem in a new file

If the problem can not be reproduced in a new test file, compare the new file with your original file
to find and eliminate the differences. This will help narrow down the cause of the issue.

Try reproducing the problem on another machine

If the problem goes away on another machine, compare what is different between the two
systems. If this is the case, there is most likely a system conflict.

Verifying Your Project

If you change, reorder or delete any tags in the Tags database, or if you reconfigure any settings in the
Web tab of the Project Settings dialogue, then you must verify your project to realign all of your
screens and worksheets to the current state of your database. On the Home tab of the ribbon, in the
Tools group, click Verify .

Related Publications

The IWS Getting Started Guide is designed for first-time users. This publication contains information
about the basic functions of InduSoft Web Studio , and it is provided in the Documentation folder on
the InduSoft Web Studio installation CD.

The driver User Guides explain how to configure the direct communication drivers, according to their
unique protocol characteristics. One customized user guide is included with each driver. These
publications are provided in the […]\InduSoft Web Studio v7.0\ Drv directory, or from the Help tab

of the ribbon. (On the Help tab of the ribbon, in the Documentation group, click Communication
Drivers . When the Object Properties dialog is displayed, highlight the driver you're using and then click
Help .)

Figure 1. Help Menu

Contacting Technical Support

If you cannot find an answer to your technical question in the product documentation or help system,
our Technical Support Specialists are available to assist any customer with current product maintenance.
The telephone number is 1-877-INDUSOFT (1-877-463-8763) .

Please try to define the problem before you contact Technical Support so that you can repeat the steps
that led to the problem and specifically identify when and how the problem occurred. The support
representative will need to know exactly what the problem is in order to provide help. These steps will
help us pinpoint and solve your problem more quickly.

Please have the following information available:

Hardware environment: available memory, processor type, output device

Software environment: operating system, version of Windows®, network platform

Product name, version number, and product registration number

Amount of memory installed on your system

Amount of free hard disk space on your system

Screen resolution (screen size in pixels, for example, 1024 by 768)

Screen color depth (number of colors or bits, for example, 256 colors or 8-bit color)

Graphics card manufacturer, model name, and driver version number

Sound card manufacturer and model name

A list of external devices connected to the computer

Brief description of the problem or error, and the specific text of any error messages

Description of the steps you have taken to troubleshoot the issue, for example, how many
machines you have tested on, and whether the issue is reproducible in a new file

Steps to reproduce the issue, if it is reproducible. If the issue is not reproducible, it may be an
development issue rather than an issue with the product.

If your project crashes completely during runtime, it will generate a debugger report and save it to:

[…]\My Documents\InduSoft Web Studio v7.0 Projects\project_name\Web\Dump\WindDump.dmp

Please have this file ready to send to Technical Support for analysis.

When you contact us, please have your system information ready. You can get this by using the
Support Information command located in the Help menu.

If your problem or question is not urgent, you may choose to email Customer Support at
support@indusoft.com . Email is answered daily .

Parent topic: Troubleshooting
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Troubleshooting >

Frequently Asked Questions

Database & Security System

Q. What does the Shared Tags folder store?

A. The Shared Tags folder stores the tags imported from the PC-based Control linked to the IWS project. The PC-based Control is linked to the project by the New Project wizard.

Q. How do I count how many tags are configured in the project database?

A. The number of tags currently used in the project is displayed in the status bar at the bottom of the development environment. Each array position and each class member of the tags configured in the IWS tag database are counted.

Q. How do I see the list of "Users" I've added during runtime in my project that I have created with the CreateUser() function?

A. Execute the following command: "Studio Path \BIN\Studio Manager.exe" "Studio Path \BIN\ExtUser.dll" (for example: "E:\Program Files\Studio\BIN\Studio Manager.exe" "E:\Program Files\Studio\BIN\ExtUser.dll"). This command will launch a dialog. You can see the

users created by the CreateUser() function, and you can then create or delete users.

Graphics

Q. How do I insert and configure an ActiveX object in a project?

A. To insert an ActiveX object in a project screen:

On the Graphics tab of the ribbon, in the Libraries group, click ActiveX Control .1.

Select the ActiveX control that you want to insert from the list, and then click OK . The ActiveX object will then appear on the screen. (Unregistered ActiveX objects will not be available in this list box.)2.

Double-click on the ActiveX object and assign a name to it (enter a value in the Name field). The animations and methods list can be viewed by selecting the Methods button. The static properties can be set by the Properties button (A detailed description
about the objects properties can be found in the component documentation, provided by the component developer).

3.

There are three functions to access the ActiveX component during runtime:

XGet(strName,strProperties) : Returns the value of the properties strProperties from the object strName . The list of properties which can be read from the object are listed in the Object Properties dialog from the object, with the syntax Properties Name (PropGet)

(for example, Color(PropGet)).

XSet(strName,strProperties,Value) : Writes the value Value to the properties strProperties of the object strName . The list of properties which can be set to the object are listed in the Object Properties dialog from the object, with the syntax Properties Name

(PropPut) (for example, Color(PropPut)).

XRun(strName, strMethod, Parameter1, Parameter2, …, ParameterN) : Executes the method strMethod from the object strName , according to the parameters Parameter1 , Parameter2 , … , ParameterN . The list of methods available in the object is listed in the Object
Properties dialog from the object, with the syntax Method Name (Method) (for example, OpenFile(Method)).

Tip: Before inserting an ActiveX control (usually an OCX file) into the project, make sure it has been properly registered in the computer. To register an ActiveX control from with the development application, click Register Controls on the Home tab of the
ribbon.

Note: The amount of parameters set in the XRun() function can vary from 0 up to 255 and it depends each the ActiveX component. It's possible to use tags to set the parameters; however, the tag type must match the component parameter type (Boolean,
integer, string or real).

Q. How do I designate one screen that will open each time I start the project?

A. On the Project tab of the ribbon, in the Settings group, click Viewer , and then in the Project Settings dialog, type the startup screen name in the Startup screen box.

Q. How do I insert a background picture on the screen?

A. Right click on the screen and select the option Screen Attributes from the popup menu. Enable the checkbox Enable Background and choose the picture format in the combo-box besides this label. Copy the picture file to the Screen sub-folder of the project
and rename it with the same name of the screen (ScreenName .scr file). Using the Shared image option, it's possible to copy a bitmap file to the Screen sub-folder and share this picture with more than one screen. In this case, it's necessary to type the bitmap name

in the Share d image field.

Tasks

Q. How do I convert the History Trend to an ASCII file?

A. To convert a History Trend file to an ASCII format, copy the file "StudioPath \bin\hst2txt.exe" to the path "\project_name \hst\" . Alternatively, you can use the HST2TXT function in a Math worksheet to convert binary files into text format automatically without

having to use a DOS window.

Q. How do I exchange data with FOX Pro by an ODBC protocol?

A. When exchanging data with FOX Pro database, it's necessary to set the parameter UseQuote=0 from the [ODBC] section in the project_name .app file.

Q. How do I set a DATE field for an ODBC interface with an Oracle package?

A. Configure the "Column" cells in the ODBC worksheet with the syntax ColumnName .ts (for example: MyDate.ts).

Q. How do I execute a Math worksheet during the startup and another Math worksheet during the project shutdown?

A.

Startup : Execute a Math worksheet during the startup by creating a Math worksheet and filling in its Execution field with the expression <TagName>=0 (for example, StartTag=0). In the last line of the Math worksheet, set the value 1 to the <TagName> tag. The
<TagName> tag type should be Boolean .

Shutdown : Instead of executing the ShutDown() function directly, execute one Math worksheet and configure the ShutDown() function in the last line of this Math worksheet.

Communication

Q. How do I set a "communication error" alarm?

A. Configure a tag in the Write Status or Read Status field of the driver worksheets and configure an alarm whenever this tag is not 0 (zero).

Q. How do I communicate with a Siemens S7-200 PLC without using Prodave software?

A. Siemens S7-200 PLC has a Freeport that can implement any protocol via PLC programming. There is PLC free software distributed by Siemens that implements Modbus protocol in the PLC Freeport (for further details contact Siemens support). Using this software
in the PLC with IWS 's Modbus driver (MODBU), you can exchange information between them.

Q. How do I start and stop communication drivers during runtime?

A. There are three functions available to handle the execution of the communication drivers during runtime:

Start all drivers configured in the project: StartTask("Driver")

For example: StartTask("Driver")

Start a specific driver configured in the project:

WinExec("StudioPath\bin\Studio Manager.exe" + " + " StudioPath\bin\Driver.dll" + " + " DriverName")

For example:

WinExec(Asc2Str(34) + " C:\Program Files\InduSoft Web Studio v7.0\Bin\Studio Manager.exe" + Asc2Str(34) + " " + Asc2Str(34) + " C:\Program Files\InduSoft Web Studio v7.0\Bin\Driver.dll" + Asc2Str(34) + " " + Asc2Str(34) + "MODBU" + Asc2Str(34))

Note: The Asc2Str(34) function is used to concatenate quotation marks for paths where there are space chars.

Stop a specific driver configured in the project: EndTask("DriverDriverName ")

For example: EndTask("DriverMODBU")

Tip: You can start or stop other tasks using the StartTask(TaskName) and EndTask(TaskName) functions. For example, StartTaks("Viewer"), Endtask("Viewer") .

Q. What are the parameters of the IWS DDE Server?

A. The IWS DDE Server and NetDDE Server parameters are shown in the table below:
Network DDE
\\<Computer Name>\NDDE$
UNISOFT$
<TagName>
Local DDE
UNIDDE
DB
<TagName>
Network DDE
\\<Computer Name>\NDDE$
UNISOFT$
<TagName>
Local DDE
UNIDDE
DB
<TagName>

Comm.
Type

Application Topic Item

Q. How do I exchange data with Excel by using NetDDE?

A. NetDDE can be used to exchange data, via the DDE protocol, between networked stations.

Start the DDEServer module from the development application (Tasks on the Home tab of the ribbon).1.

Run Excel in the remote station.2.

Open an Excel worksheet and fill the cells that must exchange data with IWS , using the following syntax:3.

2.

3.

='\computer name\NDDE$'|'UNISOFT$'!tag name

For example:

='\PC\NDDE$'|'UNISOFT$'!second

Note:

When running under Windows NT or Windows2000, it is necessary to make sure that the services Network DDE and Network DDE DSDM are started. (Use the Services shortcut from Control Panel to start these services).

When running under Windows 98, it is necessary to run the program WindowsPath etdde.exe in both computers (for example, c:\Windows etdde.exe).

Q. Is the IWS OPC interface compliant with OPC specification v1.0a or v2.0?

A. The IWS OPC Client and OPC Server modules are compliant with both OPC specification v1.0a and v2.0.

Q. How do I get errors from Intellution / GE Fanuc iFIX applications?

A. If your project is communicating via TCP/IP with an iFIX application, then you should add the following key to your project file (i.e., project_name .APP):

[TCP]

SetQualityToBadOnError=1

After you do this, if the iFIX application generates an error during runtime, then the quality of the affected tags in your project will be set to BAD. You can get this information by reading the Quality tag field (i.e., tagname ->Quality).

General

Q. What operating systems are compatible with InduSoft Web Studio and CEView?

A. See table below. "N" means that the operating system is NOT supported, and "Y" means that the operating system is supported.
Windows Vista
Any
N
N
N
Y
N
N
N
N
Windows XP
Any
N
Y
Y
Y

N
N
N
N
Windows 2000
Any
N
Y
Y
Y
N
N
N
N
Windows NT
v4.0+SP4 or higher
Y
Y
Y
N
N
N
N
N
Windows ME
Any
N
Y
N
N
N
N
N
N
Windows 98
Any
N
Y
N
N
N
N
N
N
Windows 95
Any
Y
Y
N
N
N
N

N
N
Windows CE
v2.12
N
N
N
N
Y
N
N
N
v3.x
N
N
N
N
Y
Y
Y
Y
Windows CE.Net
v4.0
N
N
N
N
N
N
Y
Y
v4.1
N
N
N
N
N
N
Y
Y
v4.2
N
N
N
N
N
N
Y
Y
v5.0
N
N

N
N
N
N
N
Y
v6.0
N
N
N
N
N
N
N
Y

Operating System InduSoft Web Studio CEView

Name Version v2.x v3.x thru v4.1 v4.2 thru v6.0 v6.1 or higher v3.x v4.x v5.x v6.x

Q. How do I start IWS automatically when the computer is powered on?

A. Create a shortcut to […]\InduSoft Web Studio v7.0\ Bin\RunStudio.exe and then place it in your Startup folder (C:\WINDOWS\Documents and Settings\All Users\Start Menu\Programs\Startup\).

Q. How do I disable Dr. Watson?

A. The step-by-step procedure to disable Dr. Watson under Windows NT is described below:

Execute the program WindowsPath \RegEdit.exe (for example, C:\WinNT\Regedit.exe)1.

Select the path HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug2.

Set the value 0 (zero) to the parameter "Auto" from the path selected.3.

Close the Registry Editor window.4.

CAUTION:

Special cautions must be taken when editing parameters in the Registry Editor program because some of them can modify the overall behavior of the operating system.

There are two ways to modify the data format in IWS :

Off-Line : Set the parameters Order=<DateFormat> (for example, DMY) and Separator=Separator (for example, / or .) from the [International] section from the […]\InduSoft Web Studio v7.0\ Bin\Program Settings.ini file.

Note: You will need to verify your project to apply date settings to previously saved Web pages.

On-Line : Use the function SetDateFormat(strSeparator , strDateFormat). For example, SetDateFormat("/","MDY") .

Q. What features are not supported by CEView?

A. The main features not supported by CEView are: DDE, NetDDE, ODBC, PasteLink, and a number of functions.

Q. How do I show a splashwindow when starting a project in CEView?

A. To enable your project to show a splash window during startup, add the following key to the device's CEView.ini file:

[OEM]

SpashWnd = Path to bitmap File // default is Splash.bmp

SplashWndTime = Time in milliseconds // default is 1000

Q. How do I see runtime messages and errors on a "blind" Windows Embedded device — that is, a device that has no display?

A. If the device has a network connection, then you can use the Remote LogWin tool to view the device's messages as they are generated.

You can also save the messages to a dump file (dump.txt) and access the file at your convenience. To create the file, add the following key to the device's CEView.ini file:

[OEM]

BlindDevice = 1

Q. What are the main steps to create a Web-based application?

A. Follow the procedure below:

Develop the project locally. Don't use features that are not supported by Thin Clients for the screens which will be saved as HTML format.1.

After saving the screens in the standard format (Save in the Application menu), save the screens that must be available for the Thin Client in HTML format (Save as HTML in the Application menu).2.

On the Project tab of the ribbon, in the Web group, click Thin Client .3.

In the Data Server IP box, type the IP address of the Server station (i.e., the station where the project is running).4.

On the Home tab of the ribbon, click Tasks , and then set the TCP/IP Server module as Startup=Automatic .5.

Open the project tags database and set the option Server instead of Local in the Scope column for all tags that must exchange value between the Server and the Thin Client station.6.

Verify the project (Verify on the Home tab of the ribbon) to update the HTML files with these new settings.7.

If there is no Web Server running on the computer, copy the program NTWebServer.exe from the Bin sub-folder of the program directory into the Web directory (e.g., \project name \Web) and run it. The path where this Web Server program is executed will be

the root directory of the server. The Web Server is necessary to export data (web files) in HTTP protocol to the Thin Clients.

8.

Run the project on the Server station.9.

Using a browser (for example, Internet Explorer v4.1+SP1 or newer version) in the Thin Client station, type the URL address to download the screen that had been saved in HTML format (for example, http://ServerIPAddress /ScreenName .html).10.

Note: The Thin Client requires an ActiveX component (ISSymbol.ocx) to handle the screens on the browser. If the Thin Client is connected to the Internet, this component is downloaded and registered automatically. Otherwise, it's necessary to copy it to the
\OSPath \System32 directory of the Thin Client and register it by the command regsvr32 ISSymbol.ocx . This file can be found in the \BIN folder from the IWS installation directory.

Q. How do I maintain communication between a Thin Client connecting via proxy and a Web Gateway application running on Microsoft IIS?

A. Microsoft Internet Information Services (IIS) has a configuration option to keep HTTP connections alive. When this option is enabled, it may conflict with Thin Clients that are connecting via proxy. To disable this option:

Start Internet Services Manager.1.

In the Internet Information Services window, open the local server (* server name).2.

Right-click on Default Web Sites and select Properties from the shortcut menu. The Default Web Site Properties dialog is displayed.3.

Select the Web Site tab of the Default Web Site Properties dialog.4.

In the Connections pane of the Web Site tab, uncheck the HTTP Keep-Alives Enabled option.5.

6.

http://

4.

5.

Click OK to save the change and close the dialog.6.

Q. How do I send an email from the IWS project?

A. Follow the procedure below:

Execute the function CNFEMail(strSMTP,strFrom,strPOP3,strUser, strPassword,numTimeOut) to configure the overall parameters used to send emails. After executing this function once, the parameters set by it are kept in the system until the project is shut down. So,
most projects execute this function just once, after starting the project;

Execute the function SendEMail(strSubject,strMessage,strTO) and/or SendEMailExt(strSubject,strMessage,strTO,strCC,strBCC, strFile1,...,strFileN) each time that an email message must be sent. The main difference between both functions are listed in the next
table:
Execution
Synchronous
Asynchronous
Supports Subject text
Y
Y
Supports Message text
Y
Y
Supports TO addresses
Y
Y
Supports CC addresses
N
Y
Supports BCC addresses
N
Y
Supports attached files
N
Y

Characteristic SendEmail SendEmailExt

Q. The runtime task (TCP/IP, OPC, DDE, ODBC, etc) does not work.

A. Make sure the runtime task is set to Automatic in the Execution Tasks dialog (Tasks on the Home tab of the ribbon). Select a runtime task that must be executed (for example, TCP/IP Server), click Startup , and then set it as Automatic .

Q. The browser from the Thin Client does not display the screen and launches a warning message regarding ISSymbol.ocx.

A. Make sure the runtime task is set to Automatic in the Execution Tasks dialog (Tasks on the Home tab of the ribbon). Select a runtime task that must be executed (for example, TCP/IP Server), click Startup , and then set it as Automatic .

Q. The browser of the Thin Client launches an error message missing the ISSymbol.ocx and does not display the screens from the Server.

A. ISSymbol.ocx is the ActiveX object used by the browser from the Thin Client to view the web pages. If the Thin Client is connected to the Internet, the ISSymbol.ocx control is automatically downloaded and registered in the Thin Client station. Otherwise, it's
necessary to copy it to the \WinNT\System32 folder of the Thin Client station and register it manually. Once it is registered your browser will be able to see the pages.

Note: Use the command regsvr32 ISSymbol32.ocx to register the ActiveX component in the Thin Client.

Q. The screens are shown on the Thin Client (Browser); however, the data (tags values) are not read from the Server.

A. Make sure the parameter in the column Scope from the project tags database is set as Server instead of Local . The tags set as Server keep the same value in the Server and in the Thin Client (Browser). The tags set as Local have independent values in the
Server and in the Thin Client (Browser).

CAUTION:

It's necessary to verify the project (Verify on the Home tab of the ribbon) after modifying the tags settings. Otherwise, the changes will not be updated in the Web pages.

Q. The "On Up" expressions configured in the Command animation are not executed.

A. The "On Up" expressions from the Command animation are not executed if the mouse pointer is dragged out the object area before releasing it. If the checkbox Release from the Command Object Properties window is enabled, the On Up expression is
executed even if the mouse pointer is dragged out the object area before releasing it.

Q. The Trend History does not work after adding or removing tags in the Trend worksheet.

A. When a tag is inserted or removed FROM a Trend worksheet, the format of the history files (*.hst) is modified. The same .hst file cannot have two different formats; otherwise, the data will not be retrieved from it properly by the Trend object. If you need to add
or remove tags for history files, there are two valid procedures: Create a new Trend worksheet or delete the old *.hst files.

Q. The value of indirect tags (@TagName) is not shown in the Thin client program.

A. When a screen is saved as HTML, IWS saves a ScreenName .tagl file in the \WEB subfolder. This file has the list of all tags configured in the screen (objects and animations). When a screen is opened in the Thin Client browser, the tags listed in the ScreenName .tagl are

"enabled" for TCP/IP communication with the server station. It provides an optimized communication between the server station and the Thin Client stations.

When using indirect tags in this way (@IndirectTag), the tags pointed will not exchange data with the Server, unless they had been configured in the screen. In other words, the tags that will be pointed in the screen MUST be configured in any object of the screen to

enable the TCP/IP communication for these tags with the server station.

Tip: Add a transparent rectangle (no fill and no line) in the screen corner. Apply the Command animation to this rectangle and configure the tags (which can be pointed by indirect tags during runtime in the Thin Client station) in the Expression fields (keep the
Tag Name fields blank). These tags will be added to the ScreenName .TAGL file, and they will be available for TCP/IP communication with the Server station.

Q. Which functionalities are not supported by PocketPC platforms (for example, IPaq, Cassiopeia, Jornada)?

A. Windows CE devices powered PocketPC do not support some functionality which are supported by Windows CE devices powered by the "standard" Windows CE version:
DCOM (Distributed Component Object Model): It means that all features based on DCOM (for example, remote OPC communication) are not supported by PocketPC devices.
DialGetClientIP() function does not work for PocketPC devices

Functionality not supported by PocketPC devices

Q. How do I enable the "Hibernate" options from the operating system after installing IWS on a notebook?

A. Follow the procedure below:

Run the Registry Editor (<Start button>\Run egedit).1.

Select the following path from the Registry Editor : HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\ Proteq\Parameters2.

The IoPortAddress parameter from the path mentioned above is set with the hexadecimal value, 0x00000111 . Set this parameter with the hexadecimal address of the LPT1 parallel port of your notebook (for example, 0x00000378).3.

Close the Registry Editor and reboot the computer.4.

Tip: The Hexadecimal address of the LPT1 parallel port of the notebook can be gotten from the Control Panel (System\Hardware\Device Manager\Ports (COM & LPT)\Printer Port (LPT1)\Properties\Resources). Pick the initial address of the I/O Range . Usually it is
the hexadecimal address 0x00000378 .

Parent topic: Troubleshooting

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Troubleshooting >

Using the Help Menu
This section describes the Help menu. You can use the commands (links) on this menu to access
information about InduSoft and the InduSoft Web Studio software.

Figure 1. Help menu

The Help menu commands and options are discussed on the following pages.

Technical Reference

Home Page

Release Notes

Communication Drivers

Support Information

About

Technical Reference

License Agreement

Release Notes

Home Page

Communication Drivers

Support Information

About

Parent topic: Troubleshooting
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Troubleshooting > Using the Help Menu >

Technical Reference
To open the help system for the InduSoft Web Studio software, click Help on the Help tab of the
ribbon.

Tip: This documentation is also available as a PDF on the InduSoft Web Studio installation CD.

Parent topic: Using the Help Menu
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Troubleshooting > Using the Help Menu >

License Agreement
To display a PDF copy of the InduSoft Web Studio software license, click License Agreement on the
Help tab of the ribbon.

Parent topic: Using the Help Menu
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Troubleshooting > Using the Help Menu >

Release Notes
To view the release notes for InduSoft Web Studio, click Release Notes on the Help tab of the
ribbon.

The release notes are distributed as a styled XML file, so you must have an XML-capable browser like
Internet Explorer 7 or Internet Explorer 8 to view the file as intended.

Parent topic: Using the Help Menu
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Troubleshooting > Using the Help Menu >

Home Page
To go to the InduSoft company site, click Product Web Site on the Help tab of the ribbon.

Parent topic: Using the Help Menu
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Troubleshooting > Using the Help Menu >

Communication Drivers
To see the available documentation for the communication drivers, click Communication Drivers on
the Help tab of the ribbon.

Figure 1. Communication Drivers dialog

From this dialog, you can select an installed driver then click the Help button to open Adobe
Acrobat® Reader™ and display a detailed document about that driver in PDF format.

Parent topic: Using the Help Menu
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Troubleshooting > Using the Help Menu >

Support Information
The Support Information dialog displays basic information about your computer's operating system,
your InduSoft Web Studio installation and license, and your project settings. If you need to contact
Customer Support, then you should have this information ready to answer their questions.

To open the dialog, click Support on the Help tab of the ribbon. The dialog will be displayed:

Figure 1. Support Information dialog

To copy the information to the Clipboard, click Copy. You can then paste the information into another
window or text field, such as the body of an email message.

To save the information to a file, click Save to File. A standard Save As dialog will be displayed.

When you are done, click Close.

Parent topic: Using the Help Menu
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Troubleshooting > Using the Help Menu >

About
To get more information about the InduSoft Web Studio software, click About on the Help tab of the
browser.

Figure 1. About InduSoft Web Studio dialog

Parent topic: Using the Help Menu
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting
Language
This section describes the functions that make up the built-in scripting language. Each function
description includes complete syntax, possible returned values, and examples of usage.

Logic and arithmetic operators
The built-in scripting language supports the following logic and arithmetic operators.

How to read function descriptions
This is a key to reading the descriptions of the built-in scripting functions.

Log Message functions
These functions are used to display status and debug messages in the Output window (for local
runtime) or Remote LogWin window (for remote runtime).

Arithmetic functions
These functions are used to perform advanced arithmetic operations and bit manipulation on
numeric values.

Statistical functions
These functions are used to get certain statistics — such as average, maximum, and minimum
— from two or more numeric values.

Logarithmic functions
These functions are used to perform logarithmic operations on numeric values.

Logical functions
These functions are used to perform logical operations (e.g., if/then, true/false) on tags and
expressions.

String functions
These functions are used to manipulate text strings or convert them into numeric values.

Date & Time functions
These functions are used to interact with the system clock or manipulate timestamps.

Trigonometric functions
These functions are used to perform trigonometric operations (e.g., sine, cosine, tangent) on
numeric values.

Screen functions
These functions are used to open and close project screens.

Security functions
These functions are used to manage users and groups in the project's security system.

Module Activity functions
These functions are used to manage a project's various runtime modules — such as background
tasks, the data server, and the project viewer — as well as those modules' interactions with the
operating system.

File functions
These functions are used to read from, write to, print, move, and delete external files.

Graphic functions
These functions are used to manipulate and print project screens.

Translation functions
These functions are used to access the translation tool during runtime.

Multimedia functions
These functions are used to play external audio and video files.

System Info functions
These functions are used get information about the computer that is running the project (either
server or client, depending on the function), as well as to change some project settings on that
computer.

Tags Database functions
These functions are used to directly change the values of project tags.

Loop functions
These functions are used to implement repeating, incrementing loop within a script.

ODBC functions
These functions are used interact with an external database via Open Database Connectivity
(ODBC).

Email functions
These functions are used to configure and send email from within a project.

Dial-up functions
These functions are used to configure the computer's modem (if any) and establish dial-up
connections to other computers.

ActiveX and .NET Control functions
These functions are used to directly run ActiveX and .NET Control objects in the project, as well
as to get and set property values on those objects.

Event Logger functions
These functions are used to send events and comments to the Event Logger.

FTP functions
These functions are used to configure the FTP settings for the project, as well as to get files
from and put files on a remote server.

Database/ERP functions
These functions are used interact with external databases and ERP systems using SQL-like
commands.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Logic and arithmetic operators
The built-in scripting language supports the following logic and arithmetic operators.

Logic operators

Operator Usage Description

AND A AND B TRUE if A and B are both TRUE

OR A OR B TRUE if A is TRUE, or B is TRUE, or both

XOR A XOR B TRUE if A is TRUE, or B is TRUE, but not both

NOT NOT A TRUE if A is FALSE

= X = Y TRUE if X is equal to Y

> X > Y TRUE if X is greater than Y

>= X >= Y TRUE if X is greater than or equal to Y

< X < Y TRUE if X is less than Y

<= X <= Y TRUE if X is less than or equal to Y

<> X <> Y TRUE if X is not equal to Y

& X & Y Bitwise AND:

 0101 (decimal 5)

AND 0011 (decimal 3)

 = 0001 (decimal 1)

| X | Y Bitwise OR:

 0101 (decimal 5)

 OR 0011 (decimal 3)

 = 0111 (decimal 7)

^ X ^ Y Bitwise XOR:

 0101 (decimal 5)

XOR 0011 (decimal 3)

 = 0110 (decimal 6)

~ ~ X Bitwise NOT:

NOT 0101 (decimal 5)

 = 1010 (decimal 10)

>> n X >> Y Rotate n bits to right:

 0110 (decimal 6) ROTATE RIGHT

 = 0011 (decimal 3)

<< n X << Y Rotate n bits to left:

 0110 (decimal 6) ROTATE LEFT

 = 1100 (decimal 12)

Tip: For more complex logic, try the Logical and Loop functions.

Arithmetic operators

Operator Usage Description

+ X + Y Add (plus)

- X - Y Subtract (minus)

* X * Y Multiply by

/ X / Y Divide by

Arithemtic operators are resolved from left to right according to the standard order of evaluation. To
change the order, enclose in parentheses the part of the equation to be resolved first. For example,
the following equation produces a result of 11 because multiplication is evaluated before addition; the
equation multiplies 2 by 3 and then adds 5 to the result:

5+2*3

In contrast, if you use parentheses to change the syntax, 5 and 2 are added together and then
multiplied by 3 to produce 21:

(5+2)*3

Tip: For more complex math, try the Arithmetic, Statistical, Logarithmic and Trigonometric
functions.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

How to read function descriptions
This is a key to reading the descriptions of the built-in scripting functions.

Each function description is broken into several sections.

Function attributes

Every function has certain attributes that are described in a single-row table:

Function Group Execution Windows Embedded Thin Client

function
name

group
name

synchronous or
asynchronous

supported or not
supported

supported or not
supported

supported or not
supported

First, obviously, the exact name of the function as it should be used in your project.

Next, the functions are organized into groups according to the type of calculcation they perform or
the part of your project upon which they act. You can use the group names to find the functions you
want in the Object Finder and in this documentation.

Next, the execution of the function is either synchronous or asynchronous:

Synchronous means that when the function is executed on either the project server or the
project client, that station requires some response or acknowledgement from the other. The
project pauses, however briefly, while it waits for the response. In other words, the server and
client must remain synchronized.

This is normally not an issue because most functions are executed almost instantly, but if a
client makes unusually frequent function calls or your network is slow, then your project may
suffer decreased performance.

Asynchronous means that the function can be executed on either the project server or the
project client without waiting for the other. The project continues to run without interruption.

Finally, the function is either supported or unsupported on each of the target system types:

Windows includes Server and Client stations running on a full desktop or server version of
Microsoft Windows.

Embedded includes Server and Client stations running on some version of Windows Embedded.

Thin Client includes Client stations running the Secure Viewer program or in a Web browser.

For more information about these system types, see System Requirements.

Syntax diagram and parameters

A basic syntax diagram shows how the function should be entered and what parameters it takes.

In most cases, a parameter can take either a literal value or the name of a project tag that contains
the value. The data type of the parameter is indicated by its prefix:

bool means the parameter can take either a literal Boolean value or the name of a Boolean tag.
For example, either 0 or boolTag.

num means the parameter can take either a literal numerical value or the name of an Integer
or Real tag. For example, either 45.6543 or numTag.

str means the parameter can take either a text string enclosed in quotation marks or the name
of a String tag. For example, either "My string" or strTag.

The additional prefix opt indicates that a parameter is optional. If you do not specify a value for the
parameter, then the function will take the default value mentioned in the parameter description.

In the few cases where a parameter must take a project tag or some other special input, it will be
fully explained in the parameter description.

Returned value

This section describes the value returned by the function, if any.

Some functions return a calculated value, depending on the nature of the function.

Other functions return an error code that indicates how well the function was executed. The possible
codes and their meanings are provided in a table.

Notes

This section describes any additional notes or cautions on the use of the function.

Examples

This section shows how the function can be called in your project. Multiple examples are provided to
show how the function can take both literal values and project tags, as well as how the function may
be called if it has optional parameters.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Log Message functions
These functions are used to display status and debug messages in the Output window (for local
runtime) or Remote LogWin window (for remote runtime).

Trace
Trace is a built-in scripting function that displays a text message in the Output window. It is
typically used to debug the project.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Log Message functions >

Trace
Trace is a built-in scripting function that displays a text message in the Output window. It is typically
used to debug the project.

Function Group Execution Windows Embedded Thin Client

Trace Log Message Synchronous Supported Supported Not Supported

Syntax

strOutputMessage

The text of the message to be displayed.

Examples

Display static text that reports a specific event:

Trace("Beginning step 5.")

Display a date or time stamp by referencing the appropriate system tag:

Trace(Date)

Concatenate static text, tag references, and function calls to form a complex message:

Trace("The current second of the minute is " + Second + " and the system tick is " + GetTickCount() + " ms.")

Parent topic: Log Message functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Arithmetic functions
These functions are used to perform advanced arithmetic operations and bit manipulation on numeric
values.

Abs
Abs is a built-in scripting function that gets the absolute value of a specified numeric value.

Div
Div is a built-in scripting function that gets the dividend of two specified numeric values.

Format
Format is a built-in scripting function that formats a numerical value and returns it as a string.

GetBit
GetBit is a built-in scripting function that gets the value of a single bit in a numeric value.

Mod
Mod is a built-in scripting function that gets the remainder from a division operation.

Pow
Pow is a built-in scripting function that gets the result of raising a numeric value to a specified
exponent.

ResetBit
Resets a single bit in an Integer tag to 0.

Round
Rounds numValue to the nearest integer.

SetBit
Sets a single bit in an Integer tag to 1.

Sqrt
Takes the square root of numValue.

Swap16
Swaps the two lower bytes of a tag.

Swap32
Swaps two words in a tag.

Trunc
Truncates the value of numValue.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Arithmetic functions >

Abs
Abs is a built-in scripting function that gets the absolute value of a specified numeric value.

Function Group Execution Windows Embedded Thin Client

Abs Arithmetic Synchronous Supported Supported Supported

Syntax

numValue

The numeric value from which the function takes the absolute value.

Returned value

The absolute value of the specified numeric value.

Examples

Tag Name Expression

Tag ABS("-54.9788") // Returned value = 54.9788

Tag ABS(numValue) // Returned value = absolute value of the number in the numValue
tag.

Parent topic: Arithmetic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Arithmetic functions >

Div
Div is a built-in scripting function that gets the dividend of two specified numeric values.

Function Group Execution Windows Embedded Thin Client

Div Arithmetic Synchronous Supported Supported Supported

Syntax

Div(numNumerator, numDenominator)

numNumerator

The numerator of the division operation.

numDenominator

The denominator of the division operation.

Returned value

This function returns the dividend only as a whole number. The remainder is omitted.

Tip: Use the Mod function to get the remainder instead of the dividend.

Examples

Tag Name Expression

numValue Div(100, 8) // Returns the value 12.5

numValue Div(16, 4) // Returns the value 4

numValue Div(100, 12.5) // Returns the value 8

Parent topic: Arithmetic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Arithmetic functions >

Format
Format is a built-in scripting function that formats a numerical value and returns it as a string.

Function Group Execution Windows Embedded Thin Client

Format Arithmetic Synchronous Supported Supported Supported

Syntax

strFlag

A description of how the given numerical value should be formated, according to the syntax
%width.precisionFormat, where:

width is the minimum number of characters to be returned by the function. If the value to
be returned is shorter than this, then it is padded with either blank spaces (" ") or zeroes
("0"); see examples below. The value is not truncated even if the result is longer than the
specified width. Applicable for flags d, x, X, o, b, f, e, E, g, G, s, c and h.

.precision is the number of decimal places for a floating-point number. Applicable for flags
f, e, E, g and G.

F is the specific format:

Format Description

d Decimal

x Hexadecimal (alphabetic characters in lowercase)

X Hexadecimal (alphabetic characters in uppercase)

o Octal

b Binary

f Floating-point

e Scientific notation (e in lowercase)

E Scientific notation (E in uppercase)

g Rounded (e in lowercase, when applicable)

G Rounded (E in uppercase, when applicable)

s String

c ASCII character (i.e., the numerical value is interpreted as an ASCII character
code)

h Hour (hh:mm:ss)

Alternatively, the format can be set using the syntax ##.###, where the numerical value is
rounded to the specified number of decimal places.

numValue

The numerical value to be formatted.

Returned value

This function returns a string that contains the formatted numerical value.

Notes

Format is similar to the printf function in other programming languages, and it allows most of the
same formatting options. However, unlike printf, Format can be used to format only one numerical
value at a time.

This function is particularly useful for formatting values to be printed in reports.

Examples

Tag Name Expression

Tag Format("%d", 12.34) // Returned value = "12"

Tag Format("%04d", 12.34) // Returned value = "0012"

Tag Format("%4d", 12.34) // Returned value = "12"

Tag Name Expression

Tag Format("%x", 26) // Returned value = "1a"

Tag Format("%04x", 26) // Returned value = "001a"

Tag Format("%4x", 26) // Returned value = "1a"

Tag Name Expression

Tag Format("%X", 26) // Returned value = "1A"

Tag Format("%04X", 26) // Returned value = "001A"

Tag Format("%4X", 26) // Returned value = "1A"

Tag Name Expression

Tag Format("%o", 16) // Returned value = "20"

Tag Format("%04o", 16) // Returned value = "0020"

Tag Format("%4o", 16) // Returned value = "20"

Tag Name Expression

Tag Format("%b", 2) // Returned value = "10"

Tag Format("%4b", 2) // Returned value = "0010"

Tag Format("%04b", 2) // Returned value = "0010"

Tag Name Expression

Tag Format("%0.1f", 12.34) // Returned value = "12.3"

Tag Format("%06.1f", 12.34) // Returned value = "0012.3"

Tag Format("%6.1f", 12.34) // Returned value = "12.3"

Tag Name Expression

Tag Format("%e", 12.34) // Returned value = "1.234000e+001"

Tag Format("%0.1e", 12.34) // Returned value = "1.2e+001"

Tag Format("%09.1e", 12.34) // Returned value = "01.2e+001"

Tag Format("%9.1e", 12.34) // Returned value = " 1.2e+001"

Tag Name Expression

Tag Format("%E", 12.34) // Returned value = "1.234000E+001"

Tag Format("%0.1E", 12.34) // Returned value = "1.2E+001"

Tag Format("%09.1E", 12.34) // Returned value = "01.2E+001"

Tag Format("%9.1E", 12.34) // Returned value = " 1.2E+001"

Tag Name Expression

Tag Format("%0.1g", 12.34) // Returned value = "1e+001"

Tag Format("%0.2g", 12.34) // Returned value = "12"

Tag Format("%0.3g", 12.34) // Returned value = "12.3"

Tag Name Expression

Tag Format("%05.3g", 12.34) // Returned value = "012.3"

Tag Format("%5.3g", 12.34) // Returned value = " 12.3"

Tag Name Expression

Tag Format("%0.1G", 12.34) // Returned value = "1E+001"

Tag Format("%0.2G", 12.34) // Returned value = "12"

Tag Format("%0.3G", 12.34) // Returned value = "12.3"

Tag Format("%05.3G", 12.34) // Returned value = "012.3"

Tag Format("%5.3G", 12.34) // Returned value = "12.3"

Tag Name Expression

Tag Format("%s", 12.34) // Returned value = "12"

Tag Format("%04s", 12.34) // Returned value = "0012"

Tag Format("%4s", 12.34) // Returned value = "12"

Tag Name Expression

Tag Format("%c", 97) // Returned value = "a"

Tag Format("%4c", 97) // Returned value = "a"

Tag Format("%04c", 97) // Returned value = "000a"

Tag Name Expression

Tag Format("%h", 30) // Returned value = "00:00:30"

Tag Format("%h", 60) // Returned value = "00:01:00"

Tag Format("%h", 90) // Returned value = "00:01:30"

Tag Format("%h", 3600) // Returned value = "01:00:00"

Tag Name Expression

Tag Format("##.#", 26.56789) // Returned value = "26.6"

Tag Format("#.##", 26.56789) // Returned value = "26.57"

Tag Format("##.##", 26.56789) // Returned value = "26.57"

Parent topic: Arithmetic functions

Tag Format("%05.3g", 12.34) // Returned value = "012.3"

Tag Format("%5.3g", 12.34) // Returned value = " 12.3"

Tag Name Expression

Tag Format("%0.1G", 12.34) // Returned value = "1E+001"

Tag Format("%0.2G", 12.34) // Returned value = "12"

Tag Format("%0.3G", 12.34) // Returned value = "12.3"

Tag Format("%05.3G", 12.34) // Returned value = "012.3"

Tag Format("%5.3G", 12.34) // Returned value = "12.3"

Tag Name Expression

Tag Format("%s", 12.34) // Returned value = "12"

Tag Format("%04s", 12.34) // Returned value = "0012"

Tag Format("%4s", 12.34) // Returned value = "12"

Tag Name Expression

Tag Format("%c", 97) // Returned value = "a"

Tag Format("%4c", 97) // Returned value = "a"

Tag Format("%04c", 97) // Returned value = "000a"

Tag Name Expression

Tag Format("%h", 30) // Returned value = "00:00:30"

Tag Format("%h", 60) // Returned value = "00:01:00"

Tag Format("%h", 90) // Returned value = "00:01:30"

Tag Format("%h", 3600) // Returned value = "01:00:00"

Tag Name Expression

Tag Format("##.#", 26.56789) // Returned value = "26.6"

Tag Format("#.##", 26.56789) // Returned value = "26.57"

Tag Format("##.##", 26.56789) // Returned value = "26.57"

Parent topic: Arithmetic functions

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Arithmetic functions >

GetBit
GetBit is a built-in scripting function that gets the value of a single bit in a numeric value.

Function Group Execution Windows Embedded Thin Client

GetBit Arithmetic Synchronous Supported Supported Supported

Syntax

GetBit(tagName, numBitNumber)

tagName

The name of an Integer tag from which the bit value will be gotten.

Note: To directly specify the name of a tag, rather than take the value of the tag, you
must enclose the tag name in double-quotes. For example, GetBit("Second", 1).

numBitNumber

A numeric tag or value specifying the position (0…31) of the bit to get.

Returned value

Returns the value (0 or 1) of the specified bit.

Notes

You also can use the Bit field to read/write values from specific bits in an integer tag. For example,
enter Second->b0 to access the LSB (Least Significant Bit of the Second tag), and Second->b31 to access
the MSB (Most Significant Bit of the Second tag).

Examples

Tag Name Expression

Tag Name Expression

Tag GetBit("numSource", 4) // If the tag numSource holds a value of 15, then this
function returns 0.

Tag GetBit("numSource", 1) // If the tag numSource holds a value of 19, then this
function returns 1.

Parent topic: Arithmetic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Tag GetBit("numSource", 4) // If the tag numSource holds a value of 15, then this
function returns 0.

Tag GetBit("numSource", 1) // If the tag numSource holds a value of 19, then this
function returns 1.

Parent topic: Arithmetic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Arithmetic functions >

Mod
Mod is a built-in scripting function that gets the remainder from a division operation.

Function Group Execution Windows Embedded Thin Client

Mod Arithmetic Synchronous Supported Supported Supported

Group Execution Windows PC Windows CE Thin Client

Arithmetic Synchronous Supported Supported Supported

Syntax

Mod(numNumerator, numDenominator)

numNumerator

Integer or Real tag containing the Numerator of the function.

numDenominator

Integer or Real tag containing the Denominator of the function.

Returned value

Returns the remainder (as a real number) after dividing numNumerator by numDenominator.

Tip: Use the Div function to get the whole number dividend of the operation.

Examples

Tag Name Expression

Tag Mod(50, 4) // Returned value = 2

Tag Mod(16, 4) // Returned value = 0

Tag Mod(100, 8.2) // Returned value = 1.600

Parent topic: Arithmetic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Arithmetic functions >

Pow
Pow is a built-in scripting function that gets the result of raising a numeric value to a specified
exponent.

Function Group Execution Windows Embedded Thin Client

Pow Arithmetic Synchronous Supported Supported Supported

Syntax

Pow(numBase, numExponent)

numBase

Integer or Real tag containing the Base of the function.

numExponent

Integer or real tag containing the Exponent of the function.

Returned value

Returns the result of raising the base to the exponent.

Examples

Tag Name Expression

Tag Pow(2, 3) // Returned value = 8

Tag Pow(10, 4) // Returned value = 10000

Parent topic: Arithmetic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Arithmetic functions >

ResetBit
Resets a single bit in an Integer tag to 0.

Function Group Execution Windows Embedded Thin Client

ResetBit Arithmetic Synchronous Supported Supported Supported

Syntax

ResetBit(tagName, numBitNumber)

tagName

The name of an Integer tag where the bit value will be reset.

Note: To directly specify the name of a tag, rather than take the value of the tag, you
must enclose the tag name in double-quotes. For example, ResetBit("Second", 1).

numBitNumber

A numeric tag or value specifying the position (0…31) of the bit to reset.

Returned value

0 No error

1 Invalid
parameter

2 Tag does not
exist

Notes

You can use the Bit field to read/write values from specific bits in an integer tag. For example, enter
Second->b0 to access the LSB (Least Significant Bit of the Second tag), and Second->b31 to access the
MSB (Most Significant Bit of the Second tag).

Examples

Tag Name Expression

Tag ResetBit("numSource", 4) // If the tag numSource held a value of 16, then the
function returns 0 and numSource holds a new value of 0.

Tag ResetBit("numSource", 1) // If the tag numSource held the value 19, then the
function returns 0 and numSource holds a new value of 17.

Parent topic: Arithmetic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Arithmetic functions >

Round
Rounds numValue to the nearest integer.

Function Group Execution Windows Embedded Thin Client

Round Arithmetic Synchronous Supported Supported Supported

Syntax

Round(numValue)

numValue

A Real tag that holds the value to be rounded.

Returned value

Returns the integer result of the round function.

Examples

Tag Name Expression

Tag Round("345.87") // Returned value = 346

Tag Round("65.323") // Returned value = 65

Parent topic: Arithmetic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Arithmetic functions >

SetBit
Sets a single bit in an Integer tag to 1.

Function Group Execution Windows Embedded Thin Client

SetBit Arithmetic Synchronous Supported Supported Supported

Syntax

SetBit(tagName, numBitNumber)

tagName

The name of an Integer tag where the bit value will be set.

Note: To directly specify the name of a tag, rather than take the value of the tag, you
must enclose the tag name in double-quotes. For example, SetBit("Second", 1).

numBitNumber

A numeric tag or value specifying the position (0…31) of the bit to set.

Returned value

0 No error

1 Invalid
parameter

2 Tag does not
exist

Notes

You can also use the Bit field to read/write values from specific bits of an integer tag. For example,
enter Second->b0 to access the LSB (Least Significant Bit of the Second tag), and Second->b31 to access
the MSB (Most Significant Bit of the Second tag).

Examples

Tag Name Expression

Tag GetBit("numSource", 4) // If the tag numSource held a value of 0, then this
function returns 0 and numSource holds a new value of 16.

Tag GetBit("numSource", 1) // If the tag numSource held the value 17, then this
function returns 0 and numSource holds a new value of 19.

Parent topic: Arithmetic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Arithmetic functions >

Sqrt
Takes the square root of numValue.

Function Group Execution Windows Embedded Thin Client

Sqrt Arithmetic Synchronous Supported Supported Supported

Syntax

Sqrt(numValue)

numValue

Integer or Real tag to be square rooted.

Returned value

Returns the square root of the value in the numValue tag.

Note: If numValue has a negative value, then this function returns the value 0 and sets the
quality of the returned tag to BAD.

Examples

Tag Name Expression

Tag SQRT(25) // Returns the value 5

Tag SQRT(67) // Returns the value 8.185353

Parent topic: Arithmetic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Arithmetic functions >

Swap16
Swaps the two lower bytes of a tag.

Function Group Execution Windows Embedded Thin Client

Swap16 Arithmetic Synchronous Supported Supported Supported

Syntax

Swap16(numValue)

numValue

Integer tag that holds the numeric value of the bytes to be swapped.

Returned value

Returns the numeric value after swapping the bytes.

Examples

Tag Name Expression

Tag Swap16(16) // 16 = 0000000000010000 in binary. Returned value = 4096 =
0001000000000000 in binary.

Tag Swap16(43760) // 43760 = 1010010111110000 in binary. Returned value =
61610 = 1111000010100101 in binary.

Parent topic: Arithmetic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Arithmetic functions >

Swap32
Swaps two words in a tag.

Function Group Execution Windows Embedded Thin Client

Swap32 Arithmetic Synchronous Supported Supported Supported

Syntax

Swap32(numValue)

numValue

Integer tag that holds the numeric value of the words to be swapped.

Returned value

Returns the numeric value after swapping the words.

Examples

Tag Name Expression

Tag Swap32(16) // 16 = 00000000000000000000000000010000 in binary.
Returned value = 1048576 = 00000000000100000000000000000000 in
binary.

Tag Swap32(246333120) // 286333120 = 1010101010101010101111111100000000
in binary. Returned value = -1094709586=
11111111000000001010101010101010 in binary.

Parent topic: Arithmetic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Arithmetic functions >

Trunc
Truncates the value of numValue.

Function Group Execution Windows Embedded Thin Client

Trunc Arithmetic Synchronous Supported Supported Supported

Syntax

Trunc(numValue)

numValue

Real tag to be truncated.

Returned value

Returns the integer portion of the real number value of numValue.

Examples

Tag Name Expression

 Trunc(234.987) // Returned value = 234

 Trunc(-3465.9) // Returned value = -3465

Parent topic: Arithmetic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Statistical functions
These functions are used to get certain statistics — such as average, maximum, and minimum —
from two or more numeric values.

Avg
Calculates the average value of a set of numbers.

Max
Returns the maximum value of a set of numbers.

Min
Returns the minimum value of a set of numbers.

Rand
Generates a random number between 0 and 1.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Statistical functions >

Avg
Calculates the average value of a set of numbers.

Function Group Execution Windows Embedded Thin Client

Avg Statistical Synchronous Supported Supported Supported

Syntax

Avg(numValue1, numValue2, … , numValueN)

Avg("tagArray", numSample, optNumIgnore)

Note: This function has two formats:

If the first parameter is a numeric tag or value, you must use the Avg(numValue1,
numValue2, … , numValueN) format.

If the first parameter is an array tag in double-quotes or a string tag, you must use the
Avg("tagArray", numSample, optNumIgnore) format.

numValue (1…N)

Integer or Real tags containing the numbers to be averaged together.

tagArray

Name of array tag (Real or Integer) containing the values to be averaged.

numSample

The number of array elements to be averaged.

optNumIgnore

Optional Integer or Real tag containing the value to be ignored in calculating the average.

Returned value

Returns the average of the values.

Examples

Tag Name Expression

Tag Avg(1, 2.34, 5, 7, 4, 8, 9.4) // Returned value =
5.248571

Tag Avg(1, 5, -9, 0, 5, 3) // Returned value = 0.833333

Tag Name Expression

Tag Avg("tagArray[1]", 3) // If tagArray[1]=10, tagArray[2]=20 and
tagArray[3]=60, then the Returned Value = 30

Tag Avg("tagArray[1]", 3, 10) // If tagArray[1]=10, tagArray[2]=20 and
tagArray[3]=60, then the Returned Value = 40

Parent topic: Statistical functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Statistical functions >

Max
Returns the maximum value of a set of numbers.

Function Group Execution Windows Embedded Thin Client

Max Statistical Synchronous Supported Supported Supported

Syntax

Max(numValue1, numValue2, … , numValueN)

Max("tagArray", numSample, optNumIgnore)

Note: This function has two formats:

If the first parameter is a numeric tag or value, you must use the Max(numValue1,
numValue2, … , numValueN) format.

If the first parameter is an array tag in double-quotes or a string tag, you must use the
Max("tagArray", numSample, optNumIgnore) format.

numValue (1…N)

Integer or Real tags containing the numbers to be analyzed.

tagArray

Name of array tag (Real or Integer) containing the values to be analyzed.

numSample

The number of array elements to be analyzed.

optNumIgnore

Integer or Real tags containing the value to be ignored in the analysis.

Returned value

Returns the maximum value of the set.

Examples

Tag Name Expression

Tag Max(1, 2.34, 5, 7, 4, 8, 9.4) // Returned value = 9.4

Tag Max(1, 5, -9, 0, 5, 3) // Returned value = 5

Tag Max("tagArray[1]", 3) // If tagArray[1]=10, tagArray[2]=20 and
tagArray[3]=60, then the Returned Value = 60

Tag Max("tagArray[1]", 3, 10) // If tagArray[1]=10, tagArray[2]=20 and
tagArray[3]=60, then the Returned Value = 60

Parent topic: Statistical functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Statistical functions >

Min
Returns the minimum value of a set of numbers.

Function Group Execution Windows Embedded Thin Client

Min Statistical Synchronous Supported Supported Supported

Syntax

Min(numValue1, numValue2, … , numValueN)

Min("tagArray", numSample, optNumIgnore)

Note: This function has two formats:

If the first parameter is a numeric tag or value, you must use the Min(numValue1,
numValue2, … , numValueN) format.

If the first parameter is an array tag in double-quotes or a string tag, you must use the
Min("tagArray", numSample, optNumIgnore) format.

numValue (1…N)

Integer or Real tags containing the numbers to be analyzed.

tagArray

Name of an array tag (Real or Integer) containing the values to be analyzed.

numSample

The number of array elements to be analyzed.

optNumIgnore

Integer or Real tags containing a value to be ignored in the analysis.

Returned value

Returns the minimum value of the set.

Examples

Tag Name Expression

Tag Min(1, 2.34, 5, 7, 4, 8, 9.4) // Returned value = 1

Tag Min(1, 5, -9, 0, 5, 3) // Returned value = -9

Tag Min("tagArray[1]", 3) // If tagArray[1]=10, tagArray[2]=20 and
tagArray[3]=60, then the Returned Value = 10

Tag Min("tagArray[1]", 3, 10) // If tagArray[1]=10, tagArray[2]=20 and
tagArray[3]=60, then the Returned Value = 20

Parent topic: Statistical functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Statistical functions >

Rand
Generates a random number between 0 and 1.

Function Group Execution Windows Embedded Thin Client

Rand Statistical Synchronous Supported Supported Supported

Syntax

This function has no parameters.

Returned value

Returns a real number between 0 and 1.

Examples

Tag Name Expression

Tag Rand() // Returned value = ?, Where: 0<?<1

Parent topic: Statistical functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Logarithmic functions
These functions are used to perform logarithmic operations on numeric values.

Exp
Calculates the value of e (2.718282) raised to the power of numValue.

Log
Calculates the natural log of numValue.

Log10
Calculates the log base 10 of numValue.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Logarithmic functions >

Exp
Calculates the value of e (2.718282) raised to the power of numValue.

Function Group Execution Windows Embedded Thin Client

Exp Logarithmic Synchronous Supported Supported Supported

Syntax

numValue

Integer or Real tag containing the exponent of e.

Returned value

Returns the value of e^(numValue).

Examples

Tag Name Expression

Tag Exp(1) // Returned value = 2.718282

Tag Exp(5.25896) // Returned value = 192.281415

Parent topic: Logarithmic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Logarithmic functions >

Log
Calculates the natural log of numValue.

Function Group Execution Windows Embedded Thin Client

Log Logarithmic Synchronous Supported Supported Supported

Syntax

numValue

Integer or Real tag from which the natural log is taken.

Returned value

Returns the value of ln(numValue).

Note: If numValue has a negative value, then this function will return the value 0 and it will set
the quality of the returned tag to BAD.

Examples

Tag Name Expression

Tag Log(2.718282) // Returned value = 1

Tag Log(100) // Returned value = 4.605170

Parent topic: Logarithmic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Logarithmic functions >

Log10
Calculates the log base 10 of numValue.

Function Group Execution Windows Embedded Thin Client

Log10 Logarithmic Synchronous Supported Supported Supported

Syntax

numValue

Integer or Real tag, from which the log base 10 is taken.

Returned value

Returns the value of log10(numValue).

Note: If numValue has a negative value, then this function will return the value 0 and it will set
the quality of the returned tag to BAD.

Examples

Tag Name Expression

Tag Log10(1000) // Returned value = 3

Tag Log10(43.05) // Returned value = 1.633973

Parent topic: Logarithmic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Logical functions
These functions are used to perform logical operations (e.g., if/then, true/false) on tags and
expressions.

False
Determines whether the specified tag or expression is logically false.

If
Determines whether the contents of numExpression are logically true, then returns the value of
numThen or optNumElse accordingly.

Toggle
Returns the toggled value from the contents of numValue tag.

True
Determines whether the specified tag or expression is logically true.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Logical functions >

False
Determines whether the specified tag or expression is logically false.

Function Group Execution Windows Embedded Thin Client

False Logical Synchronous Supported Supported Supported

Syntax

TagOrExpression

Tag or expression to be used in the function.

Returned value

0 If the tag or expression is not logically
false.

1 If the tag or expression is logically
false.

Tip: You may find this function useful if you need to return an actual value of 0 when the
expression returns some value other than 0.

Examples

Tag Name Expression

Tag False(1) // Returned value = 0

Tag False(5 < 2) // Returned value = 1

Parent topic: Logical functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Logical functions >

If
Determines whether the contents of numExpression are logically true, then returns the value of numThen
or optNumElse accordingly.

Function Group Execution Windows Embedded Thin Client

If Logical Synchronous Supported Supported Supported

Syntax

If(numExpression, numThen, optNumElse)

numExpression

Tag or expression used as the condition in the function.

numThen

Tag or expression used if the condition is logically true.

optNumElse

Optional tag or expression used if the condition is logically false.

Returned value

numThen If the numExpression is logically true.

optNumElse If the numExpression is logically false.

No value
returned

If the numExpression is logically false and there is no optNumElse in the function.

Notes

The numExpression parameter can be a combination of logic statements (AND, OR, and NOT). For
example, If(TagA>TagB AND TagA=10,1,0).

The numThen parameter can be another function, including the If() function. Therefore, you can
use If() functions in cascade. For example, if(TagA>TagB,If(TagA<TagC,1, 2),3).

Examples

Tag Name Expression

Tag If(5 > 4,10, 6) // Returned value = 10

Tag If(5 < 2, 0, 2) // Returned value = 0

Tag If(3 = 9, 67) // No Returned value. (Tag retains previous
value.)

Parent topic: Logical functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Logical functions >

Toggle
Returns the toggled value from the contents of numValue tag.

Function Group Execution Windows Embedded Thin Client

Toggle Logical Synchronous Supported Supported Supported

Syntax

Toggle(numValue)

numValue

Boolean tag containing the value to be toggled.

Returned value

Numerical result (0 or 1) of the value to be toggled.

Notes

This function does not actually change the value of the tag, but it can be used in a command or
operation that does.

Examples

Tag Name Expression

Tag Toggle(MyBoolTag) // Returned value = 1 if MyBoolTag value equals 0, or 0 if
MyBoolTag value equals 1

Tag Toggle(numValue) // Returned value = toggled value of the number in the
numValue tag

Parent topic: Logical functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Logical functions >

True
Determines whether the specified tag or expression is logically true.

Function Group Execution Windows Embedded Thin Client

True Logical Synchronous Supported Supported Supported

Syntax

TagOrExpression

Tag or expression to be used in the function.

Returned value

0 If the tag or expression is not
logically true.

1 If the tag or expression is logically
true.

Tip: You may find this function useful if you need to return an actual value of 1 when the
expression returns some value other than 0.

Examples

Tag Name Expression

Tag True(1) // Returned value = 1

Tag True(5 < 2) // Returned value = 0

Parent topic: Logical functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

String functions
These functions are used to manipulate text strings or convert them into numeric values.

Asc2Str
This function converts one or more Unicode character codes to a string.

CharToValue
This function converts a string to Unicode character codes and then stores those values in an
integer array.

CharToValueW
This function converts a string to Unicode character codes, combines each two codes into a
double-byte word, and then stores those values in an integer array.

ClassMembersToStrVector
Transfers values from a Class tag to an Array tag.

NCopy
Copies a defined section of a larger string.

Num
Converts a string into a float.

Str
Converts a number into a string.

Str2Asc
This function onverts a character to its corresponding Unicode character code.

StrCompare
Compares two strings to see if they are identitical.

StrCompareNoCase
Compares two strings to see if they are identitical, ignoring the case of letters (i.e., the lower-
case "a" is considered to have the same value as the upper-case "A").

StrFromInt
Converts an integer into its string representation in another base number system, such as
binary (base-2) or octal (base-8).

StrFromReal
StrFromReal is a built-in scripting function that converts a real numerical value to a string value,
in either floating-point or exponential notation.

StrFromTime
Converts a timestamp from UTC standard notation into a formatted string, adjusted to reflect
the Time Zone setting in the Control Panel of the local computer.

StrGetElement
Gets a specific element from a string source.

StrLeft
Copies the first characters of a larger string.

StrLen
Determines the length of a string.

StrLower
Converts a string to all lower case characters.

StrRChr
Isolates the final occurrence of a character sequence within a string.

StrRight
Copies the last characters in a larger string.

StrSetElement
Sets a specific element in a string source.

StrStr
Isolates the first occurrence of a character sequence within a string.

StrStrPos
Finds the first occurrence of a character within a string.

StrTrim
Removes unwanted spaces from a string.

StrTrimAll
Eliminates a specific char from the whole string.

StrUpper
Converts a string to all uppercase characters.

ValueToChar
This function converts an integer array of Unicode character codes to a string.

ValueWToChar
This function converts an integer array of Unicode character codes to a string, where each value
in the array is a double-byte word.

Parent topic: Appendix: Built-in Scripting Language

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

Asc2Str
This function converts one or more Unicode character codes to a string.

Function Group Execution Windows Embedded Thin Client

Asc2Str String Synchronous Supported Supported Supported

Syntax

Asc2Str(numChar1, numChar2, … , numCharN)

numChar (1-N)

A Unicode character code (in decimal).

Returned value

Returns a string comprising the converted codes.

Notes

Although the name of this function implies it only supports ASCII characters, it is in fact a legacy of
previous versions of the software. The current version supports the full Unicode character set.

Examples

Tag Name Expression

Tag Asc2Str(65) // Returned value = "A"

Tag Asc2Str(65, 66, 67) // Returned value = "ABC"

Tag Asc2Str(Array[0], Array[1], Array[2]) // Returned value =
"ABC"

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

CharToValue
This function converts a string to Unicode character codes and then stores those values in an integer
array.

Function Group Execution Windows Embedded Thin Client

CharToValue String Synchronous Supported Supported Supported

Syntax

tagString

The name of the string tag, whose value will be converted.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

tagArray

The name of the integer array that will receive the converted values. If no array index is
specfied, then the default is 0.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

Returned value

Returns the number of array elements used, which should be equal to the number of characters in
the string.

Examples

If StrTag = "ABC", then Array[0] = 65, Array[1] = 66, and Array[2] = 67:

CharToValue("StrTag", "Array")

If StrTag = "ABC", then Array[10] = 65, Array[11] = 66, and Array[12] = 67:

CharToValue("StrTag", "Array[10]")

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

CharToValueW
This function converts a string to Unicode character codes, combines each two codes into a double-
byte word, and then stores those values in an integer array.

Function Group Execution Windows Embedded Thin Client

CharToValueW String Synchronous Supported Supported Supported

Syntax

tagString

The name of the string tag, whose value will be converted.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

tagArray

The name of the integer array that will receive the converted values. If no array index is
specfied, then the default is 0.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

Returned value

Returns the number of array elements used, which should be equal to half the number of characters
in the string.

Notes

Because of how each two character codes are combined into single value, this function only supports
Unicode character codes 0 through 255. For character codes greater than 255, or when double-byte
words are not needed, use the CharToValue function.

Examples

If StrTag = "Studio", then Array[0] = 29779 ("St"), Array[1] = 25717 ("ud"), and Array[2] = 28521
("io"):

CharToValue("StrTag", "Array")

If StrTag = "Studio", then Array[10] = 29779 ("St"), Array[11] = 25717 ("ud"), and Array[12] =
28521 ("io"):

CharToValue("StrTag", "Array[10]")

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

ClassMembersToStrVector
Transfers values from a Class tag to an Array tag.
ClassMembersToStrVector
String
Synchronous
Supported
Supported
Supported

Function Group Execution Windows Embedded Thin Client

Syntax

ClassMembersToStrVector("strClassTag" , numStartPos, numNumPos, "strArrayTag", optBooStartPosTarget)

strClassTag

String value containing the Class tag name.

numStartPos

Start position (array index) of strClassTag .

numNumPos

Number of positions (array indexes) to be transferred from strClassTag .

strArrayTag

String value containing the array tag that will receive the values from strClassTag .

optBooStartPosTarget

Start position (array index) of strArrayTag . If omitted, the default value 1 is used.

Returned value
- 6
Array size of strClassTag is not big enough for numStartPos
- 5
strClassTag is not a Class tag
- 4
strClassTag is not found
- 3
strArrayTag is not found
- 2

Invalid data type of the parameters
- 1
Invalid number of parameters
0
Transferred successfully

Notes

If strClassTag has more than one member, the value of each member will be transferred to
strArrayTag . Therefore, it is importatnt to make sure that the array size of strArrayTag is big
enough to receive all values from strClassTag .

Examples
Tag
ClassMembersToStrVector("Classtag", 5, 3, "Arraytag")

Tag
ClassMembersToStrVector("Classtag", 5, 3, "Arraytag", 0)

Tag
ClassMembersToStrVector (TagName, 0, 1, ArrayName)

Tag Name Expression

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

NCopy
Copies a defined section of a larger string.

Function Group Execution Windows Embedded Thin Client

NCopy String Synchronous Supported Supported Supported

Syntax

NCopy(strSource, numStartChar, numQtdChar)

strSource

The source string.

numStartChar

Integer tag containing a number corresponding to the first character being copied.

numQtdChar

The number of characters to be copied.

Returned value

Returns a string that is part of the source string (as defined by the function).

Examples

Tag Name Expression

Tag NCopy("Studio version 7.0", 7, 7) // Returned value =
"version"

Tag NCopy("Technical Reference", 0, 9) // Returned value =
"Technical"

Note: The first character in the string will be assigned the value 0.

Parent topic: String functions

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

Num
Converts a string into a float.

Function Group Execution Windows Embedded Thin Client

Num String Synchronous Supported Supported Supported

Syntax

Num(strValue)

strValue

The number of characters to be converted into float format.

Returned value

Returns the number (formerly in a string format) in float format.

Examples

Tag Name Expression

Tag Num("321654.987") // Returned value = 321654.987

Tag Num("5.6589626246") // Returned value =
5.6589626246

Note: The float string cannot use characters other than the numbers (0..9) and a decimal point
(.), or the function returns the value 0.0.

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

Str
Converts a number into a string.

Function Group Execution Windows Embedded Thin Client

Str String Synchronous Supported Supported Supported

Syntax

Str(numValue)

numValue

Integer or float tag containing a number to be converted to a string.

Returned value

Returns the string, in a float format.

Examples

Tag Name Expression

Tag Str(321654.987) // Returned value =
"321654.987"

Tag Str(5.65896246) // Returned value = "5.658962"

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

Str2Asc
This function onverts a character to its corresponding Unicode character code.

Function Group Execution Windows Embedded Thin Client

Str2Asc String Synchronous Supported Supported Supported

Syntax

strChar

The character to be converted.

Returned value

Returns the Unicode character code (in decimal) for the specified character.

Notes

Although the name of this function implies it only supports ASCII characters, it is in fact a legacy of
previous versions of the software. The current version supports the full Unicode character set.

Examples

Tag Name Expression

Tag Str2Asc("C") // Returned value = 67

Tag Str2Asc("o") // Returned value = 111

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrCompare
Compares two strings to see if they are identitical.

Function Group Execution Windows Embedded Thin Client

StrCompare String Synchronous Supported Supported Supported

Syntax

StrCompare(strValue1, strValue2)

strValue1

A string, or a tag of String type. This is the first string in the comparison.

strValue2

A string, or a tag of String type. This is the second string in the comparison.

Returned value

- 1 The value of strValue1 is less than the value of
strValue2.

0 strValue1 and strValue2 are identical.

1 The value of strValue1 is greater than the value of
strValue2.

Examples

Tag Name Expression

Tag StrCompare("Text1", "Text2") // Returned value = -1

Tag

Tag1 = "Text"
Tag2 = "Text"

StrCompare(Tag1, Tag2) // Returned value = 0

Tag Name Expression

Tag
Tag1 = "Text1"
Tag2 = "Text2"

StrCompare(Tag1, Tag2) // Returned value = -1

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Tag
Tag1 = "Text1"
Tag2 = "Text2"

StrCompare(Tag1, Tag2) // Returned value = -1

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrCompareNoCase
Compares two strings to see if they are identitical, ignoring the case of letters (i.e., the lower-case
"a" is considered to have the same value as the upper-case "A").

Function Group Execution Windows Embedded Thin Client

StrCompareNoCase String Synchronous Supported Supported Supported

Syntax

StrCompareNoCase(strValue1, strValue2)

strValue1

A string, or a tag of String type. This is the first string in the comparison.

strValue2

A string, or a tag of String type. This is the second string in the comparison.

Returned value

- 1 The value of strValue1 is less than the value of
strValue2.

0 strValue1 and strValue2 are identical.

1 The value of strValue1 is greater than the value of
strValue2.

Examples

Tag Name Expression

Tag StrCompareNoCase("Text1", "TEXT1") // Returned value = 0

Tag
Tag1 = "Text1"
Tag2 = "TEXT1"

StrCompareNoCase(Tag1, Tag2) // Returned value = 0

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrFromInt
Converts an integer into its string representation in another base number system, such as binary
(base-2) or octal (base-8).

Function Group Execution Windows Embedded Thin Client

StrFromInt String Synchronous Supported Supported Supported

Syntax

StrFromInt(numValue, numBase)

numValue

The numeric value to be converted into a string.

numBase

The base number system to convert into.

Returned value

This function returns a string representation of the given integer, in the specified base number
system. The returned value can be stored in any tag of String type.

Notes

You can specify a real number instead of an integer, but only the whole part of the number will be
converted. To convert the entire real number, use the StrFromReal function instead.

Also, if you do not need to change the base, then use the Str function instead.

Examples

Tag Name Expression

Tag StrFromInt(26, 2) // Returned value = "11010"

Tag StrFromInt(26, 8) // Returned value = "32"

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrFromReal
StrFromReal is a built-in scripting function that converts a real numerical value to a string value, in
either floating-point or exponential notation.

Function Group Execution Windows Embedded Thin Client

StrFromReal String Synchronous Supported Supported Supported

Syntax

numValue

The numerical value to be converted.

numPrecision

The number of decimal places to be shown in the resulting string. Please note that the value
will be rounded rather than truncated.

strType

A single-character code that specifies how the resulting string should be formatted, as
described in the following table:

Value of
strType

Description

f Formatted in floating-point notation.

e Formatted in exponential notation with a lower-case "e".

E Formatted in exponential notation with an upper-case "E".

Returned value

This function returns a string representation of the given numerical value, with the specified precision
and notation.

Examples

StrFromReal(263.355, 2, "f")

…returns a string value of "263.36".

StrFromReal(263.355, 2, "e")

…returns a string value of "2.63e+002".

StrFromReal(263.355, 2, "E")

…returns a string value of "2.63E+002".

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrFromTime
Converts a timestamp from UTC standard notation into a formatted string, adjusted to reflect the
Time Zone setting in the Control Panel of the local computer.

Function Group Execution Windows Embedded Thin Client

StrFromTime String Synchronous Supported Supported Supported

Syntax

StrFromTime(numUTCTime, numType)

numUTCTime

An integer, or a tag of Integer type. A timestamp given in UTC standard notation.

numType

An integer, or a tag of Integer type. Specifies the format of the resulting string, as described in
the following table:

Value of
numType

Description

1 Displays the date in the same format that is selected in the Control Panel on
the local computer.

2 Displays the time in the same format that is selected in the Control Panel on
the local computer.

3 Displays a standard 24-character string that shows both date and time.

4 Displays the abbreviated name of the day of the week.

5 Displays the full name of the day of the week.

Returned value

This function returns a string representation of the given timestamp, with the specified formatting.
The returned value can be stored in any tag of String type.

Notes

The Coordinated Universal Time (UTC) standard counts the number of seconds elapsed since 12:00
AM GMT on January 1, 1970. Each day consists of 86,400 seconds.

Examples

Note: The examples below are for a computer set to Eastern Standard Time (or UTC -05:00).

Tag Name Expression

Tag StrFromTime(86400, 1) // Returned value = "1/1/70"

Tag StrFromTime(86400, 2) // Returned value = "07:00:00 PM"

Tag StrFromTime(86400, 3) // Returned value = "Thu Jan 01 19:00:00
1970"

Tag StrFromTime(86400, 4) // Returned value = "Thu"

Tag StrFromTime(86400, 5) // Returned value = "Thursday"

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrGetElement
Gets a specific element from a string source.

Function Group Execution Windows Embedded Thin Client

StrGetElement String Synchronous Supported Supported Supported

Syntax

StrGetElement(strSource, strDelimiter, numElementNumber)

strSource

The source string.

strDelimiter

Char used as delimiter between the elements.

numElementNumber

Number of the element which will be returned by the function. The first element has the
number 1. The second element has the number 2 and so forth.

Returned value

Returns the element (string value) retrieved from strSource.

Examples

Tag Name Expression

Tag StrGetElement("a|b|c", "|", 2) // returned value =
"b"

Tag StrGetElement("a,b,c", ",", 3) // returned value =
"c"

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrLeft
Copies the first characters of a larger string.

Function Group Execution Windows Embedded Thin Client

StrLeft String Synchronous Supported Supported Supported

Syntax

StrLeft(strSource, numQtdChar)

strSource

The source string.

numQtdChar

The number of characters to be copied.

Returned value

Returns a string containing the left-most characters in the source string.

Examples

Tag Name Expression

Tag StrLeft("Studio version 7.0", 8) // Returned value = Studio
v

Tag StrLeft ("Technical Reference", 9) // Returned value =
Technical

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrLen
Determines the length of a string.

Function Group Execution Windows Embedded Thin Client

StrLen String Synchronous Supported Supported Supported

Syntax

StrLen(strSource)

strSource

The string.

Returned value

Returns an integer that is the number of characters in the string.

Examples

Tag Name Expression

Tag StrLen("Studio version 7.0") // Returned value =
18

Tag StrLen("Technical Reference") // Returned value =
19

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrLower
Converts a string to all lower case characters.

Function Group Execution Windows Embedded Thin Client

StrLower String Synchronous Supported Supported Supported

Syntax

StrLower(strSource)

strSource

The string to be converted.

Returned value

Returns the string, where all the characters are in lowercase.

Examples

Tag Name Expression

Tag StrLower("Studio version 7.0") // Returned value = "studio version
7.0"

Tag StrLower("Technical Reference") // Returned value = "technical
reference"

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrRChr
Isolates the final occurrence of a character sequence within a string.

Function Group Execution Windows Embedded Thin Client

StrRChr String Synchronous Supported Supported Supported

Syntax

StrRChr(strSource, strChrSequence)

strSource

The source string.

strCharSequence

The reference string.

Returned value

Returns a string of characters following the last occurrence of a character within the source string.

Examples

Tag Name Expression

Tag StrRChr("Studio version 7.0", "i") // Returned value = "ion
7.0"

Tag StrRChr("Technical Reference", "n") // Returned value
="nce"

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrRight
Copies the last characters in a larger string.

Function Group Execution Windows Embedded Thin Client

StrRight String Synchronous Supported Supported Supported

Syntax

StrRight(strSource, numQtdChar)

strSource

The source string.

numQtdChar

The number of characters to be copied.

Returned value

Returns a string containing the right-most characters in a source string.

Examples

Tag Name Expression

Tag StrRight("Studio version 7.0", 8) // Returned value = "sion
7.0"

Tag StrRight("Technical Reference", 9) // Returned value =
"Reference"

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrSetElement
Sets a specific element in a string source.

Function Group Execution Windows Embedded Thin Client

StrSetElement String Synchronous Supported Supported Supported

Syntax

StrSetElement(strSource, strDelimiter, numElementNumber, strValue)

strSource

The source string.

strDelimiter

Char used as delimiter between the elements.

numElementNumber

Number of the element where the string value will be written by the function. The first element
has the number 1. The second element has the number 2 and so forth.

strValue

String value that will be written to the numElementNumber of the strSource string tag.

Returned value

Returns the string value updated with the strValue.

Examples

Tag Name Expression

StringTag StrSetElement(strSource, "|", 2, "abcd")

StringTag StrSetElement(strSource, ",", 3, "defg")

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrStr
Isolates the first occurrence of a character sequence within a string.

Function Group Execution Windows Embedded Thin Client

StrStr String Synchronous Supported Supported Supported

Syntax

StrStr(strSource, strCharSequence)

strSource

The source string.

strCharSequence

The reference string.

Returned value

Returns the string of characters following the first occurrence of a character within the source string.

Examples

Tag Name Expression

Tag StrStr("Studio version 7.0", "i") // Returned value = "io version
7.0"

Tag StrStr("Technical Reference", "n") // Returned value ="nical
Reference"

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrStrPos
Finds the first occurrence of a character within a string.

Function Group Execution Windows Embedded Thin Client

StrStrPos String Synchronous Supported Supported Supported

Syntax

StrStrPos(strSource, strCharSequence)

strSource

The source string.

strCharSequence

The reference string.

Returned value

Returns an integer corresponding to the first occurrence of a character within the source string.

Examples

Tag Name Expression

Tag StrStrPos("Studio version 7.0", "i") // Returned value =
4

Tag StrStrPos("Technical Reference", "a") // Returned value
= 7

Note: The first character in the string assigned the value 0.

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrTrim
Removes unwanted spaces from a string.

Function Group Execution Windows Embedded Thin Client

StrTrim String Synchronous Supported Supported Supported

Syntax

StrTrim(strReference, optNumFlag)

strReference

A string, or a tag of String type that contains the source string.

optNumFlag

An optional integer or tag of Integer type:

Value of
optNumFlag

Description

0 Removes all spaces from both the beginning and the end of the string.

1 Removes all spaces only from the beginning of the string.

2 Removes all spaces only from the end of the string.

3 Removes all spaces except for single spaces between words.

Note: If no value is given for optNumFlag, then 0 is the default.

Returned value

This function returns a string equal to strReferance minus the specified space characters. The
returned value can be stored in any tag of String type.

Examples

Tag Name Expression

Tag StrTrim(" Studio version 7.0 ") // Returned value = "Studio version
7.0"

Tag StrTrim(" Studio version 7.0 ", 0) // Returned value = "Studio version
7.0"

Tag StrTrim(" Studio version 7.0 ", 1) // Returned value = "Studio version
7.0 "

Tag StrTrim(" Studio version 7.0 ", 2) // Returned value = " Studio version
7.0"

Tag StrTrim(" Studio version 7.0 ", 3) // Returned value = "Studio
version 7.0"

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrTrimAll
Eliminates a specific char from the whole string.

Function Group Execution Windows Embedded Thin Client

StrTrimAll String Synchronous Supported Supported Supported

Syntax

StrTrimAll(strReference, optStrTrimChar)

strReference

A The source string.

optStrTrimChar

Char that will be removed from the string. If this parameter is omitted, the space char will be
removed from the string, by default.

Returned value

Returns a string equal to strReference minus the characters removed by the function.

Examples

Tag Name Expression

Tag StrTrimAll("Studio version 7.0 ", " ") // Returned value =
"Studioversion7.0"

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

StrUpper
Converts a string to all uppercase characters.

Function Group Execution Windows Embedded Thin Client

StrUpper String Synchronous Supported Supported Supported

Syntax

StrUpper(strSource)

strSource

The string.

Returned value

Returns the string with all characters are in uppercase.

Examples

Tag Name Expression

Tag StrUpper("Studio version 7.0") // Returned value = "STUDIO VERSION
6.1"

Tag StrUpper("Technical Reference") // Returned value = "TECHNICAL
REFERENCE"

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

ValueToChar
This function converts an integer array of Unicode character codes to a string.

Function Group Execution Windows Embedded Thin Client

ValueToChar String Synchronous Supported Supported Supported

Syntax

tagArray

The name of the integer array containing the values to be converted. If no array index is
specified, then the default is 0.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

numQtdChars

The number of values to be converted (minimum of 1), starting with the specifed array index.

Returned value

Returns a string comprising the converted values.

Examples

If Array[0] = 65, Array[1] = 66, and Array[2] = 67, then the returned value will be "ABC":

ValueToChar("Array", 3)

If Array[10] = 65, Array[11] = 66, and Array[12] = 67, then the returned value will be "ABC":

ValueToChar("Array[10]", 3)

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > String functions >

ValueWToChar
This function converts an integer array of Unicode character codes to a string, where each value in
the array is a double-byte word.

Function Group Execution Windows Embedded Thin Client

ValueWToChar String Synchronous Supported Supported Supported

Syntax

tagArray

The name of the integer array containing the double-byte values to be converted. If no array
index is specified, then the default is 0.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

numQtdChars

The number of values to be converted (minimum of 1), starting with the specifed array index.

Returned value

Returns a string comprising the converted values.

Notes

Each value in the array must be a double-byte word, and each word will be split into two bytes for
conversion. As such, this function only supports Unicode character codes 0 through 255. For
character codes greater than 255, or when double-byte words are not needed, use the ValueToChar
function.

Examples

If Array[0] = 29779, Array[1] = 25717, and Array[2] = 28521, then the returned value is "Studio":

ValueWToChar("Array", 3)

If Array[10] = 29779, Array[11] = 25717, and Array[12] = 28521, then the returned value is
"Studio":

ValueWToChar("Array[10]", 3)

Parent topic: String functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Date & Time functions
These functions are used to interact with the system clock or manipulate timestamps.

ClockGetDate
Calculates the date, based on how many seconds have elapsed since 12:00 AM GMT on January
1, 1970 (taking into account the current time zone of the computer).

ClockGetDayOfWeek
Calculates the day of the week, based on how many seconds have elapsed since 12:00 AM GMT
on January 1, 1970 (taking into account the current time zone of the local computer).

ClockGetTime
Calculates the time based on how many seconds have elapsed since 12:00 AM GMT on January
1, 1970 (taking into account the current time zone as specified on the local computer).

DateTime2Clock
Calculates how many seconds have elapsed since 12:00 AM GMT on January 1, 1970 (taking
into account the current time zone specified on the local computer.)

GetClock
Calculates how many seconds have elapsed since 12:00 AM GMT on January 1, 1970, at the
moment the function was run (taking into account the current time zone, as specified on the
local computer).

Hour2Clock
Converts time in the HH:MM:SS format into seconds.

SetSystemDate
Sets the date in the operating system's clock.

SetSystemTime
Sets the time in the operating system's clock.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Date & Time functions >

ClockGetDate
Calculates the date, based on how many seconds have elapsed since 12:00 AM GMT on January 1,
1970 (taking into account the current time zone of the computer).

Function Group Execution Windows Embedded Thin Client

ClockGetDate Date & Time Synchronous Supported Supported Supported

Syntax

ClockGetDate(numSeconds)

numSeconds

The number of seconds elapsed since 12:00 AM GMT on January 1, 1970.

Returned value

Returns the date calculated in string format.

Examples

Tag Name Expression

Tag ClockGetDate(0) // If the computer is in the Central time zone. Returned value
= 12/31/1969

Tag ClockGetDate(1018886359) // If the computer is in the Central time zone.
Returned value = 04/15/2002

Note: This function takes into account the current Time Zone as specified in the Control Panel of
the local computer.

Parent topic: Date & Time functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Date & Time functions >

ClockGetDayOfWeek
Calculates the day of the week, based on how many seconds have elapsed since 12:00 AM GMT on
January 1, 1970 (taking into account the current time zone of the local computer).

Function Group Execution Windows Embedded Thin Client

ClockGetDayOfWeek Date & Time Synchronous Supported Supported Supported

Syntax

ClockGetDayOfWeek(numSeconds)

numSeconds

The number of seconds elapsed since 12:00 AM GMT on January 1, 1970

Returned value

Returns the day of the week (calculated in integer format) as follows:

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

Examples

Tag Name Expression

Tag ClockGetDayOfWeek(0) // If the computer is in the Central time zone. Returned
value = 3

Tag Name Expression

Tag ClockGetDayOfWeek(1018886359) // If the computer is in the Central time zone.
Returned value = 1

Note: This function takes into account the current Time Zone, as specified in the Control Panel
of the local computer.

Parent topic: Date & Time functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Tag ClockGetDayOfWeek(1018886359) // If the computer is in the Central time zone.
Returned value = 1

Note: This function takes into account the current Time Zone, as specified in the Control Panel
of the local computer.

Parent topic: Date & Time functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Date & Time functions >

ClockGetTime
Calculates the time based on how many seconds have elapsed since 12:00 AM GMT on January 1,
1970 (taking into account the current time zone as specified on the local computer).

Function Group Execution Windows Embedded Thin Client

ClockGetTime Date & Time Synchronous Supported Supported Supported

Syntax

ClockGetTime(numSeconds)

numSeconds

The number of seconds elapsed since 12:00 AM GMT on January 1, 1970.

Returned value

Returns the time calculated in string format.

Examples

Tag Name Expression

Tag ClockGetTime(0) // If the computer is in the Central time zone. Returned value
= 18:00:00

Tag ClockGetTime(1018886359) // If the computer is in the Central time zone.
Returned value = 10:59:19

Note: This function takes into account the current Time Zone, as specified in the Control Panel
of the local computer.

Tip: To convert the number of seconds strictly into the HH:MM:SS format, you must use the
Format() function instead of the ClockGetTime() function.

Parent topic: Date & Time functions

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Date & Time functions >

DateTime2Clock
Calculates how many seconds have elapsed since 12:00 AM GMT on January 1, 1970 (taking into
account the current time zone specified on the local computer.)

Function Group Execution Windows Embedded Thin Client

DateTime2Clock Date & Time Synchronous Supported Supported Supported

Syntax

DateTime2Clock(strDate, strTime)

strDate

The date to be used in the calculation.

strTime

The time to be used in the calculation.

Returned value

Returns the number of seconds that have elapsed since 12:00 AM GMT on January 1, 1970.

Examples

Tag Name Expression

Tag DateTime2Clock("12/31/1969", "18:00:00") // If the computer is in the Central
time zone. Returned value = 0

Tag DateTime2Clock("04/15/2002", "10:59:19") // If the computer is in the Central
time zone. Returned value = 01018886359

Note: This function takes into account the current Time Zone, as specified in the Control Panel
of the local computer.

Parent topic: Date & Time functions
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Date & Time functions >

GetClock
Calculates how many seconds have elapsed since 12:00 AM GMT on January 1, 1970, at the moment
the function was run (taking into account the current time zone, as specified on the local computer).

Function Group Execution Windows Embedded Thin Client

GetClock Date & Time Synchronous Supported Supported Supported

Syntax

GetClock()

This function takes no parameters.

Returned value

Returns the number of seconds that have elapsed since 12:00 AM GMT on January 1, 1970, at the
moment the function was run.

Examples

Tag Name Expression

Tag GetClock() // If executed at 10:59:19 AM April 15th 2002 CST. Returned value
= 101886359

Tag GetClock() // If executed at 00:00:00 January 1st 1970 GMT. Returned value =
0

Note: This function takes the current Time Zone into account, as specified in the Control Panel
of the local computer.

Parent topic: Date & Time functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Date & Time functions >

Hour2Clock
Converts time in the HH:MM:SS format into seconds.

Function Group Execution Windows Embedded Thin Client

Hour2Clock Date & Time Synchronous Supported Supported Supported

Syntax

Hour2Clock(strTime)

strTime

The number of hours, minutes, and seconds in HH:MM:SS format.

Returned value

Returns the number of seconds equivalent to the total number of hours, minutes, and seconds
specified.

Examples

Tag Name Expression

Tag Hour2Clock("01:00:00") // Returned value = 3600

Tag Hour2Clock("10:01:01") // Returned value =
36061

Parent topic: Date & Time functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Date & Time functions >

SetSystemDate
Sets the date in the operating system's clock.

Function Group Execution Windows Embedded Thin Client

SetSystemDate Date & Time Synchronous Supported Supported Supported

Syntax

SetsystemDate(strDate)

strDate

The date in MM/DD/YYYY format in which to set the clock.

Returned value

Returns no values.

Examples

Tag Name Expression

 SetSystemDate("04/15/2002") // Sets the system clock to April 15th
2002.

Parent topic: Date & Time functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Date & Time functions >

SetSystemTime
Sets the time in the operating system's clock.

Function Group Execution Windows Embedded Thin Client

SetSystemTime Date & Time Synchronous Supported Supported Supported

Syntax

SetSystemTime(strTime)

strTime

The time in HH:MM:SS format in which to set the clock.

Returned value

No Returned Value.

Examples

Tag Name Expression

 SetSystemTime("15:45:18") // Sets the system clock to 3:45:18
PM.

Parent topic: Date & Time functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Trigonometric functions
These functions are used to perform trigonometric operations (e.g., sine, cosine, tangent) on numeric
values.

ACos
Calculates the Arc Cosine of a value.

ASin
Calculates the Arc Sine of a value.

ATan
Calculates the Arc Tangent of a value.

Cos
Calculates the Cosine of a value.

Cot
Calculates the Cotangent of a value.

Pi
Calculates the value of pi.

Sin

Tan
Calculates the Tangent of a value.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Trigonometric functions >

ACos
Calculates the Arc Cosine of a value.

Function Group Execution Windows Embedded Thin Client

ACos Trigonometric Synchronous Supported Supported Supported

Syntax

ACos(numValue)

numValue

Numerical tag from which the Arc Cosine will be taken.

Returned value

Returns the Arc Cosine of numValue in radians.

Examples

Tag Name Expression

Tag ACos(1) // Returned value = 0.000000

Tag ACos(0) // Returned value = 1.570796

Parent topic: Trigonometric functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Trigonometric functions >

ASin
Calculates the Arc Sine of a value.

Function Group Execution Windows Embedded Thin Client

ASin Trigonometric Synchronous Supported Supported Supported

Syntax

ASin(numValue)

numValue

Numerical tag from which the Arc Sine will be taken.

Returned value

Returns the Arc Sine of numValue in radians.

Examples

Tag Name Expression

Tag ASin(1) // Returned value = 1.570796

Tag ASin(0) // Returned value = 0.000000

Parent topic: Trigonometric functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Trigonometric functions >

ATan
Calculates the Arc Tangent of a value.

Function Group Execution Windows Embedded Thin Client

ATan Trigonometric Synchronous Supported Supported Supported

Syntax

ATan(numValue)

numValue

Numerical tag from which the Arc Tangent will be taken.

Returned value

Returns the Arc Tangent of numValue in radians.

Examples

Tag Name Expression

Tag ATan(1) // Returned value = 0.785398

Tag ATan(0) // Returned value = 1.570796

Parent topic: Trigonometric functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Trigonometric functions >

Cos
Calculates the Cosine of a value.

Function Group Execution Windows Embedded Thin Client

Cos Trigonometric Synchronous Supported Supported Supported

Syntax

Cos(numAngle)

numAngle

The Angle (in radians) from which to calculate the Cosine.

Returned value

Returns the Cosine of numAngle.

Examples

Tag Name Expression

Tag Cos(1.570796) // Returned value = 0.000000

Tag Cos(0) // Returned value = 1.000000

Parent topic: Trigonometric functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Trigonometric functions >

Cot
Calculates the Cotangent of a value.

Function Group Execution Windows Embedded Thin Client

Cot Trigonometric Synchronous Supported Supported Supported

Syntax

Cot(numAngle)

numAngle

The Angle (in radians) from which to calculate the Cotangent.

Returned value

Returns the Cotangent of numAngle.

Note: Although mathematically the tangent of Pi is infinite, IWS only returns the largest number
possible.

Examples

Tag Name Expression

Tag Cot(0.785398) // Returned value = 1.000000

Tag Cot(0) // Returned value = 0.00000

Parent topic: Trigonometric functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Trigonometric functions >

Pi
Calculates the value of pi.

Function Group Execution Windows Embedded Thin Client

Pi Trigonometric Synchronous Supported Supported Supported

Syntax

Pi()

This function takes no parameters. You must still include the parentheses, however, or it will be
evaluated as a tag rather than a function.

Returned value

Returns the value of pi.

Examples

Tag Name Expression

Tag Pi() // Returned value = 3.141593

Parent topic: Trigonometric functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Trigonometric functions >

Sin

Function Group Execution Windows Embedded Thin Client

Sin Trigonometric Synchronous Supported Supported Supported

Description

Calculates the Sine of a value.

Syntax

Sin(numAngle)

numAngle

The Angle (in radians) from which to calculate the Sine.

Returned value

Returns the Sine of numAngle.

Examples

Tag Name Expression

Tag Sin(0) // Returned value = 0.000000

Tag Sin(1.570796) // Returned value = 1.000000

Parent topic: Trigonometric functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Trigonometric functions >

Tan
Calculates the Tangent of a value.

Function Group Execution Windows Embedded Thin Client

Tan Trigonometric Synchronous Supported Supported Supported

Syntax

Tan(numAngle)

numAngle

The Angle (in radians) from which to calculate the Tangent.

Returned value

Returns the Tangent of numAngle.

Note: Although mathematically the tangent of Pi() is infinite, IWS only returns the largest
number possible.

Examples

Tag Name Expression

Tag Tan(0) // Returned value = 0.00000

Tag Tan(0.785398) // Returned value = 1.00000

Parent topic: Trigonometric functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Screen functions
These functions are used to open and close project screens.

Close
Close is a built-in scripting function that closes an open project screen.

Open
Open is a built-in scripting function that opens a project screen.

OpenPrevious
OpenPrevious is a built-in scripting function that re-opens the last screen to be closed.

ShowInplaceInput
This function shows a simple text input dialog at a specified location in the project client/viewer.

ShowMessageBox
This function shows a simple message box with either an OK button or Yes / No buttons.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Screen functions >

Close
Close is a built-in scripting function that closes an open project screen.

Function Group Execution Windows Embedded Thin Client

Close Screen Asynchronous Supported Supported Supported

Syntax

strScreen

The name of the screen (not including the .scr extension) to be closed.

Note: Some Web servers are case-sensitive. If you plan to deploy your project as a Web
application, then you should use only lowercase letters for the screen name.

optNumID

The specific ID or instance number of the screen to be closed, if there is more than one screen
with the same name open. (The ID is assigned when the screen is opened with the Open
function.)

This is an optional parameter. If no value is specified, then the default ID is 0.

Returned value

This function does not return any value.

Notes

This function cannot be used with Tasks or in the Global Procedures script.

Also, in some cases, you do not need to call this function to close a screen because the screen will be
closed automatically when another screen replaces it. For more information, see Screen Attributes.

Examples

Close the screen named "main":

Close("main")

Close the screen named "alarms":

Close("alarms")

Close the screen named "main" with ID 10:

Close("main", 10)

Parent topic: Screen functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Screen functions >

Open
Open is a built-in scripting function that opens a project screen.

Function Group Execution Windows Embedded Thin Client

Open Screen Asynchronous Supported Supported Supported

Syntax

strScreen

The name of the screen (not including the .scr extension) to be opened.

Note: Some Web servers are case-sensitive. If you plan to deploy your project as a Web
application, then you should use only lowercase letters for the screen name.

optNumX1

optNumY1

optNumX2

optNumY2

The coordinates, in pixels, for the top-left (X1,Y1) and bottom-right (X2,Y2) corners of the
screen.

These are optional parameters. If no values are specified, then the default screen size and
location are used. For more information, see Screen Attributes.

Please note the following special circumstances:

You can open the screen at the mouse's current position by using Open("screen", 1), or
Open("screen", 1, -1, -1, -1, …) if the parameters at the end are needed.

If optNumX1 equals optNumX2 and optNumY1 equals optNumY2, then the default
screen size is used but the screen is centered at (X1,Y1).

If optNumX2 is less than optNumX1 and/or optNumY2 is less than optNumY1, or if
all four parameters are set to -1, then the parameters are ignored and the default screen

size and location are used.

optNumResizeFlag

Specifies whether objects in the screen will be resized when the screen is opened:

Value Description

0 Screen objects will not be resized.

1 Screen objects will be automatically resized to fit the new dimensions of the screen,
as specified by the coordinates described above. The resizing is done at the moment
the screen is opened, so if the user changes the screen size after the screen is
opened, then the objects will not be resized again.

This parameter is required if all four coordinates are specified.

optNumID

An ID or instance number to be assigned to the screen, because you can open multiple
instances of the same screen file. (This ID is required when a screen is closed using the Close
function.)

This is an optional parameter. If no value is specified, then the default ID is 0.

optStrMnemonicList

A string that describes how the custom properties of any generic objects or linked symbols in
the screen will be completed when the screen is opened. This string has the syntax…

#Label:Value

…where Label is the name of the property and Value is the tag, expression or literal value that the
property will receive. You can declare more than one mnemonic as long as the mnemonics are
separated by spaces. For more information, see "Examples" below.

Returned value

This function will return one of the following values:

Value Description

0 Success

1 Error

Notes

This function cannot be used with Tasks or in the Global Procedures script.

Examples

Open the screen "main" using the default screen size and location:

Open("main")

Open the screen at the mouse's current position:

Open("main", 1)

Open the screen at the mouse's current position and assign it an ID of 10:

Open("main", 1, -1, -1, -1, 0, 10)

Open the screen using the default screen size but centered at the coordinates (500,250), and assign
it an ID of 10:

Open("main", 500, 250, 500, 250, 0, 10)

Open the screen using the default screen size and location, and replace the custom properties Mne1
and Mne2 with Tag1 and Tag2, respectively:

Open("main", -1, -1, -1, -1, 1, 0, "#Mne1:Tag1 #Mne2:Tag2")

Parent topic: Screen functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Screen functions >

OpenPrevious
OpenPrevious is a built-in scripting function that re-opens the last screen to be closed.

Function Group Execution Windows Embedded Thin Client

OpenPrevious Screen Asynchronous Supported Supported Not Supported

Syntax

optNumX1

optNumY1

optNumX2

optNumY2

The coordinates, in pixels, for the upper-left (X1,Y1) and lower-right (X2,Y2) corners of the
screen.

These are optional parameters. If no values are specified, then the default screen size and
location are used. For more information, see Screen Attributes.

Returned value

This function will return one of the following values:

Value Description

0 Success

1 Error

Notes

This function cannot be used with Tasks or in the Global Procedures script.

Examples

Open the previous screen using its default size and location:

OpenPrevious()

Open the previous screen in the top-left corner of the display and sized to 800x600:

OpenPrevious(0, 0, 800, 600)

Parent topic: Screen functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Screen functions >

ShowInplaceInput
This function shows a simple text input dialog at a specified location in the project client/viewer.

Function Group Execution Windows Embedded Thin Client

ShowInplaceInput Screen Asynchronous Supported Supported Not supported

Syntax

tagOutput

The name of a tag that will receive the input.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

numStartXPos

The starting X position of the top-left corner of the input dialog — that is, the number of pixels
between that corner and the left side of the display.

numStartYPos

The starting Y position of the top-left corner of the input dialog — that is, the number of pixels
between that corner and the top of the display.

optNumMin

The minimum numeric value that will be accepted by the input dialog.

This is an optional parameter. If no value is specified, then the dialog will accept any value.

optNumMax

The maximum numeric value that will be accepted by the input dialog.

This is an optional parameter. If no value is specified, then the dialog will accept any value.

optNumEnablePasswordMode

An option to enable password mode, which obfuscates the operator's input as if it's a
password:

Value Description

0 Show input as plain text.

1 Obfuscate input.

This is an optional parameter. If no value is specified, then the default is 0.

optNumShowOSVK

An option to show the default Virtual Keyboard, which is configured in the project settings:

Value Description

0 Do not show Virtual Keyboard.

1 Show Virtual Keyboard.

This is an optional parameter. If no value is specified, then the default is 0.

Returned value

This function returns the following possible values:

Value Description

0 Success.

-1 Invalid tag specified for tagOutput.

-2 Invalid number of parameters.

-3 Viewer is not running.

Examples

ShowInplaceInput("OperatorInput", 50, 50)

ShowInplaceInput("OperatorInput", 50, 50, 1, 100)

ShowInplaceInput("OperatorInput", 50, 50, 1, 100, 0, 1)

Parent topic: Screen functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Screen functions >

ShowMessageBox
This function shows a simple message box with either an OK button or Yes / No buttons.

Function Group Execution Windows Embedded Thin Client

ShowMessageBox Screen Asynchronous Supported Supported Not supported

Syntax

strMessage

The message body that will be displayed in the box.

optNumButtons

A numeric flag that specifies which kind of confirmation buttons to display in the message box:

Value Description

0 OK button

4 Yes / No buttons

Tip: To add an exclamation mark to the box — to make it an alert or warning rather than
a plain message — add 48 (vbExclamation) to this parameter. For more information, see
"Examples" below.

This is an optional parameter. If no value is specified, then the default is 0.

optStrTitle

The title of the message.

This is an optional parameter. If no value is specified, then no title will be displayed.

Returned value

This function returns the following possible values:

Value Description

1 Operator clicked OK.

6 Operator clicked Yes.

7 Operator clicked No.

Examples

ShowMessageBox("The action could not be completed.")

ShowMessageBox("The action could not be completed.", 0+48, "Alert")

ShowMessageBox("Continue with action?", 4)

Parent topic: Screen functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Security functions
These functions are used to manage users and groups in the project's security system.

BlockUser
BlockUser is a built-in scripting function that blocks an existing user from logging onto a project.

CheckESign
CheckESign is a built-in scripting function that prompts the runtime user to electronically sign
an event by entering their username and password. It can be called to secure specific
expressions and scripts, just as the E-Sign option secures screen objects.

CreateUser
This function creates a new user in the project security system.

ExportSecuritySystem
This function exports the security system configuration to an encrypted file.

GetUserFullName
This function gets the full name (if any) of a specified user in the project security system.

GetUserNames

GetUserPwdAging
Returns the time remaining before the password for a specific user expires.

GetUserState
Use to see the current status of a selected user.

ImportSecuritySystem
This function imports a security system configuration from an external file.

RemoveUser
Removes a user from the system.

SetPassword
Use to specify a new user password.

UnblockUser
Use to unblock a blocked user in the system.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Security functions >

BlockUser
BlockUser is a built-in scripting function that blocks an existing user from logging onto a project.

Function Group Execution Windows Embedded Thin Client

BlockUser Security Synchronous Supported Supported Supported

Syntax

strUserName

The name of the user to block.

Returned value

This function returns the following possible values:

Value Description

0 User blocked successfully.

1 Invalid number of parameters.

2 Wrong parameter type.

3 Specified user does not exist.

4 User currently logged on does not have the rights to block (i.e., user does not have Edit
Security System).

5 The operation on the distributed security system failed.

6 User cannot be blocked.

7 The current Security Mode does not allow user to be blocked/unblocked.

8 Internal error.

Examples

Block the user named Bob:

BlockUser("Bob")

Block the user named in position 3 of the array badUsers:

BlockUser(badUsers[3])

Block the user that is currently logged on:

BlockUser(UserName)

Parent topic: Security functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Security functions >

CheckESign
CheckESign is a built-in scripting function that prompts the runtime user to electronically sign an
event by entering their username and password. It can be called to secure specific expressions and
scripts, just as the E-Sign option secures screen objects.

Function Group Execution Windows Embedded Thin Client

CheckESign Security Synchronous Supported Supported Supported

Syntax

This function takes no parameters. Calling the function displays a security dialog, where the user
must enter their username and password.

Returned value

This function returns the following possible values:

Value Description

0 Username and/or password not accepted.

1 Username and password accepted.

Notes

Usernames and passwords are stored in the Security Folder.

Examples

CheckESign()

Parent topic: Security functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Security functions >

CreateUser
This function creates a new user in the project security system.

Function Group Execution Windows Embedded Thin Client

CreateUser Security Synchronous Supported Supported Supported

Syntax

strUserName

The name of the user to be created.

strGroup

The name of the group to which the user will belong.

strPassw

The user's password.

optStrUserFullName

The full name of the user.

Returned value

This function returns the following possible values:

Value Description

-1 Internal error; contact Technical Support.

0 New user created successfully.

1 Invalid number of parameters.

2 Wrong parameter type.

3 User name already exists.

4 Group does not exist.

5 Failed to save to configuration file.

6 Invalid user.

7 User full name already exists.

8 Reentrant function call not allowed.

9 User clicked Cancel button when using the standard Create User dialog.

10 Invalid password, check the minimum password size specified for the group.

11 Invalid group. (Group may not have Runtime group option selected.)

12 Would open dialog.

13 User currently logged on does not have the rights to create user (i.e., user does not have
Edit Security System).

14 The current Security Mode does not allow user to be created.

Notes

Users created with this function are not shown in the project's Security folder because they are
stored in a secondary database. To manage this database, use the ExtUser.exe program (located in
the Bin sub-folder of the application folder).

Examples

CreateUser("Bob", "Admin", "Chocolate", "Bob Smith")

CreateUser("Albert", "Engineering", "EMC2", "Albert Jones")

Parent topic: Security functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Security functions >

ExportSecuritySystem
This function exports the security system configuration to an encrypted file.

Function Group Execution Windows Embedded Thin Client

ExportSecuritySystem Security Synchronous Supported Supported Supported

Syntax

strFileName

The complete file path and name where you want to save the configuration file.

strPassword

The main password for the security system. This same password will be used to protect the
exported file.

Returned value

This function returns the following possible values:

Value Description

-2 Wrong parameter type.

-1 Invalid number of parameters.

0 Couldn't write security data.

1 File exported successfully.

Examples

ExportSecuritySystem("C:\security.txt")

ExportSecuritySystem("C:\security.txt", "mypa55w0rd")

Parent topic: Security functions

Related reference
ImportSecuritySystem

Related information
Backing up the security system configuration

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Security functions >

GetUserFullName
This function gets the full name (if any) of a specified user in the project security system.

Function Group Execution Windows Embedded Thin Client

GetUserFullName Security Synchronous Supported Supported Supported

Syntax

strUserName

The name of a user in the project security system.

tagUserFullName

The name of a tag (String type) that will receive the full name of the specified user. If the
specified user does not have a full name defined, then the tag will receive an empty string ("").

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

Returned value

This function returns the following possible values:

Value Description

0 Specified user does not exist.

1 Success; specified user exists.

Examples

Get the full name of the currently logged user (via the system tag UserName):

GetUserFullName(UserName, "UserFullName")

Get the full name of the user "engineer1":

GetUserFullName("engineer1", "UserFullName")

Parent topic: Security functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Security functions >

GetUserNames

Function Group Execution Windows Embedded Thin Client

GetUserNames Security Synchronous Supported Supported Executed on Server

Syntax

GetUserNames("tagUsers", optNumUserType, "opttagGroups")

tagUsers

Name of the array tag that will receive users.

optNumUserType

0 Return all users

1 Only users created during runtime

2 Only users created using the development
environment

opttagGroups

Name of the array tag that will receive the group for each specific user.

Returned value

The number of users, or a negative number that can be one of the following:

- 1 Invalid number of parameters

- 2 tagUsers is invalid

- 3 optNumUserType is invalid

- 4 opttagGroups is invalid

- 5 Error, function cannot be called in the Thin
Client

Examples

Tag Name Expression

NumberOfUsers GetUserNames("UsersArray") // Retrieves all users, stores names in the UsersArray
tag and the number of users in the NumberOfUsers tag.

NumberOfUsers GetUserNames("UsersArray", 1) // Retrieves all users created during runtime,
stores names in the UsersArray tag and the number of users in the NumberOfUsers
tag.

NumberOfUsers GetUserNames("UsersArray", 2) // Retrieves all users created in the development
environment, stores names in the UsersArray tag and the number of users in
the NumberOfUsers tag.

NumberOfUsers GetUserNames("UsersArray", 2, "Groups") // Retrieves all users created in the
development environment, stores names in the UsersArray tag and the number
of users in the NumberOfUsers tag. The group name per each user is stored in the
Groups tag.

Parent topic: Security functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Security functions >

GetUserPwdAging
Returns the time remaining before the password for a specific user expires.

Function Group Execution Windows Embedded Thin Client

GetUserPwdAging Security Synchronous Supported Supported Supported

Syntax

GetUserNames(strUser)

strUser

User name whose password aging is checked.

Returned value

=0 Number of hours since password expired.

0 Specified user is not logged on.

>0 Number of hours remaining until password
expires.

Note: If the function is not executed properly (e.g., User Name is invalid), or if the specified
user is not logged on, then the function returns BAD quality.

Examples

Tag Name Expression

TagHoursToExpire GetUserPwdAging("John") // Returns the number of hours before the
password for the User "John" expires.

TagHoursToExpire GetUserPwdAging(UserName) // Returns the number of hours before the
password for the current User logged on the system expires.

Parent topic: Security functions

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Security functions >

GetUserState
Use to see the current status of a selected user.

Function Group Execution Windows Embedded Thin Client

GetUserState Security Synchronous Supported Supported Supported

Syntax

strUserName

The name of the user

Returned value

This function returns the following possible values:

Value Description

-3 Specified user does not exist.

-2 Wrong parameter type.

-1 Invalid number of parameters.

0 Specified user is unblocked.

1 Specified user is blocked.

Examples

Tag Name Expression

Tag GetUserState("Bob")

Tag GetUserState ("Albert")

Parent topic: Security functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Security functions >

ImportSecuritySystem
This function imports a security system configuration from an external file.

Function Group Execution Windows Embedded Thin Client

ImportSecuritySystem Security Synchronous Supported Supported Supported

Syntax

strSecuritySystemPassword

The main password for the project's current security system configuration. (The security
system must be enabled.)

strFileName

The complete file path and name of the configuration file that you want to import. (The file
must have been previously exported from a IWS project using either the Security System
configuration tool or the ExportSecuritySystem function.)

strFilePassword

The password for the specified configuration file.

optNumMode

A numeric flag indicating how the imported settings should be handled:

Value Description

0 Append the imported settings to the current settings. In the event of a conflict,
replace with the imported settings.

1 Append the imported settings to the current settings. In the event of a conflict, keep
the current settings.

2 Completely replace the current settings with the imported settings.

This parameter is optional; if no value is specified, then the default value is 0.

Returned value

This function returns the following possible values:

Value Description

-2 Wrong parameter type.

-1 Invalid number of parameters.

0 Couldn't read security data.

1 File imported successfully.

Examples

ExportSecuritySystem("curr3ntPa55w0rd", "C:\security.txt", "1mp0rtPa55w0rd")

ExportSecuritySystem("curr3ntPa55w0rd", "C:\security.txt", "1mp0rtPa55w0rd", 2)

Parent topic: Security functions

Related reference
ExportSecuritySystem

Related information
Backing up the security system configuration

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Security functions >

RemoveUser
Removes a user from the system.

Function Group Execution Windows Embedded Thin Client

RemoveUser Security Synchronous Supported Supported Supported

Syntax

RemoveUser(strUserName)

strUserName

The name of the user to be removed.

Returned value

This function returns the following possible values:

Value Description

0 User removed successfully.

1 Invalid number of parameters.

2 Wrong parameter type.

3 User currently logged on does not have the rights to remove (i.e., user does not have Edit
Security System).

4 User cannot be removed.

5 Specified user does not exist.

6 Component-level failure.

7 Failed to save to configuration file.

8 The current Security Mode does not allow user to be removed.

Examples

Tag Name Expression

Tag RemoveUser("Bob")

Tag RemoveUser("Albert")

Note: You can use this function to remove only those users you created using the CreateUser()
function.

Parent topic: Security functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Security functions >

SetPassword
Use to specify a new user password.

Function Group Execution Windows Embedded Thin Client

SetPassword Security Synchronous Supported Supported Supported

Syntax

SetPassword(strUserName, optStrNewPassword)

strUserName

The name of the user.

optStrNewPassword

Optional The new password

Note: If you omit the this parameter, then the SetPassword function will launch an Enter a
new password dialog, so the user can enter a new password.

Returned value

This function returns the following possible values:

Value Description

-1 Internal error; contact Technical Support.

0 Password set successfully.

1 Invalid number of parameters.

2 Wrong parameter type.

3 Specified user does not exist.

4 Reentrant call not allowed.

5 User clicked Cancel.

6 Group does not exist.

7 Password too weak.

8 Invalid password.

9 Invalid user.

10 User currently logged on does not have the rights to set user password (i.e., user does not
have Edit Security System).

11 Server offline.

12 Error.

13 Confirm password does not match.

14 Would open dialog.

15 The current Security Mode does not allow user password to be changed.

Examples

Tag Name Expression

Tag SetPassword("Bob")

Tag SetPassword("Albert", "anemarie")

Parent topic: Security functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Security functions >

UnblockUser
Use to unblock a blocked user in the system.

Function Group Execution Windows Embedded Thin Client

UnblockUser Security Synchronous Supported Supported Supported

Syntax

UnblockUser(strUserName)

strUserName

The name of the user to unblock.

Returned value

This function returns the following possible values:

Value Description

0 User blocked successfully.

1 Invalid number of parameters.

2 Wrong parameter type.

3 Specified user does not exist.

4 User currently logged on does not have the rights to unblock (i.e., user does not have Edit
Security System).

5 The operation on the distributed security system failed.

6 Specified user cannot be blocked.

7 The current Security Mode does not allow user to be blocked/unblocked.

8 Internal error.

Examples

Tag Name Expression

Tag UnblockUser("Bob")

Tag UnblockUser("Albert")

Parent topic: Security functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Module Activity functions
These functions are used to manage a project's various runtime modules — such as background
tasks, the data server, and the project viewer — as well as those modules' interactions with the
operating system.

AppActivate
AppActivate is a built-in scripting function that activates (i.e., brings to the front) another
application window that is already open.

AppIsRunning
AppIsRunning is a built-in scripting function that verifies another application window is open and
running.

AppPostMessage
AppPostMessage is a built-in scripting function that sends a Windows system message to
another application window.

AppSendKeys
Sends keyboard commands to the active application.

CleanReadQueue
Removes all reading messages from the communications module.

CloseSplashWindow
Closes the IWS splash screen.

DisableMath
DisableMath is a built-in scripting function that pauses the execution of all Math worksheets.

EnableMath
EnableMath is a built-in scripting function that resumes the execution of all Math worksheets.

EndTask
Stops the IWS module that is currently running.

ExitWindows
Exits the Windows operating system in a specified manner.

IsScreenOpen
Verifies that a project screen is open.

IsTaskRunning
Verifies that a background task is running.

IsViewerInFocus
Verifies that the project viewer (Viewer.exe) is in focus on the display.

KeyPad
Displays a Virtual Keyboard to prompt the runtime user to enter a tag value.

LogOff
This function logs off the current user and then logs on the default user (typically "guest").

LogOn
This function either logs on a specified user or displays a Log On dialog.

Math
Executes the specified Math worksheet.

PostKey
Posts key codes to the currently displayed project screen.

Recipe
Executes the specified Recipe worksheet.

Report
Executes the specified Report worksheet and sends the output to hard disk, printer, or PDF.

RunGlobalProcedureOnServer
Runs a function or sub-routine, as declared in the Global Procedures interface. The procedure is
run on the server, but it can be called by any local or remote client.

RunVBScript
Executes a statement in VBScript language.

SecureViewerReload
SecureViewerReload is a built-in scripting function that closes the Secure Viewer program and
then reloads it with a new configuration file.

SendKeyObject
Sends key event codes to objects in the currently displayed project screen. You can use this
function to trigger Command animations on these objects.

SetAppPath
Sets the new file path for the project folder. After this function is executed, IWS will look for all
of the project files (i.e.,screens, alarms, trends, database, events) in this folder.

SetViewerInFocus
SetViewerInFocus is a built-in scripting function that moves the project viewer in front of all
other open windows and then maximizes it to fill the display.

SetViewerPos

Sets the height, width, and position of the project viewer or thin client.

ShutDown
Shuts down all of the active project modules.

StartTask
Starts a project module that is not currently running.

ViewerPostMessage
Posts a Windows System Message to the specified project screen.

Wait
Pauses the project for a specified number of milliseconds.

WinExec
WinExec is a built-in scripting function that executes a Windows command as if it was entered
at the command prompt.

WinExecIsRunning
Indicates whether a program started by the WinExec function is still running.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

AppActivate
AppActivate is a built-in scripting function that activates (i.e., brings to the front) another application
window that is already open.

Function Group Execution Windows Embedded Thin Client

AppActivate Module Activity Asynchronous Supported Supported Supported

Syntax

strAppTitle

The full title (as shown in the title bar) of the application window.

optNumActiv

Controls how the specified window is to be activated:

Value Command Description

0 SW_HIDE Hides the currently active window and then activates the
specified window.

1 SW_SHOWNORMAL Activates and displays the specified window. If the window is
minimized or maximized, then it is restored to its original size
and position.

You should use this command when displaying a window for the
first time.

2 SW_SHOWMINIMIZED Activates the specified window and then minimizes it.

3 SW_SHOWMAXIMIZED Activates the specified window and then maximizes it.

4 SW_SHOWNOACTIVATE Displays the specified window, but does not activate it. If the
window is minimized or maximized, then it is restored to its
original size and position.

5 SW_SHOW Activates and displays the specified window in its current size
and position. This is similar to SW_SHOWNORMAL except that if the
window is minimized or maximized, then it remains in that
state.

6 SW_MINIMIZE Minimizes the specified window and then activates the next
open window.

7 SW_SHOWMINNOACTIVATE Displays the specified window as a minimized window, but does
not activate it.

8 SW_SHOWNA Displays the specified window in its current size and position,
but does not activate it. This is similar to SW_SHOWNOACTIVATE
except that if the window is minimized or maximized, then it
remains in that state.

9 SW_RESTORE Activates and displays the specified window. If the window is
minimized or maximized, then it is restored to its original size
and position.

You should use this command when restoring a minimized
window.

This is an optional parameter. If no value is specified, then the default command is SW_RESTORE.

optNumTimeout

The timeout period (in milliseconds) for the function to be successfully executed. If, for
whatever reason, the function is not executed in this period, then it is aborted.

This is an optional parameter. If no value is specified, then the default timeout is five seconds
(or 5000 milliseconds).

Returned value

This function will return one of the following values:

Value Description

0 ERROR: The specified application window was not activated or otherwise did not respond
within the timeout period.

1 SUCCESS: The specified application window was successfully activated.

Notes

AppActivate is similar to the function ShowWindow in the Microsoft Windows API, and it allows many
of the same options. For more information, please refer to the Windows API documentation.

Examples

Show the Microsoft Word document named test.doc:

AppActivate("test.doc — Microsoft Word", 5)

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

AppIsRunning
AppIsRunning is a built-in scripting function that verifies another application window is open and
running.

Function Group Execution Windows Embedded Thin Client

AppIsRunning Module Activity Synchronous Supported Supported Supported

Syntax

strAppTitle

The full title (as shown in the title bar) of the application window.

optNumTimeout

The timeout period (in milliseconds) for the function to be successfully executed. If, for
whatever reason, the function is not executed in this period, then it is aborted.

This is an optional parameter. If no value is specified, then the default timeout is five seconds
(or 5000 milliseconds).

Returned value

This function will return one of the following values:

Value Description

0 ERROR: The specified application window is not open or otherwise did not respond within
the timeout period.

1 SUCCESS: The specified application window is open and running.

Notes

AppIsRunning is similar to the function IsWindow in the Microsoft Windows API. For more
information, please refer to the Windows API documentation.

Examples

Verify the Microsoft Word document named test.doc is open and running:

AppIsRunning("test.doc — Microsoft Word")

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

AppPostMessage
AppPostMessage is a built-in scripting function that sends a Windows system message to another
application window.

Function Group Execution Windows Embedded Thin Client

AppPostMessage Module Activity Synchronous Supported Supported Supported

Syntax

strAppTitle

The full title (as shown in the title bar) of the application window.

strMessage

The name or code of the system message.

Note: The CLOSE, MINIMIZE, MAXIMIZE and RESTORE messages can be given as string values
enclosed in quotes. All other message codes must be given as numeric values.

numWParam

Additional message-specific information.

numLParam

Additional message-specific information.

optNumTimeout

The timeout period (in milliseconds) for the function to be successfully executed. If, for
whatever reason, the function is not executed in this period, then it is aborted.

This is an optional parameter. If no value is specified, then the default timeout is five seconds
(or 5000 milliseconds).

Returned value

This function will return one of the following values:

Value Description

0 ERROR: The system message was not sent, or the specified application window did not
respond, within the timeout period.

1 SUCCESS: The system message was successfully sent.

Notes

AppPostMessage is similar to the function PostMessage in the Microsoft Windows API, and it allows
many of the same options. For more information, including a list of available system messages,
please refer to the Windows API documentation.

Examples

Close the Calculator application:

AppPostMessage("Calculator", "CLOSE", 3, 1)

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

AppSendKeys
Sends keyboard commands to the active application.

Function Group Execution Windows Embedded Thin Client

AppSendKeys Module Activity Synchronous Supported Not supported Supported

Syntax

AppSendKeys(strKeys1, strKeys2, … , strKeysN)

strKeys (1-N)

String tags containing the keyboard commands to be used.

Returned value

No returned values.

Examples

Tag Name Expression

 AppSendKeys("S", "t", "u", "d", "i", "o", "<ENTER>"

)

 AppSendKeys("<Alt>F")

Note: You can specify <ALT>, <CTRL>, or <SHIFT> in the text to send a code equal to the Alt, Ctrl,
or Shift keyboard commands. To send the < character, specify << in the text.

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

CleanReadQueue
Removes all reading messages from the communications module.

Function Group Execution Windows Embedded Thin Client

CleanReadQueue Module Activity Synchronous Supported Not supported Executed on Server

Syntax

This function takes no parameters.

Returned value

No returned values.

Examples

Tag Name Expression

 CleanReadQueue()

Note: You should not use this function in new projects, but it is still valid for projects built using
earlier versions of IWS.

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

CloseSplashWindow
Closes the IWS splash screen.

Function Group Execution Windows Embedded Thin Client

CloseSplashWindow Module Activity Synchronous Supported Not supported Executed on Server

Syntax

This function takes no parameters.

Returned value

No returned values.

Examples

Tag Name Expression

 CloseSplashWindow()

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

DisableMath
DisableMath is a built-in scripting function that pauses the execution of all Math worksheets.

Function Group Execution Windows Embedded Thin Client

DisableMath Module Activity Asynchronous Supported Supported Executed on Server

Syntax

This function takes no parameters.

Returned value

There are no returned values for this function.

Notes

To resume the execution of Math worksheets, call the EnableMath function.

Examples

Tag Name Expression

 DisableMath()

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

EnableMath
EnableMath is a built-in scripting function that resumes the execution of all Math worksheets.

Function Group Execution Windows Embedded Thin Client

EnableMath Module Activity Asynchronous Supported Supported Executed on Server

Syntax

This function takes no parameters.

Returned value

There are no returned values for this function.

Notes

In most cases, execution was paused by calling the DisableMath function.

Examples

Tag Name Expression

 EnableMath()

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

EndTask
Stops the IWS module that is currently running.

Function Group Execution Windows Embedded Thin Client

EndTask Module Activity Asynchronous Supported Supported Executed on Server

Syntax

strTask

The name of the task to stop (must be one of the following):

BGTASK Background Tasks

VIEWER Viewer

DBSPY Database Spy

LOGWIN LogWin

DRIVERDriverName Driver

UNIDDECL DDE client

UNINDDE DDE server

UNIODBC ODBC

TCPSERVER TCP/IP Server

TCPCLIENT TCP/IP Client

OPCCLIENT OPC

Returned value

No returned values.

Examples

Tag Name Expression

 EndTask("Viewer")

Note: To close a driver, you must use the following syntax:

EndTask("DriverDriverName")

Where DriverName is the name of the driver's .dll file. For example:

EndTask("DriverMODBU")

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

ExitWindows
Exits the Windows operating system in a specified manner.

Function Group Execution Windows Embedded Thin Client

ExitWindows Module Activity Asynchronous Supported Not supported Supported

Syntax

numExitCode

A numeric code specifying how Windows should be exited:

Value Description

0 Restart

1 Log off

2 Shut down

Returned value

No returned values.

Examples

Tag Name Expression

 ExitWindows(1)

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

IsScreenOpen
Verifies that a project screen is open.

Function Group Execution Windows Embedded Thin Client

IsScreenOpen Module Activity Asynchronous Supported Supported Not supported

Note: This function cannot be used with Tasks or in the Global Procedures script.

Syntax

strScreen

The name of the project screen to be verified.

optNumID

The specific instance number of the screen. (This number is assigned when the screen is
opened with the Open function.)

This is an optional parameter. If no value is specified, then the default ID is 0.

Returned value

0 Screen is not
open.

1 Screen is open.

Examples

Tag Name Expression

Tag IsScreenOpen("main") // Is "main" screen open?

Tag IsScreenOpen("main", 10) // Is "main" screen with ID 10
open?

Parent topic: Module Activity functions

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

IsTaskRunning
Verifies that a background task is running.

Function Group Execution Windows Embedded Thin Client

IsTaskRunning Module Activity Synchronous Supported Supported Executed on Server

Syntax

strTask

The name of the task to be verified.

Returned value

0 Task is not
running.

1 Task is running.

Examples

Is the project viewer (Viewer.exe) running?

IsTaskRunning("Viewer")

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

IsViewerInFocus
Verifies that the project viewer (Viewer.exe) is in focus on the display.

Function Group Execution Windows Embedded Thin Client

IsViewerInFocus Module Activity Synchronous Supported Not supported Not supported

Syntax

This function takes no parameters.

Returned value

0 Viewer is not in
focus.

1 Viewer is in focus.

Examples

IsViewerInFocus()

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

KeyPad
Displays a Virtual Keyboard to prompt the runtime user to enter a tag value.

Function Group Execution Windows Embedded Thin Client

KeyPad Module Activity Asynchronous Supported Supported Supported

Syntax

KeyPad("strTagName", optStrKeyboardName, optNumIsPassword, optStrHint, optNumMin, optNumMax)

strTagName

The name of the tag to which the Virtual Keyboard will write.

This name must be enclosed in quotes; if it is not, then the project will try to get the contents
of the tag.

optStrKeyboardName

Type of Virtual Keyboard that will be launched (e.g., AlphaNumeric, EnhKeypad, or Keypad). If this
parameter is omitted, then the default Virtual Keyboard will be launched.

optNumIsPassword

If this parameter is set with any value different from 0 (zero), the characters typed in the
Virtual Keyboard will appear as asterisks ("*"). This option is useful when the user is typing a
password.

optStrHint

The value specified for this parameter is displayed in the title bar of the Virtual Keyboard
window, if the Show Hint option is selected in the project settings.

optNumMin, optNumMax

Minimum and maximum numeric values for the Tag when using the Keypad keyboard type, if
the Show MIN/MAX fields option is selected in the project settings. (These values are
ignored for all other keyboard types.) These parameters are optional, but you must specify
both to have them implemented. If you specify only one parameter — for example, Min but not
Max — then it will be ignored.

Returned value

Error Description

0 Success

1 Error

2 Tag does not exist

3 Reentrant error, function is already executing

4 Invalid number of parameters

5 Internal error, contact Technical Support for more
information

Examples

Tag Name Expression

Tag KeyPad("tagA")

Tag KeyPad("tagA", "EnhKeypad")

Tag KeyPad("tagA", "EnhKeypad", 1)

Tag KeyPad("tagA", "EnhKeypad", 1, "My Input", 0, 100

)

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

LogOff
This function logs off the current user and then logs on the default user (typically "guest").

Function Group Execution Windows Embedded Thin Client

LogOff Module Activity Asynchronous Supported Supported Supported

Syntax

This function takes no parameters.

Returned value

This function returns the following possible values:

Value Description

0 Error.

1 Success.

Examples

LogOff()

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

LogOn
This function either logs on a specified user or displays a Log On dialog.

Function Group Execution Windows Embedded Thin Client

LogOn Module Activity Asynchronous Supported Supported Supported

Syntax

optStrUsername

The name of the user to log on.

optStrPassword

The specified user's password.

optStrUsername and optStrPassword are optional parameters. If they're not specified, then the
project will instead display a Log On dialog, to prompt the station's current operator — whoever it is
— to log on.

Returned value

This function returns the following possible values:

Value Description

0 Error (e.g., username or password is invalid) or cancellation.

1 Success.

Examples

Display a Log On dialog:

LogOn()

Log on username Albert with password EMC2:

LogOn("Albert", "EMC2")

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

Math
Executes the specified Math worksheet.

Function Group Execution Windows Embedded Thin Client

Math Module Activity Synchronous Supported Supported Executed on Server

Group Execution Windows PC Windows CE Thin Client

Module Activity Synchronous Supported Supported Not
supported

Syntax

Math(numWorksheet)

numWorksheet

The number of the math worksheet to be executed.

Returned value

No returned values.

Examples

Tag Name Expression

 Math(6)

CAUTION:

Running a Math worksheet from inside another module will pause that module until
the Math worksheet finishes. Consequently, use this function only when absolutely
necessary to avoid decreasing the performance of the other modules.

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

PostKey
Posts key codes to the currently displayed project screen.

Function Group Execution Windows Embedded Thin Client

PostKey Module Activity Synchronous Supported Supported Supported

Note: This function cannot be used with Tasks or in the Global Procedures script.

Syntax

PostKey(numKeydownOrKeyup, numwParam, numlParam)

numKeydownOrKeyup

Numerical tag containing a 0 (to indicate a KeyDown event) or a 1 (to indicate a KeyUp event).

numwParam

Numerical tag containing key code to be sent.

numlParam

Numerical tag containing message lParam.

Returned value

No returned values.

Examples

Tag Name Expression

 PostKey(0, 0x24, 0)

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

Recipe
Executes the specified Recipe worksheet.

Function Group Execution Windows Embedded Thin Client

Recipe Module Activity Synchronous Supported Supported Supported

Syntax

Recipe(strFunction)

strFunction

String tag specifing the operation to be performed and the Recipe worksheet to be used in the
[Operation]:[Recipe sheet] format.

Operations:

Save Saves data to a data file.

Load Loads data from a data file.

Delete Deletes a data file.

Init Initializes a data file with a value of 0 in all the
tags.

Returned value

0 No error

1 If the tag is numeric

2 Expression does not contain ":"

3 Previous command to the
invalid ":"

4 Task not found by the system

5 Disk error

Examples

Tag Name Expression

Tag Recipe("Save:Recipe1")

Tag Recipe("Load:Recipe5")

Note:

You must be running the Background Task to execute the recipe functions.

When this function is called on a Thin Client, the command is sent to the Server (via
TCP/IP) and the Recipe task on the Server executes the command. Therefore, be aware
that tags configured with a Scope of Local rather Server will still be updated on the
Server.

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

Report
Executes the specified Report worksheet and sends the output to hard disk, printer, or PDF.

Function Group Execution Windows Embedded Thin Client

Report Module Activity Synchronous Supported Supported Supported

Syntax

Report("strFunction" , optNumOrientation)

strFunction

String specifying the operation to perform and the Report worksheet to output, using the
syntax "Operation:Report worksheet", where…

Operation is either Disk (saves data file to hard disk), Prn (sends report to default printer), or

Pdf (generates a PDF file of the report); and

Report worksheet is the name of the Report worksheet file (*.rep) to output.

optNumOrientation

Set the paper orientation as follows: 0 (default) is Portrait, 1 is Landscape. This parameter is
ignored if the Operation is other than Prn.

Note: Some features of this function are not supported when running the project on a Windows
Embedded device: it cannot generate PDFs; it cannot change paper orientation using the
optNumOrientation parameter; and it does not support Report worksheets in RTF format.

Returned value

Value Description

0 Success

1 strFunction is configured with a numeric value (invalid)

2 strFunction does not contain ":" (invalid)

3 strFunction contains an invalid output type before the ":"

4 Background Task is not running (see Tip below)

Value Description

5 Disk error (e.g., disk full, read-only file cannot be overwritten, or
invalid path)

6 Specifed Report worksheet does not exist

Tip: The Background Task must be running in order to execute this function. Otherwise, the
operation will not be executed and the function will return the value 4 indicating error. For more
information, see Execution Tasks.

Examples

Tag Name Expression

 Report("Disk:Report1.rep")

 Report("Prn:Report2.rep", 0)

 Report("Prn:Report3.rep", 1)

 Report("Pdf:Report1.rep")

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

5 Disk error (e.g., disk full, read-only file cannot be overwritten, or
invalid path)

6 Specifed Report worksheet does not exist

Tip: The Background Task must be running in order to execute this function. Otherwise, the
operation will not be executed and the function will return the value 4 indicating error. For more
information, see Execution Tasks.

Examples

Tag Name Expression

 Report("Disk:Report1.rep")

 Report("Prn:Report2.rep", 0)

 Report("Prn:Report3.rep", 1)

 Report("Pdf:Report1.rep")

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

RunGlobalProcedureOnServer
Runs a function or sub-routine, as declared in the Global Procedures interface. The procedure is run
on the server, but it can be called by any local or remote client.

Function Group Execution Windows Embedded Thin Client

RunGlobalProcedureOnServer Module Activity Synchronous Supported Supported Supported

Syntax

RunGlobalProcedureOnServer(strNameProcedure, param1, param2, …)

strNameProcedure

The name of the function or sub-routine to be run.

param1, param2, …

Parameters that are passed to the procedure. Parameters must be passed as strings.

Returned value

This function returns whatever value is returned by the called procedure.

Examples

Given the following procedure that is declared in the Global Procedures interface:

Function AddMe(intNumber)
 If intNumber >= 6 Then
 AddMe = 0
 Else
 AddMe = intNumber + 2
 End If
End Function

Tag Name Expression

TagResult RunGlobalProcedureOnServer("AddMe", "2") // Executes the procedure and returns a
value of 4.

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

RunVBScript
Executes a statement in VBScript language.

Function Group Execution Windows Embedded Thin Client

RunVBScript Module Activity Synchronous Supported Supported Supported

Syntax

RunVBScript (strScript, "optTagReturnError")

strScript

Script statement that must be executed by the function.

optTagReturnError

Name of the tag that will receive the error (if any) generated by the statement (e.g., "Division
by zero"). The tag name must be configured between double-quotes and it must be a String
tag.

Returned value

0 Error

1 Success

Examples

Tag Name Expression

TagResult RunVBScript("MsgBox(Time)") // Executes the MsgBox function from VBScript and
displays the current time.

 RunVBScript(TagStatement) // Executes the statement configured in the value of
the string tag TagStatement.

 RunVBScript("$TagC=$TagA/$TagB", "TagError") // Writes in TagC the result of TagA
divided by TagB. The error generated by the operation (if any) is written to the
string tag TagError (e.g., "Division by zero").

Tip: This function is useful to execute VBScript statements from interfaces that support the
built-in language only (e.g., Scheduler groups). You can also call VBSCript functions created in
the Global Procedures.

Note: The runtime station must support the VBScript statements configured in this function in
order to execute them.

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

SecureViewerReload
SecureViewerReload is a built-in scripting function that closes the Secure Viewer program and then
reloads it with a new configuration file.
SecureViewerReload
Module Activity
Synchronous
Not Supported
Not Supported
Secure Viewer only

Function Group Execution Windows Embedded Thin Client

Syntax

strFileName

The file path of an INI file (*.ini) that describes the new configuration. (If the file is located in
the same folder as Viewer.exe , then only the file name is needed.) The file should be

structured the same and contain all of the same settings as the default configuration file
(Viewer.ini).

This parameter must specify either the name of a String tag or a text string enclosed in quotes.

Returned value

This function does not return any value.

Examples

SecureViewerReload(configFile1)

SecureViewerReload("C:\Program Files\Secure Viewer\Bin\Config1.ini")

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

SendKeyObject
Sends key event codes to objects in the currently displayed project screen. You can use this function
to trigger Command animations on these objects.

Function Group Execution Windows Embedded Thin Client

SendKeyObject Module Activity Synchronous Supported Not supported Not supported

Note: This function cannot be used with Tasks or in the Global Procedures script.

Syntax

SendKeyObject(numEvent, strMainKey, numShift, numCtrl, numAlt, strTargetScreen, optNumID)

numEvent

The event code for "On Down", "On While" or "On Up" of the Command animation, as follows:

0 On Down

1 While Down

2 On Up

Note: The "On While" event requires special attention. Each time the SendKeyObject()
function is executed, IWS executes the expressions configured for the "On While" sheet
(from the object's Command animation) just once.

strMainKey

The key to be sent to the screen. The following values are accepted:

"F1" … "F20"

"+ "

"-"

"/"

"*"

"HOME"

"END"

"INSERT"

"DELETE"

"DOWN"

"UP"

"LEFT"

"RIGHT"

"PAGEUP"

"PAGEDOWN"

"SPACE"

"RETURN"

"BACKSPACE"

"ESCAPE"

"A" … "Z"

numShift

A numeric value or tag; whether to include Shift with the key (0 is no, 1 is yes).

numCtrl

A numeric value or tag; whether to include Ctrl with the key (0 is no, 1 is yes).

numAlt

A numeric value or tag; whether to include Alt with the key (0 is no, 1 is yes).

strTargetScreen

The name of the screen to receive the key event code.

Note: The numShift, numCtrl, numAlt and strTargetScreen parameters are optional. However,
if you configure one of them, then you must configure the others as well.

optNumID

The specific instance number of the screen. (The ID is assigned when the screen is opened with
the Open() function.) This is an optional parameter; the default ID is 0.

Returned value

This function returns no values.

Examples

Parent topic: Module Activity functions

Tag Name Expression

 SendKeyObject(0, "R", 1, 0, 0, "main", 10) // Sends Shift-R to the "main"
screen with ID 10.

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

SetAppPath
Sets the new file path for the project folder. After this function is executed, IWS will look for all of the
project files (i.e.,screens, alarms, trends, database, events) in this folder.

Function Group Execution Windows Embedded Thin Client

SetAppPath Module Activity Synchronous Supported Not supported Executed on Server

Syntax

strPath

The file path.

Returned value

0 Failed to set path.

1 Succeeded in setting
path

Examples

Tag Name Expression

 SetAppPath("C:\Studio\")

Note: If the computer is on a network, you can use the //IP address or host name/Path

syntax to define a location on another node of the network.

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

SetViewerInFocus
SetViewerInFocus is a built-in scripting function that moves the project viewer in front of all other
open windows and then maximizes it to fill the display.

Function Group Execution Windows Embedded Thin Client

SetViewerInFocus Module Activity Synchronous Supported Not Supported Supported

Syntax

There are no parameters.

Returned value

This function does not return any value.

Notes

Beginning with Windows XP, system security features prevent program windows from moving
themselves in front of others without user input. As such, when you call this function, the Viewer
program will request the user's attention by blinking in the Windows taskbar. (Some anti-virus
software may also flag this as suspicious behavior.) Only when the user selects the program will the
program window move to the front.

To work around this, you must call SetViewerInFocus at least once in your project's Startup Script.
Allow twenty seconds more for your project to finish starting up, and then after that, any additional
calls of this function should work normally.

Examples

SetViewerInFocus()

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

SetViewerPos
Sets the height, width, and position of the project viewer or thin client.

Function Group Execution Windows Embedded Thin Client

SetViewerPos Module Activity Synchronous Supported Not supported Supported

Syntax

SetViewerPos(numLeft, numTop, optNumWidth, optNumHeight)

numLeft

A numeric flag that specifies the left-side position of the Viewer in pixels.

numTop

A numeric flag that specifies the top-side position of the Viewer in pixels.

optNumWidth

Optional numeric tag specifying the Viewer width in pixels.

optNumHeight

Optional numeric tag containing the Viewer height in pixels.

Returned value

0 Error

1 Success

Examples

Tag Name Expression

Tag SetViewerPos(50, 50, 640, 480)

Note: When you omit the optional parameters (numWidth and numHeight), IWS gets size of the
Viewer window from the project resolution.

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

ShutDown
Shuts down all of the active project modules.

Function Group Execution Windows Embedded Thin Client

ShutDown Module Activity Asynchronous Supported Supported Not supported

Syntax

This function takes no parameters.

Returned value

No returned values.

Notes

This function does not close the development environment, Database Spy, or LogWin.

Examples

Tag Name Expression

 ShutDown()

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

StartTask
Starts a project module that is not currently running.

Function Group Execution Windows Embedded Thin Client

StartTask Module Activity Asynchronous Supported Supported Executed on Server

Syntax

strTask

The name of the task to start (must be one of the following tasks):

Value Description

BGTask Background Tasks

Viewer Viewer

DBSpy Database Spy

LogWin LogWin

Driver Driver

UniDDECl DDE Client

UniNDDE DDE Server

UniODBC ODBC

TCPServer TCP/IP Server

TCPClient TCP/IP Client

OPCClient OPC Client

Returned value

No returned values.

Examples

Tag Name Expression

 StartTask("Viewer")

Note: The StartTask("Driver") function starts all drivers configured in the project. To start a
specific driver, you must use the WinExec() function.

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

ViewerPostMessage
Posts a Windows System Message to the specified project screen.

Function Group Execution Windows Embedded Thin Client

ViewerPostMessage Module Activity Asynchronous Supported Supported Supported

Note: This function cannot be used with Tasks or in the Global Procedures script.

Syntax

ViewerPostMessage(strScrTitle, numMessage, numwParam, numlParam, optNumID)

strScrTitle

The name of the screen to which the message will be posted.

numMessage

The number of the Windows System Message to be posted.

numwParam

A numeric value or tag; additional message-specific information, which is passed to wParam of
the Windows System Message.

numlParam

A numeric value or tag; additional message-specific information, which is passed to lParam of
the Windows System Message.

optNumID

The specific instance number of the screen. (The ID is assigned when the screen is opened with
the Open() function.) This is an optional parameter; the default ID is 0.

Returned value

This function returns no values.

Notes

This function emulates the PostMessage function in Microsoft Windows. For more information,

including a complete list of available Windows System Messages, please consult Microsoft Developers
Network.

Examples

Tag Name Expression

 ViewerPostMessage("main", 16, 3, 1, 10)

// Sends message 16 to the "main" screen with ID
10.

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

WinExec
WinExec is a built-in scripting function that executes a Windows command as if it was entered at the
command prompt.

Function Group Execution Windows Embedded Thin Client

WinExec Module Activity Asynchronous Supported Supported Supported

Syntax

strCommand

The command to be executed.

optNumState

The initial state of the program (if any) that is run by the command:

Value Description

0 Hides the program and gives control to another one.

1 Activates and displays the program.

2 Activates the program and displays it as an icon.

3 Activates the program and maximizes it.

4 Shows the program at its recent size. The program is still active.

7 Shows the program as an icon. The program is still active.

This is an optional parameter. If no value is specified, then the default value is 1.

optNumSync

A setting that specifies whether the command will execute synchronously or asynchronously:

Value Description

0 Execute asynchronously; the function will return immediately.

1 Execute synchronously; the function will return when the command has finished
executing.

This is an optional parameter. If no value is specified, then the default value is 0.

Tip: To verify that a command executed asynchronously has finished, use the
optTagReturnOrHandle parameter below and the WinExecIsRunning function.

optTagReturnOrHandle

The name of a project tag (enclosed in quotes) that will store feedback about the execution of
the command:

If it is executed asynchronously, then the tag will receive a handle that can used with the
WinExecIsRunning function to determine whether the command is still running.

If it is executed synchronously, then the tag will receive the command's exit code. (This is
separate from the function's own returned value.)

This is an optional parameter, but given its nature, there is no default value.

Returned value

This function returns the following possible values:

Value Description

0 Command was not executed successfully.

1 Command was executed successfully.

Please note that this indicates only whether the command started its execution successfully,
particularly if it is executed asynchronously. It does not indicate when or how the command finished
its execution.

Examples

Start Notepad, and then immediately continue to the next line of the script:

WinExec("C:\Windows\System32\notepad.exe", 4)

Start MS Paint, and then immediately continue to the next line of the script:

WinExec("C:\Windows\System32\mspaint.exe")

Call a batch file, execute it in hidden mode, wait until it is finished before continuing, and then store
the exit code in the tag return:

WinExec("CMD /C call C:\Temp\MyBatch.bat", 0, 1, "return")

Call a VBScript file, execute it in hidden mode, and then immediately continue, storing the handle in
the tag handle:

WinExec("CMD /C call C:\Temp\MyScript.vbs", 0, 0, "handle")

Note: Calling VBScript files is not supported on Windows Embedded target systems.

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Module Activity functions >

WinExecIsRunning
Indicates whether a program started by the WinExec function is still running.

Function Group Execution Windows Embedded Thin Client

WinExecIsRunning Module Activity Synchronous Supported Supported Supported

Syntax

WinExecIsrunning(numHandle, "optTagReturn")

numHandle

Handle number stored in the tag in the optStrReturnorHandle parameter of the WinExec
function.

"optTagReturn"

Tag that receives the code returned by the program executed by the WinExec function.

Returned value

0 Successful execution.

-1 Invalid parameter(s).

-2 Failed to open file. Disk is write protected or file name
is invalid.

Examples

Tag Name Expression

Tag WinExecIsRunning(numHandle)

Tag WinExecIsRunning(numHandle, "return")

Parent topic: Module Activity functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

File functions
These functions are used to read from, write to, print, move, and delete external files.

DeleteOlderFiles
Deletes files that are older than a date matching the configured mask from the configured path.

DirCreate
Creates the specified directory.

DirDelete
Deletes the specified directory.

DirLength
Returns the size of a specific directory.

DirRename
Renames directories.

FileCopy
Copies the file(s) configured in the strSourceFile parameter to the path/file configured in the
strTargetFile parameter.

FileDelete
Deletes the specified file.

FileLength
Gets the size of a file.

FileRename
FileRename is a built-in scripting function that renames a specified file.

FileWrite
Writes a string to a specified ASCII or Unicode file. If the file doesn't exist, then the function will
create the file.

FindFile
FindFile is a built-in scripting function that searches for all files that match a given search string.

FindPath
Verifies whether a directory exists.

GetFileAttributes
Reads the attributes of a specified file.

GetFileTime
Reads the time and date the file was last modified.

GetHstInfo
Returns the Start Time, End Time, and Duration of the specified history (*.HST) file.

GetLine
Gets a specified line or search string from a text file and then stores the line in a String tag.

HST2TXT
Export information from the Trend history file(s) in proprietary binary format (*.hst) to a plain
text (*.txt) or comma-delimited (*csv) file.

HST2TXTIsRunning
Returns the status of the HST2TXT function.

LookupContains
This function verifies that an external file contains the specified keyword in its key column.

LookupGet
This function gets a value from an external file by cross-referencing from a specified keyword.

LookupLoad
This function loads an external file — typically, a delimited text file — that can be used to look
up table values. One column of the file is designated as the keywords column, and another
column is designated as the values column.

PDFCreate
Creates a PDF file from the specified source file.

Print
Prints a text file.

RDFileN
Launches a File Browser window allowing you to select a file.

WebGetFile
Downloads a file from a specified address and then saves it locally.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

DeleteOlderFiles
Deletes files that are older than a date matching the configured mask from the configured path.

Function Group Execution Windows Embedded Thin Client

DeleteOlderFiles File Synchronous Supported Supported Supported

Syntax

DeleteOlderFiles(strPath, strMask, strDate)

strPath

The path to the files that will be deleted.

strMask

The mask of the files to be deleted.

strDate

The cut-off date. Any files older than this date will be deleted.

Note: This parameter must be configured using the date format specified for the project
(such as MDY or DMY) with the appropriate separator (/, :, ., and so forth.).

Returned value

Returns the number of files deleted.

Examples

Tag Name Expression

Tag DeleteOlderFiles("C:\Studio\Project\HST\", "*.hst",

"04/12/2002")

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

DirCreate
Creates the specified directory.

Function Group Execution Windows Embedded Thin Client

DirCreate File Synchronous Supported Supported Executed on Server

Syntax

DirCreate(strDirectory, optBooFullPath)

strDirectory

The name and file path of the directory to create.

optBooEmptyOnly

Optional flag. If omitted or if this parameter has the value 0, the directory is created only if all
previous directories exist. If this parameter has the value different from 0, the full path
specified in the strDirectory parameter is created.

Returned value

-1 Invalid parameters

0 Failed to create the directory (e.g., Drive does
not exist.)

1 Directory created successfully.

Examples

Tag Name Expression

Tag DirCreate("C:\Studio\Temp") // The Temp folder is created in the C:\Studio path
(only if the C:\Studio path already exists).

Tag DirCreate("C:\Studio\Temp",1) // The C:\Studio\Temp full path is created.

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

DirDelete
Deletes the specified directory.

Function Group Execution Windows Embedded Thin Client

DirDelete File Synchronous Supported Supported Executed on Server

Syntax

DirDelete(strDirectory, optBooEmptyOnly)

strDirectory

The name and file path of the directory to delete.

Tip: This parameter supports wildcards (* and ?).

optBooEmptyOnly

Optional flag. If this parameter has a value of 1, then the directory is deleted only if it is
empty. By default — that is, if the parameter is omitted or has a value of 0 — the directory is
deleted whether it is empty or not.

Returned value

Value Description

-2 Attempted to delete a non-empty directory when this action is not allowed (i.e.,
optBooEmptyOnly does not equal 0).

-1 Invalid parameters.

0 Failed to delete the directory (i.e., directory does not exist).

1 Directory deleted successfully.

Examples

Tag Name Expression

Tag DirDelete("C:\Studio\Temp") // The Temp folder from C:\Studio is deleted.

Tag DirDelete("C:\Studio\Temp", 1) // The Temp folder from C:\Studio is deleted
only if it is empty.

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

DirLength
Returns the size of a specific directory.

Function Group Execution Windows Embedded Thin Client

DirLength File Synchronous Supported Supported Executed on Server

Description

Returns the size of a specific directory.

Syntax

strPath

The path of the directory that will be checked.

Returned value

- 2 Directory does not exist.

- 1 Invalid parameters

n Size (in bytes) of the files and sub-folders in the
directory

Notes

CAUTION:

This function executes synchronously, which means that the project pauses while it
waits for the function to return. As such, if the specified directory is unusually large,
then the project could be paused for several seconds while size of the directory is
calculated.

Examples

Tag Name Expression

Tag DirLength("C:\Studio") // Returns the size (in bytes) of all files and sub-folders
from C:\Studio.

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

DirRename
Renames directories.

Function Group Execution Windows Embedded Thin Client

DirRename File Synchronous Supported Supported Executed on Server

Syntax

strPath

The path of the directory that will be renamed.

Tip: This function supports wildcard (* and ?).

strDirectoryFrom

The original name of the directory that will be renamed.

strDirectoryTo

The target name used to rename the original directory.

Returned value

- 1 Invalid parameters

0 Failed to rename the directory (e.g., strDirectoryFrom does
not exist.)

1 Directory renamed successfully.

Examples

Tag Name Expression

Tag DirRename("C:\Studio\","Temp", "New") // C:\Studio\Temp is renamed to
C:\Studio\New.

Parent topic: File functions

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

FileCopy
Copies the file(s) configured in the strSourceFile parameter to the path/file configured in the
strTargetFile parameter.

Function Group Execution Windows Embedded Thin Client

FileCopy File Synchronous Supported Supported Supported

Syntax

strSourceFile

The file path and name the file(s) to be copied.

Tip: This function supports wildcards (* and ?).

strTargetFile

The file path where the file(s) are to be copied.

optNumTimeOut

Numerical tag containing an integer to set the timeout time for the operation.

If you use the optNumTimeOut parameter, the function returns the value -1 after the
specified timeout time and the scan continues. Though the function returns a -1, it does not
cancel the copying procedure. Instead, it creates an internal process to finish the copying
procedure.

Returned value

- 1 Timeout time expired.

0 Failed to copy file(s).

1 File(s) copied
successfully.

Notes

CAUTION:

This function executes synchronously, which means that the project pauses while it
waits for the function to return. As such, if the function is called to copy files from or
to another volume across a slow network, then the project could be paused for long
time.

Examples

Tag Name Expression

Tag FileCopy("C:\Studio\Project\HST*.hst", "C:\Temp\Hst\", 1000)

Tag FileCopy("C:\Studio\Project opert.txt", "C:\Temp\Tuesday_Report.txt",

500)

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

FileDelete
Deletes the specified file.

Function Group Execution Windows Embedded Thin Client

FileDelete File Synchronous Supported Supported Supported

Syntax

strFile

The file path and name of the file to delete.

Returned value

0 Failed to delete file

Real Returns the size of the file
deleted

Examples

Tag Name Expression

Tag FileDelete("C:\Studio\Readme.txt")

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

FileLength
Gets the size of a file.

Function Group Execution Windows Embedded Thin Client

FileLength File Synchronous Supported Supported Supported

Syntax

strFile

The file path and name of the file.

Returned value

Returns the size of the specified file in bytes.

Examples

Tag Name Expression

Tag FileLength("C:\Readme.txt")

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

FileRename
FileRename is a built-in scripting function that renames a specified file.

Function Group Execution Windows Embedded Thin Client

FileRename File Synchronous Supported Supported Supported

Syntax

strOldName

The path and old name of the file.

strNewName

The path and new name of the file.

Returned value

This function does not return any value.

Examples

FileRename("C:\readme.txt", "C:\readthis.txt")

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

FileWrite
Writes a string to a specified ASCII or Unicode file. If the file doesn't exist, then the function will
create the file.

Function Group Execution Windows Embedded Thin Client

FileWrite File Synchronous Supported Supported Supported

Description

Writes a string to a specified ASCII or Unicode file. If the file doesn't exist, then the function will
create the file.

Syntax

strFileName

A string value enclosed in quotes, or the name of a String tag that contains the value,
specifying the file name.

By default, the file will be written in your project folder (i.e., the folder that contains the file
project_name.APP). To write in another folder, specify the complete file path.

strWriteText

A string value enclosed in quotes, or the name of a String tag that contains the value,
specifying the text to be written to the file.

optNumAppend

A numerical value, or the name of an Integer tag that contains the value, specifying the text
encoding of the file:

Value Description

0 Creates a new ASCII file with the given file name. If the file already exists,
then it is overwritten.

1 Appends to an existing ASCII file with the given file name. If the file doesn't
exist, then a new file is created.

2 Creates a new Unicode (UTF-16LE) file with the given file name. If the file
already exists, then it is overwritten.

This is an optional parameter. If any value other than 0 through 3 is given, or if the parameter
is not used, then 0 is the default.

Value Description

3 Appends to an existing Unicode file with the given file name. If the file
doesn't exist, then a new file is created.

This is an optional parameter. If any value other than 0 through 3 is given, or if the parameter
is not used, then 0 is the default.

Returned value

0 Successful execution.

- 1 Invalid parameter(s).

- 2 Failed to open file. Disk is write protected or file name is
invalid.

Examples

Tag Name Expression

Tag FileWrite("c: est.txt", "This is a test")

Tag FileWrite(strFileName, strWriteText)

Tag FileWrite(strFileName, strWriteText, 1)

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

3 Appends to an existing Unicode file with the given file name. If the file
doesn't exist, then a new file is created.

This is an optional parameter. If any value other than 0 through 3 is given, or if the parameter
is not used, then 0 is the default.

Returned value

0 Successful execution.

- 1 Invalid parameter(s).

- 2 Failed to open file. Disk is write protected or file name is
invalid.

Examples

Tag Name Expression

Tag FileWrite("c: est.txt", "This is a test")

Tag FileWrite(strFileName, strWriteText)

Tag FileWrite(strFileName, strWriteText, 1)

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

FindFile
FindFile is a built-in scripting function that searches for all files that match a given search string.

Function Group Execution Windows Embedded Thin Client

FindFile File Synchronous Supported Supported Supported

Syntax

strFile

The name of the file(s) to search for.

You may use wildcards (*) to find multiple files. For example, *.gif to find all GIF files or
log*.txt to find all log files in a sequence (e.g., log001.txt, log002.txt, log003.txt).

By default, the function only searches the project folder, but you may specify a file path (either
relative or absolute) to search elsewhere. For example, if strFile is defined as…

\\volume name or IP address \Logs\log*.txt

…then the function will search the Logs directory on the specified network volume.

optTagFilesFound

An array (of String type) that will receive the names of the matching files. The array name
must be enclosed in quotes; if it is not, then the function will try to get the contents of the
array.

This is an optional parameter. If no value is specified, then the file names will not be saved and
the function will only return the number of files found. For more information, see "Returned
value" below.

Note: The array will receive only the file names and not their paths, even if you define
strFile to search outside the default directory.

optNumTimeout

The timeout period (in milliseconds) for the function to be successfully executed.

This is an optional parameter. If no value is specified, then the project will continue searching
until it has completely searched the specified directory.

Returned value

This function will return one of the following values:

Value Description

-1 Function timed out.

0 No matching files found.

n Number of matching files found.

Notes

This function may be called by any project client, but it is always executed on the project server. By
default, it only searches the server's project folder, and if strFile includes a relative file path, then it
must be relative to the that same directory.

Furthermore, because the function is executed synchronously on the project server, if strFile is
poorly defined and/or optNumTimeout is not used, then the entire project — both the server and
the clients — may hang while it searches for the files.

Finally, optNumTimeout is not supported if the project server is a Windows Embedded device.

Examples

Find all text files in the Server's project folder:

FindFile("*.txt")

Find all Microsoft Word files in the project folder and then send the names of the matching files to
StringArray, within a timeout period of 1000 milliseconds:

FindFile("*.doc", "StringArray", 1000)

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

FindPath
Verifies whether a directory exists.

Function Group Execution Windows Embedded Thin Client

FindPath File Synchronous Supported Supported Supported

Syntax

strPathName

The file path for which to search.

Returned value

0 Path not
found

1 Path found

Examples

Tag Name Expression

Tag FindPath("C:\WINNT\")

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

GetFileAttributes
Reads the attributes of a specified file.

Function Group Execution Windows Embedded Thin Client

GetFileAttributes File Synchronous Supported Supported Supported

Syntax

strFile

The file path and name of the file from which to read the attributes.

Returned value

- 1 Error

1 Read only

2 Hidden

4 System

16 Directory

32 Archive

128 Normal

256 Temporary

Examples

Tag Name Expression

Tag GetFileAttributes("C:\Readme.txt")

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

GetFileTime
Reads the time and date the file was last modified.

Function Group Execution Windows Embedded Thin Client

GetFileTime File Synchronous Supported Supported Supported

Syntax

strFileName

The file path and name of the file to be read.

numFormat

A numeric flag specifiying the format of the returned data:

0: Returns the date and time from the file.

1: Returns only the file date.

2: Returns only the file time.

Returned value

Returns the date and or time the file was last modified.

Examples

Tag Name Expression

Tag GetFileTime("C:\Readme.txt")

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

GetHstInfo
Returns the Start Time, End Time, and Duration of the specified history (*.HST) file.

Function Group Execution Windows Embedded Thin Client

GetHstInfo File Synchronous Supported Supported Supported

Syntax

strFileName

The file path and name of the history file to be read.

numFormat

A numeric flag specifying the type of information to be returned:

0: Returns the Start Time of the file.

1: Returns the End Time of the file.

2: Returns the Duration (in hours) of the file.

Returned value

If the file cannot be read or the specified information cannot be returned, then an error is generated:

-1 Failed to retrieve the Start Time; verify the history file exists and is valid.

-2 Failed to retrieve the End Time; verify the history file exists and is valid.

-3 Internal program error; please contact Technical Support.

-4 The Studio TCP/IP server returned a Time that is incompatible with the format
specified in the project screen or Web page. Please use the Verify Project tool to
update the project and try again.

Examples

Tag Name Expression

Tag GetHstInfo("batch", 0)

Tag Name Expression

Tag GetHstInfo("hst/02060801.hst", 1)

Tag GetHstInfo("C:\batch.bat", 2)

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Tag GetHstInfo("hst/02060801.hst", 1)

Tag GetHstInfo("C:\batch.bat", 2)

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

GetLine
Gets a specified line or search string from a text file and then stores the line in a String tag.

Function Group Execution Windows Embedded Thin Client

GetLine File Synchronous Supported Supported Supported

Syntax

GetLine(strFileName, Search, "tagStore", optNumCase, "optOveflowTag", optRunFromServer)

strFileName

A string value enclosed in quotes, or the name of a String tag that contains the value,
specifying the name of the file to be searched. The name can be a fully qualified file path (e.g.,
C:\File.txt) or a simple file name (e.g., File.txt). In the latter case, the project will search for
the file in the following paths:

Local Station: The project will search for the file in the project folder and Web sub-folder.

Thin Client: If the parameter optRunFromServer is set to 0, the path where the file will be
searched is undetermined. If is set to 1, it will search for the file in the URL typed in the
Browser, and if the file is not found, in the Backup URL.

Note: For Web-enabled projects, we recommend setting the optRunFromServer parameter
to 1 and placing your files in the project's Web sub-folder.

Search

There are two options for this parameter, based on the data type of the value you give it:

If it is a string value or tag, then the function will search the text file for the first
occurance of the string and then copy the entire line that contains the occurance to the
tag specified by tagStore. Additional occurances are counted (see Returned Values below)

but not copied.

If it is a numeric value or tag, then the function will go to that line number in the text file
and then copy the line to the tag specified by tagStore. The first line of the file is line 0.

tagStore

Name of the String tag receiving the contents of the line pointed to by the function. This name
must be enclosed in quotes; if it isn't, then the function will use the contents of the tag rather
than its name.

optNumCase

Optional numeric tag specifying whether the search is case-sensitive.

0: Not case-sensitive

1: Case-sensitive

optOverflowTag

Optional numeric tag receiving the result of overflow verification.

0: OK

1: Overflow

optRunFromServer

Optional numeric tag ignored when the function is called on local stations. On Thin Clients, this
parameter indicates the following:

0: Retrieves the file from the Thin Client machine (do not use this value with non-fully
qualified names)

1: Retrieves the file from the Web Server. If the file name is not a URL, then the function
will ignore the project path and search for the file in the URL where the screen files are
located.

Returned value

If the function is successfully executed, then it returns the total number lines in which the search
string was found. Otherwise, the function returns one of the following errors:

0 String was not found in the
target file

-1 File not found

-2 Invalid strFileName parameter

-3 Invalid strSeqChar parameter

-4 Invalid strStoreTag parameter

-5 Invalid optNumCase parameter

-6 Invalid optNumOverflowTag
parameter

-7 Invalid number of parameters

-8 Invalid line number

Notes

Note: This function only supports ASCII and UTF-16LE text encoding. (UTF-16LE is the Unicode
implementation that is natively supported by Windows.) If you use this function to get text from
a UTF-8 or UTF-16BE encoded file, then you may see some invalid characters.

Important: This function can only read up to 509 characters in a single function call. If a line
has more than 509 characters (i.e., 507 alphanumeric + CR + LF), then the function will read it
as two or more lines. This will also increase the effective line count for the purposes of the
Search parameter. So, for line 100 that has 1024 characters (i.e., 1022 alphanumeric + CR +
LF), the function must be called three times:

GetLine("C:\FileName.txt", 100, "strTagStore[1]") //Reads the first 509 characters

GetLine("C:\FileName.txt", 101, "strTagStore[2]") //Reads the second 509 characters

GetLine("C:\FileName.txt", 102, "strTagStore[3]") //Reads the last 6 characters

After this, line 101 of the source file is actually counted by the function as line 103. Therefore, to
avoid unnecessarily complicated line counting, you should make sure the source file is limited to
509 characters per line.

Examples

Tag Name Expression

Tag GetLine("C:\TechRef v61.doc", "Studio version 6.1",

"ReturnedLine")

// Gets the first occurance of "Studio version 6.1".

Tag GetLine("C:\Readme.txt", 1, "ReturnedLine", 0, "Overflow")

// Gets the second line of the file.

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

HST2TXT
Export information from the Trend history file(s) in proprietary binary format (*.hst) to a plain text (*.txt) or comma-delimited (*csv
) file.
HST2TXT
File
Asynchronous
Supported
Supported
Supported

Function Group Execution Windows Embedded Thin Client

Syntax

HST2TXT(strStartDate, strStartTime, numDuration, numGroup, strTargetFile, optStrSeparator, optNumMilliseconds, optStrFormat, optNumInterval)

strStartDate

The start date of the data.

strStartTime

The start time of the data.

numDuration

Numerical tag containing duration of the data in hours.

numGroup

Numerical tag containing trend group number.

strTargetFile

String tag containing path and name of the file to be written.

optStrSeparator

Optional The data separator character for file. If omitted, the function uses the TAB character (\t) to separate the values in the
text file.

optNumMilliseconds

Optional numeric tag. If this parameter is false (0), the text file created will not show milisecond-precision on the timestamp of
each history sample.

optStrFormat

String tag, which specifies the order of the Month (M), Day (D), and Year (Y) for the time-stamp format exported to the text file:

"DMY": Day, Month, Year

"MDY": Month, Day, Year

"YMD": Year, Month, Day

If omitted, the function uses the format DMY for the timestamp in the text file.

optNumInterval

Optional numeric tag specifying the sampling interval. Only line itmes at this interval are written as text to the target file; all other
line items in the Trend history are discarded.

For example, if optNumInterval has a value of 10, then only every tenth line item is written out.

Returned value
- 3
Invalid number of parameters
- 2
Dll functions not found
- 1
InStudiot.dll not found
0
Function was executed successfully
1
Error. Previous execution of the HST2TXT has not yet been completed

Examples
Tag
HST2TXT("04/14/2002", "06:30:00", 0.1, 3, "C:\Studio\data.txt", "\")

Tag
HST2TXT("04/14/2002", "06:30:00", 0.1, 3, "C:\Studio\data.csv", "," , "MDY")

Tag
HST2TXT("04/14/2002", "06:30:00", 0.1, 3, "C:\Studio\data.csv", "," , "MDY", 10)

Tag Name Expression

Tip: When using the comma character (,) as optStrSeparator , the function creates a file in the CSV format (Comma Separated
Values). It is a useful tool for exporting the Trend history data from the proprietary binary format into a file that can be opened with
Microsoft Excel.

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

HST2TXTIsRunning
Returns the status of the HST2TXT function.

Function Group Execution Windows Embedded Thin Client

HST2TXTIsRunning File Synchronous Supported Not supported Executed on Server

Syntax

This function takes no parameters.

Returned value

0 HST2TXT is still running.

- 1 Last conversion process was executed properly.

- 2 Reserved.

- 3 File not fond. There are no history files in the configured time interval for the
group specified.

-4 Cannot open HST file.

-5 Cannot create/open ASCII file.

-6 Cannot read file information from HST file.

-7 Invalid file type.

-8 Cannot read header information from HST file.

-9 Invalid number of tag in the header information (0 > nTags > 250).

-10 Cannot create Header file (.hdr).

-20 InStudiot.dll was not found.

-30 Cannot access dll function.

Examples

HST2TXTIsRunning()

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

LookupContains
This function verifies that an external file contains the specified keyword in its key column.

Function Group Execution Windows Embedded Thin Client

LookupContains File Synchronous Supported Supported Supported

Syntax

strKey

The keyword to look for in the file's keywords column.

Returned value

This function returns the following possible values:

Value Description

0 Specified keyword not found.

1 Specified keyword found.

Notes

The external file must already be loaded by calling the LookupLoad function.

Examples

LookupContains("customer167")

Parent topic: File functions

Related reference
LookupGet
LookupLoad

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

LookupGet
This function gets a value from an external file by cross-referencing from a specified keyword.

Function Group Execution Windows Embedded Thin Client

LookupGet File Synchronous Supported Supported Supported

Syntax

strKey

The keyword to look for in the file's keywords column.

Returned value

This function returns (as a string) the cross-referenced value from the file's specified values column.

If no value is found, then this function returns strKey.

Notes

The external file must already be loaded by calling the LookupLoad function.

Examples

LookupGet("customer167")

Parent topic: File functions

Related reference
LookupContains
LookupLoad

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

LookupLoad
This function loads an external file — typically, a delimited text file — that can be used to look up
table values. One column of the file is designated as the keywords column, and another column is
designated as the values column.

Function Group Execution Windows Embedded Thin Client

LookupLoad File Synchronous Supported Supported Supported

Syntax

strFileName

The file path and name of the external file.

numColKey

The number of the column/field that contains the keywords.

numColValue

The number of the column/field that contains the desired values.

strDelimiters

The delimiter that separates the columns/fields.

Returned value

This function returns the number of rows/lines in the specified file.

If the specified file cannot be found, then this function returns a negative number as an error code.

Notes

This function only loads the specified file; it doesn't do anything with the file. To use the file, call the
LookupContains and LookupGet functions.

Also, to load another file, simply call this function again. Only one file can be loaded at a time,
however; the new file replaces the old in the project's memory.

Examples

LookupLoad("C:\Temp\customerlist.csv", 1, 4, ",")

Parent topic: File functions

Related reference
LookupContains
LookupGet

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

PDFCreate
Creates a PDF file from the specified source file.

Function Group Execution Windows Embedded Thin Client

PDFCreate File Synchronous Supported Not supported Supported

Syntax

strSourceFile

String specifying the file path and name of the desired source file (*.doc, *.txt, or *.rtf). If a
complete path is not specified, then the function will look for the source file in the project
folder.

optStrPdfFile

Optional string specifying the file path and name of the created PDF file. If a file path is not
specified, then the PDF file will be saved in the same location as the source file. If this
parameter is omitted — that is, if no file path or name is specified at all — then the PDF file will
be saved in the same location and with the same name as the source file. Only a new extension
is added. For example, \path\MyDocument.rtf becomes \path\MyDocument.pdf.

Note: When entering the file name without a path, a leading backlash ("\") is optional.

Returned value

Value Description

0 Success

1 Error in PDF profile information

3 Error saving PDF file

4 Job canceled

101 Error initializing PDF resource

102 Specified source file not found

103 Error generating PDF file

Value Description

104 Wrong number of parameters

105 Wrong parameter type

Note: This function only supports the execution of one job at a time. If more than one user or
command attempts to call the function at the same time, then the function will fail and return a
value of 101.

Examples

Tag Name Expression

 PDFCreate("C:\Report1.rtf")

 PDFCreate("C:\Report2.doc", "C:\Converted1.pdf")

 PDFCreate("C:\Report3.txt", "C:\Data\Converted1.pdf"

)

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

104 Wrong number of parameters

105 Wrong parameter type

Note: This function only supports the execution of one job at a time. If more than one user or
command attempts to call the function at the same time, then the function will fail and return a
value of 101.

Examples

Tag Name Expression

 PDFCreate("C:\Report1.rtf")

 PDFCreate("C:\Report2.doc", "C:\Converted1.pdf")

 PDFCreate("C:\Report3.txt", "C:\Data\Converted1.pdf"

)

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

Print
Prints a text file.

Function Group Execution Windows Embedded Thin Client

Print File Asynchronous Supported Supported Supported

Syntax

strFilePath

Path and name of the text file that will be printed.

optNumOrientation

Set the paper orientation as follows:

0 (default) = Portrait

1 = Landscape

Returned value

No returned values.

Note: The optNumOrientation parameter is not supported when running the project on a Windows
Embedded target system.

Examples

Tag Name Expression

 Print("C:\ReadMe.txt")

 Print("C:\ReadMe.txt", 1)

 Print(TagFileName, 0)

Note: This function can be used to print the contents of text files only. Information in any other
format (e.g., pictures, binary files, etc.) cannot be printed with this function.

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

RDFileN
Launches a File Browser window allowing you to select a file.

Function Group Execution Windows Embedded Thin Client

RDFileN File Synchronous Supported Supported Supported

Syntax

RDFileN("tagSelectedFile", strSearchPath, strMask, optNumChangeDir)

tagSelectedFile

Name of the string tag receiving the name and path of a selected file. The tag name must be
enclosed in quotes, or the project will try to get the contents of the tag. Moreover, it must be a
valid tag name — it cannot be a VBScript variable name, for example.

strSearchPath

The file path (directory) to search.

strMask

The mask used to filter the files.

optNumChangeDir

Optional numeric tag that indicates whether the operator will be able to change the browsing
directory. If this parameter is omitted or set TRUE (1), then the window opened by this function
will allow the operator to navigate to different directories. If it is set FALSE (0), then the
window will be restricted to the directory specified by strSearchPath.

Returned value

0 Success

1 One of the parameters is not a
string

2 Parameter 1 contains an invalid tag
name

3 The user canceled the operation

Examples

Tag Name Expression

Tag RDFileN("FileName", "C:\Studio\", "*.doc", 1)

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > File functions >

WebGetFile
Downloads a file from a specified address and then saves it locally.

Function Group Execution Windows Embedded Thin Client

WebGetFile File Synchronous Supported Supported Supported

Syntax

strURL

The URL (i.e., the Web address) of the file you want to download.

strLocalPath

The complete local file path where you want to save the file.

Returned value

- 1 Timeout

0 File not found

1 File saved
successfully

Examples

Tag Name Expression

Tag WebGetFile("http://www.the-internet.com/myfile.txt",

"C:\myfile.txt")

Tag WebGetFile(myURL, myFilePath)

Parent topic: File functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Graphic functions
These functions are used to manipulate and print project screens.

AutoFormat
Automatically formats a real number to a preset number of decimal places, according to the
virtual table of settings created by the SetDecimalPoints function. (This is similar to the Format
function, except that you do not need to specify the number of decimal places.)

GetScrInfo
Retrieves information from the project about an open screen.

PrintSetup
Opens the standard setup dialog from the operating system, from where the printer can be
selected and configured.

PrintWindow
Prints a screenshot of a project screen. The screen does not need to be open and active; the
function can print a screen running in the background or even closed screen file.

ResetDecimalPointsTable
Resets the virtual table of settings created by the SetDecimalPoints function.

RGBColor
Returns the number of the color defined by the RGB (Red, Green, Blue) codes.

RGBComponent
RGBComponent is a built-in scripting function that gets the level of a color component (red,
green, or blue) in a specified color.

SaveScreenShot
This function takes a screen shot of the project screen and saves it to an image file.

SetDecimalPoints
Sets the number of decimal places to be displayed, for a specified range of real numbers. This
setting will be used by all screen objects and animations that have the Auto Format option
enabled, as well as by the AutoFormat function.

SetDisplayUnit
Finds all tags and all Grid object and Trend Control object values that have a specific
engineering unit (as stored in the Unit tag field), and then sets the DisplayUnit, UnitDiv, and
UnitAdd fields on those tags.

SetTagDisplayUnit

Sets the DisplayUnit, UnitDiv, and UnitAdd properties on a specific tag.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Graphic functions >

AutoFormat
Automatically formats a real number to a preset number of decimal places, according to the virtual
table of settings created by the SetDecimalPoints function. (This is similar to the Format function,
except that you do not need to specify the number of decimal places.)

Function Group Execution Windows Embedded Thin Client

AutoFormat Graphic Synchronous Supported Supported Supported

Syntax

numValue

The real number to be formatted.

Returned value

This function returns a formatted string.

Examples

In the following examples, the SetDecimalPoints function has already been used to set 3 decimal
places for values greater than equal to 1.5 and 1 decimal place for values less than or equal to -3.

Tag Name Expression

Tag AutoFormat(1.543210) // Returned value =
"1.543"

Tag AutoFormat(-3.123456) // Returned value =
"-3.1"

Parent topic: Graphic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Graphic functions >

GetScrInfo
Retrieves information from the project about an open screen.

Function Group Execution Windows Embedded Thin Client

GetScrInfo Graphic Synchronous Supported Supported Supported

Syntax

GetScrInfo(strScreenName, "tagResult", optNumResultType, optNumID)

strScreenName

The name of the screen for which information is required.

tagResult

The name of the tag that will receive the information retrieved by the function. This name must
be enclosed in quotes, or the project will try to get the contents of the tag.

optNumResultType

A numeric flag specifying the type of information to be retrieved by the function:

Value Description

0 Default value. Writes the TOP, LEFT, BOTTOM and RIGHT screen coordinates to each
consecutive position of the array tag specified by the tagResult parameter.

1 Writes the TOP screen coordinate to the tag specified by the tagResult parameter.

2 Writes the LEFT screen coordinate to the tag specified by the tagResult parameter.

3 Writes the BOTTOM screen coordinate to the tag specified by the tagResult
parameter.

4 Writes the RIGHT screen coordinate to the tag specified by the tagResult parameter.

This is an optional parameter; the default value is 0.

optNumID

The specific instance number of the screen. (The ID is assigned when the screen is opened with
the Open function.) This is an optional parameter; the default ID is 0.

Returned value

0 Success

-1 The first and/or second parameters are not strings.

-2 Memory allocation error.

-3 optNumResultType is zero, but tagResult does not specify an
array tag.

-4 Invalid tag by the tagResult parameter.

Examples

Tag Name Expression

TagErrorCode GetScrInfo("main" , "TagXY[0]") // Retrieves the TOP, LEFT, BOTTOM and
RIGHT coordinates of the "main" screen and then writes them to the first four
positions of the array tag TagXY.

TagErrorCode GetScrInfo("main", "TagXY", 3) // Retrieves the BOTTOM coordinate of the
"main" screen and then writes it to TagXY.

TagErrorCode GetScrInfo("main" , "TagXY", 2, 10) // Retrieves the LEFT coordinate of the
"main" screen with ID 10 and then writes it to TagXY.

Parent topic: Graphic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Graphic functions >

PrintSetup
Opens the standard setup dialog from the operating system, from where the printer can be selected
and configured.

Function Group Execution Windows Embedded Thin Client

PrintSetup Graphic Asynchronous Supported Supported Supported

Note: This function cannot be used with Tasks or in the Global Procedures script.

Syntax

This function takes no parameters.

Returned value

No returned values.

Examples

PrintSetup()

Parent topic: Graphic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Graphic functions >

PrintWindow
Prints a screenshot of a project screen. The screen does not need to be open and active; the function
can print a screen running in the background or even closed screen file.

Function Group Execution Windows Embedded Thin Client

PrintWindow Graphic Asynchronous Supported Supported Supported

Note: This function cannot be used with Tasks or in the Global Procedures script.

Syntax

PrintWindow(strScreenName , optNumOrientation, optNumID, optStrMnemonicList)

strScreenName

The name of the screen to be printed. If this parameter is omitted, then the currently active
screen will be printed. (This parameter must be omitted when executing the function on a
Windows Embedded target system.)

optNumOrientation

A numeric flag specifying the paper orientation:

Value Description

0 Portrait

1 Landscape

Default value is 0.

Note: The optNumOrientation parameter is not supported when running the project on
a Windows Embedded target system.

optNumID

The specific instance number of the screen. (The ID is assigned when the screen is opened with
the Open function.) This is an optional parameter; the default ID is 0.

optStrMnemonicList

A string that describes how the custom properties of any generic objects or linked symbols in
the screen will be completed when the screen is printed. This string has the following syntax…

#Label:Value

…where Label is the name of the property and Value is the tag, expression or literal value that the

property will receive. You can declare two or more mnemonics, as long as they are separated by
spaces. See the Examples section below for an example.

Note: The optStrMnemonicList parameter does not work for a screen that is already open; if
the screen has been opened, then the custom properties have already received their default
values.

Returned value

This function does not return any value.

Examples

Tag Name Expression

 PrintWindow() // Prints the currently active screen in portrait orientation.

 PrintWindow("Main", 1) // Prints the "Main" screen in landscape orientation.

 PrintWindow(TagScreenName) // Prints the screen specified by TagScreenName.

 PrintWindow("Main", 1, 10) // Prints the "Main" screen with ID 10.

 PrintWindow ("Main", 1, 0, "#Mne1:Tag1 #Mne2:Tag2") // Prints the "Main"
screen, replacing the custom properties Mne1 and Mne2 with Tag1 and Tag2,
respectively.

Tip: You can use this function to print graphical reports that include Alarm/Event Control and
Trend Control objects.

Parent topic: Graphic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Graphic functions >

ResetDecimalPointsTable
Resets the virtual table of settings created by the SetDecimalPoints function.

Function Group Execution Windows Embedded Thin Client

ResetDecimalPointsTable Graphic Synchronous Supported Supported Supported

ResetDecimalPointsTable()

Syntax

This function takes no parameters.

Returned value

This function does not return any value.

Examples

Tag Name Expression

 ResetDecimalPointsTable() // Resets the virtual table of
settings.

Parent topic: Graphic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Graphic functions >

RGBColor
Returns the number of the color defined by the RGB (Red, Green, Blue) codes.

Function Group Execution Windows Embedded Thin Client

RGBColor Graphic Synchronous Supported Supported Supported

Syntax

numRed

Red code from the RGB code.

numGreen

Green code from the RGB code.

numBlue

Blue code from the RGB code.

Returned value

This function returns the number of the color defined by the RGB (Red, Green, Blue) codes.

Examples

Tag Name Expression

TagColor RGBColor(51,153,102) // This function returns the value 13434828, which is the
color code for Sea Green.

TagColor RGBColor(TagRed,TagGreen,TagBlue) // This function returns the color code of the
RGB values set in the tags TagRed, TagGreen and TagBlue, respectively.

Tip: See the list of RGB Codes and Color values for the most used colors in the Color Interface
section.

Parent topic: Graphic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Graphic functions >

RGBComponent
RGBComponent is a built-in scripting function that gets the level of a color component (red, green, or
blue) in a specified color.

Function Group Execution Windows Embedded Thin Client

RGBComponent Graphic Synchronous Supported Supported Supported

Syntax

numColor

The decimal code for a 24-bit RGB color, which can be any integer value between 0 and
16777215. (This color model is also known as "Truecolor" or "millions of colors.")

numComponent

The color component for which you want to get the level: 0 is red, 1 is green, and 2 is blue.

Returned value

This function returns an integer value between 0 or 255, which represents the level of the color
component in the specified color.

Notes

For a list of frequently used RGB color codes and their equivalent "plain English" names, see Color
Interface.

Examples

Get the level of red in color code 13434828 (i.e., sea green):

RGBComponent(13434828, 0)

Get the level of the component specified by TagComponent in the color specified by TagCode:

RGBComponent(TagCode, TagComponent)

Parent topic: Graphic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Graphic functions >

SaveScreenShot
This function takes a screen shot of the project screen and saves it to an image file.

Function Group Execution Windows Embedded Thin Client

SaveScreenShot Graphic Synchronous Supported Supported (only for open
screens)

Executed on
Server

Syntax

optStrScreenName

The name of a project screen file (*.scr). If no file path is specified, then the file must be

located in the Screen sub-folder of the project folder (e.g.,
\project_name\Screen\screen_name.scr).

For projects running on Windows, the screen may be either open or closed. For projects
running on Windows Embedded, the screen must be open.

This is an optional parameter; if no value (or "") is specified, then the currently open and
active screen is used.

optStrOutputFile

The name of the output file. If no file path is specified, then the file is saved in the Web sub-
folder of the project folder (e.g., \project_name\Web\screen_name.jpg)

This is an optional parameter; if no value is specified, then either the value of
optStrScreenName or simply ScreenShot.jpg is used.

optNumFormat

The format of the image file:

Value Description

0 BMP

1 JPG

2 PNG

3 GIF

4 TIFF

5 Auto

This is an optional parameter; if no value is specified, then the default is 1 (JPG).

Returned value

This function returns the following possible values:

Value Description

-1 Wrong number of parameters.

-2 Wrong parameter types.

-3 Invalid directory.

-4 Second parameter cannot be empty.

-5 Wrong format / invalid option for third parameter.

-6 Failed to save file.

-7 Failed to create compatible bitmap.

0 Success.

Notes

The Viewer task must be running for this function to be executed. The function can be called by the
Background Task (e.g., by a Script or Math worksheet), but it will fail if the Viewer task is not
running.

Examples

Save the currently active screen to \project_name\Web\ScreenShot.JPG:

SaveScreenShot()

Save the screen file main.scr to \project_name\Web\main.JPG:

SaveScreenShot("main.scr")

Save the currently active screen as a BMP with the name of the currently logged user:

SaveScreenShot("", UserName, 0)

Parent topic: Graphic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Graphic functions >

SetDecimalPoints
Sets the number of decimal places to be displayed, for a specified range of real numbers. This setting
will be used by all screen objects and animations that have the Auto Format option enabled, as well
as by the AutoFormat function.

Function Group Execution Windows Embedded Thin Client

SetDecimalPoints Graphic Synchronous Supported Supported Supported

Syntax

numBaseValue

The base value of the range of real numbers. For negative values, the range includes all real
numbers less than or equal to that value. For positive values, the range includes all real
numbers greater than or equal to that number. (You can set the other limit of the range by
calling the function again with a new set of parameters.)

numDecimalPoints

The number of decimal places to be displayed, for the range of real numbers specified by
numBaseValue.

Returned value

0 Error

1 Success

Notes

If you call this function more than once with different parameters for each call, then you can build a
virtual table of format settings. You can set a different number of decimal places for each range of
real numbers, and all of the settings are saved for the duration of runtime or until you reset the table
using the ResetDecimalPointsTable function.

Note: This formatting does not change the actual value of any tag or expression. It only
changes how the value is displayed by on-screen objects.

Examples

Tag Name Expression

Tag SetDecimalPoints(1.5, 3) // Displays 3 decimal places for all real numbers
greater than or equal to 1.5.

Tag SetDecimalPoints(-3, 1) // Displays 1 decimal place for all real numbers less
than or equal to -3.

Parent topic: Graphic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Graphic functions >

SetDisplayUnit
Finds all tags and all Grid object and Trend Control object values that have a specific engineering unit
(as stored in the Unit tag field), and then sets the DisplayUnit, UnitDiv, and UnitAdd fields on
those tags.

Function Group Execution Windows Embedded Thin Client

SetDisplayUnit Graphic Synchronous Supported Supported Supported

Syntax

strUnitOrigin

The engineering unit to be matched.

strDisplayUnit

The new value for the DisplayUnit tag field.

numDiv

The new value for the UnitDiv tag field.

numAdd

The new value for the UnitAdd tag field.

Returned value

0 Success.

-1 Wrong number of parameters.

-2 strUnitOrigin parameter is empty.

-3 numDiv parameter is invalid (equal
to 0).

Notes

This function only affects how the tag values are displayed on screen; it does not change the actual
tag values in any way.

Examples

Tag Name Expression

Tag SetDisplayUnit("C", "F", 0.555556, 32) // For all tags and object values with a
Unit of "C", the DisplayUnit tag field is set to "F", the UnitDiv tag field is set
to 0.555556, and the UnitAdd tag field is set to 32.

Parent topic: Graphic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Graphic functions >

SetTagDisplayUnit
Sets the DisplayUnit, UnitDiv, and UnitAdd properties on a specific tag.

Function Group Execution Windows Embedded Thin Client

SetTagDisplayUnit Graphic Synchronous Supported Supported Supported

Syntax

strTagName

The name of the specific tag on which the DisplayUnit, UnitDiv and UnitAdd tag fields will
be set.

Note: If this parameter is given a tag, then that tag should contain the name of the tag on
which the tag fields will be set.

strDisplayUnit

The new value for the DisplayUnit tag field.

numDiv

The new value for the UnitDiv tag field.

numAdd

The new value for the UnitAdd tag field.

Returned value

0 Success.

-1 Wrong number of parameters.

-2 Specified tag doesn't exist.

-3 numDiv parameter is invalid (equal
to 0).

Examples

Tag Name Expression

Tag SetTagDisplayUnit("TagTemp", "F", 0.555556, 32) // For the tag "TagTemp", the
DisplayUnit tag field is set to "F", the UnitDiv tag field is set to 0.555556,
and the UnitAdd tag field is set to 32.

Parent topic: Graphic functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Translation functions
These functions are used to access the translation tool during runtime.

Ext
Translates specified text using the active translation file.

SetLanguage
This function sets the language of the project to one of the languages configured in the
Translation Table.

SetTranslationFile
Sets the active translation file and translates all enabled text within the project.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Translation functions >

Ext
Translates specified text using the active translation file.

Function Group Execution Windows Embedded Thin Client

Ext Translation Synchronous Supported Supported Supported

Syntax

strText

The text to be translated.

Returned value

Returns the text translation using the active translation file.

Examples

Tag Name Expression

Tag Ext("Start") // Returned value if translating to Portuguese =
"Iniciar"

Tag Ext("Stop") // Returned value if translating to German =
"Anschlag"

Parent topic: Translation functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Translation functions >

SetLanguage
This function sets the language of the project to one of the languages configured in the Translation
Table.

Function Group Execution Windows Embedded Thin Client

SetLanguage Translation Synchronous Supported Supported Supported

Syntax

numLanguageCode

The code for the langauge that you want to set as the current translation. The language must
already be configured in the Translation Table.

Returned value

This function returns the following possible values:

Value Description

0 Error

1 Success

Notes

Language codes are defined by ISO 639-1.

Examples

Set the language to "English – United States":

SetLanguage(1033)

Set the language to "French – France":

SetLanguage(1036)

Parent topic: Translation functions

Related tasks
Adding a language to the Translation Table
Setting the project's language during runtime

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Translation functions >

SetTranslationFile
Sets the active translation file and translates all enabled text within the project.

Function Group Execution Windows Embedded Thin Client

SetTranslationFile Translation Synchronous Supported Supported Supported

Syntax

strFileName

The name of a translation file

optStrColumnName

The name of the column from the translation file, which must be used to translate the texts in
the project. When omitted, the second column from the translation file will be used by default.

Returned value

0 Success.

- 1 Invalid number of parameters.

- 2 Wrong parameter type.

- 3 Translation file could not be found or
opened.

Examples

Tag Name Expression

Tag SetTranslationFile("Portuguese.tra")

Tag SetTranslationFile("German.tra")

Tag SetTranslationFile("Mytranslation.csv" , "Portuguese"

)

Tag SetTranslationFile("Mytranslation.csv" , "German")

Note: You must enable the Translation option from the Project Settings dialog for this function
to work.

CAUTION:

You must have a translation file in the Translation Tool.

Parent topic: Translation functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Multimedia functions
These functions are used to play external audio and video files.

Play
Plays a specified WAV audio file.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Multimedia functions >

Play
Plays a specified WAV audio file.

Function Group Execution Windows Embedded Thin Client

Play Multimedia Asynchronous Supported Supported Supported

Note: For this function to work on a Thin Client, the target WAV file must be located in the same
file path on the remote station.

Description

Plays a specified WAV audio file.

Syntax

strFileName

The file path and name of the WAV file to play.

optNumSynchronous

A numeric flag specifying whether the function executes synchronously or asynchronously:

Value Description

0 Asynchronous (i.e., the project continues without waiting for the function to return)

1 Synchronous (i.e., the project pauses while it waits for the function to return)

This is an optional paramter; if no value is specified, then the default is 0.

Returned value

This function does not return any value.

Examples

Tag Name Expression

 Play("C:\Sounds\Wav\alarm.wav")

Parent topic: Multimedia functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

System Info functions
These functions are used get information about the computer that is running the project (either
server or client, depending on the function), as well as to change some project settings on that
computer.

DbVersion
DbVersion is a built-in scripting function that gets the version number of your project tags
database.

GetAppHorizontalResolution
Gets the default horizontal screen resolution (in pixels) of the project.

GetAppPath
Returns the file path of the project folder.

GetAppVerticalResolution
Gets the default vertical screen resolution (in pixels) of the project.

GetComputerIP
Returns the first IP Address of the local computer.

GetComputerName
Returns the local computer name.

GetCursorX
Gets the X-coordinate of the mouse cursor on the screen.

GetCursorY
Gets the Y-coordinate of the mouse cursor on the screen.

GetDisplayHorizontalResolution
Gets the horizontal resolution (in pixels) of the display connected to the local station.

GetDisplayVerticalResolution
Gets the vertical resolution (in pixels) of the display connected to the local station.

GetFreeMemoryCE
Returns the free memory available in a Windows Embedded device.

GetHardKeyModel
Returns the model name of your Hardkey.

GetHardKeySN

Returns the serial number of the Hardkey.

GetIPAll
Returns the number of IP Addresses assigned to the local station and stores the IP Addresses in
a string array tag.

GetMemoryCE
Returns the total memory available in a Windows Embedded device.

GetNetMACID
Gets the MAC ID unique code from the currently installed network adapter(s).

GetOS
Reports the current operating system.

GetPrivateProfileString
Reads a specified parameter from an .ini file using the standard .ini format.

GetProductPath
Gets the path to the program directory.

GetRegValue
Gets a the value of a variable in the Windows registry.

GetRegValueType
Gets the data type of the value of a variable in the Windows registry.

GetServerHostName
Gets the host name of the project's Server station.

GetTickCount
Gets the current value of the clock ticks counter.

InfoAppAlrDir
Returns the file path of the project's Alarm sub-folder.

InfoAppHSTDir
Returns the file path of the project's History sub-folder.

InfoDiskFree
Returns free disk space on the local computer.

InfoResources
Returns the local computer's disposable resources.

IsActiveXReg
Determines whether an ActiveX control is registered with the operating system.

IsAppChangedOnServer

When executed on the Client, this function checks to see if the project files available on the
Server are newer than the files currently on the Client.

NoInputTime
Returns the time elapsed since the last keyboard action.

ProductVersion
Returns the program version number.

RegSaveCE
Saves the Windows Embedded system registry. This function will only work if the save registry
capability is enabled in the Windows Embedded device image.

ReloadAppFromServer
When executed on the Client, this function reloads the necessary project files from the Server
while maintaining the current state of the project on the Client.

SaveAlarmFile
Use this function to enable/disable the saving feature for alarm history and to set the path
where the alarm history files must be handled.

SetAppAlarmPath
Sets the Alarm path for the current project.

SetAppHSTPath
Sets the file path (directory) where Trend history files will be saved, in the proprietary format
(.HST).

SetDateFormat
Sets the format and separator for the date string.

SetKeyboardLanguage
Sets the language of any Virtual Keyboards in the project.

SetRegValue
Sets the value of a variable in the Windows registry.

SetWebConfig
Configures the Web settings for the current project. The settings configured in the function are
updated on the HTML files of the project.

SNMPGet
Gets information from computers or network devices through the SNMP protocol.

SNMPSet
Uses the Simple Network Management Protocol (SNMP) to set a value on a target computer of
network device.

WritePrivateProfileString

Writes a specified setting to the project viewer initialization file, using the standard .ini format.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

DbVersion
DbVersion is a built-in scripting function that gets the version number of your project tags database.

Function Group Execution Windows Embedded Thin Client

DbVersion System Info Synchronous Supported Supported Supported

Syntax

This function takes no paramters.

Returned value

This function returns a numerical value equal to the version number of the database.

Notes

This function only applies to the native database within your project. There currently is no function to
get the version number of an external or historical database.

Examples

DbVersion()

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetAppHorizontalResolution
Gets the default horizontal screen resolution (in pixels) of the project.

Function Group Execution Windows Embedded Thin Client

GetAppHorizontalResolution System
Info

Synchronous Supported Not
supported

Executed on
Server

Syntax

This function takes no parameters.

Returned value

Returns the default value as it is stored in the project file, but does not test the Windows
configuration.

Examples

Tag Name Expression

Tag GetAppHorizontalResolution() // Returned value =
640

Tag GetAppHorizontalResolution() // Returned value =
800

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetAppPath
Returns the file path of the project folder.

Function Group Execution Windows Embedded Thin Client

GetAppPath System Info Synchronous Supported Supported Executed on Server

Syntax

This function takes no paramters.

Returned value

Returns the file path as a string.

Examples

Tag Name Expression

Tag GetAppPath() // Returned value = "C:\DemoProject\"

Tag GetAppPath() // Returned value =
"C:\Studio\Projects\project_name\"

Note: This function must return the current path of the project, including the "\" at the end of
the path.

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetAppVerticalResolution
Gets the default vertical screen resolution (in pixels) of the project.

Function Group Execution Windows Embedded Thin Client

GetAppVerticalResolution System
Info

Synchronous Supported Not
supported

Executed on
Server

Syntax

This function takes no parameters.

Returned value

Returns the default value as it is stored in the project file, but does not test the Windows
configuration.

Examples

Tag Name Expression

Tag GetAppVerticalResolution() // Returned value =
480

Tag GetAppVerticalResolution() // Returned value =
600

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetComputerIP
Returns the first IP Address of the local computer.

Function Group Execution Windows Embedded Thin Client

GetComputerIP System Info Synchronous Supported Supported Supported

Syntax

This function takes no parameters.

Returned value

Returns the first IP Address of the local station as a string.

Examples

Tag Name Expression

Tag GetComputerIP() // Returned value =
"192.168.0.1"

Tag GetComputerIP() // Returned value =
"248.12.2.78"

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetComputerName
Returns the local computer name.

Function Group Execution Windows Embedded Thin Client

GetComputerName System Info Synchronous Supported Not supported Supported

Syntax

This function takes no parameters.

Returned value

Returns the local computer name as a string.

Examples

Tag Name Expression

Tag GetComputerName() // Returned value = "Terminal53"

Tag GetComputerName() // Returned value =
"BobsComputer"

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetCursorX
Gets the X-coordinate of the mouse cursor on the screen.

Function Group Execution Windows Embedded Thin Client

GetCursorX System Info Synchronous Supported Supported Supported

Syntax

This function takes no parameters.

Returned value

This function returns the X-coordinate of the cursor on the screen, or -1 if an error occurs.

Examples

Tag Name Expression

 GetCursorX() // Returned value = 1024

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetCursorY
Gets the Y-coordinate of the mouse cursor on the screen.

Function Group Execution Windows Embedded Thin Client

GetCursorY System Info Synchronous Supported Supported Supported

Syntax

This function takes no parameters.

Returned value

This function returns the Y-coordinate of the cursor on the screen, or -1 if an error occurs.

Examples

Tag Name Expression

 GetCursorY() // Returned value = 768

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetDisplayHorizontalResolution
Gets the horizontal resolution (in pixels) of the display connected to the local station.

Function Group Execution Windows Embedded Thin Client

GetDisplayHorizontalResolution System Info Synchronous Supported Supported Supported

Syntax

This function takes no parameters.

Returned value

This function returns the horizontal resolution of the display as an integer.

Examples

Tag Name Expression

 GetDisplayHorizontalResolution() // Returned value =
1024

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetDisplayVerticalResolution
Gets the vertical resolution (in pixels) of the display connected to the local station.

Function Group Execution Windows Embedded Thin Client

GetDisplayVerticalResolution System Info Synchronous Supported Supported Supported

Syntax

This function takes no parameters.

Returned value

This function returns the vertical resolution of the display as an integer.

Examples

Tag Name Expression

 GetDisplayVerticalResolution() // Returned value =
768

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetFreeMemoryCE
Returns the free memory available in a Windows Embedded device.

Function Group Execution Windows Embedded Thin Client

GetFreeMemoryCE System Info Synchronous Not supported Supported Supported

Syntax

optNumType

A numeric flag that specifies which type of free memory the project should retrieve from the
device:

Value Description

0 Total free program memory

This is an optional parameter; if no value is specified, then the default is 0.

Returned value

>0 Size of free memory in bytes.

- 1 Coredll.dll file not found.

- 2 GetMemoryCE function not
found.

- 3 Invalid optional parameter.

- 4 Type of memory unavailable.

Examples

Tag Name Expression

Tag GetFreeMemoryCE()

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetHardKeyModel
Returns the model name of your Hardkey.

Function Group Execution Windows Embedded Thin Client

GetHardKeyModel System Info Synchronous Supported Not supported Executed on Server

Syntax

This function takes no parameters.

Returned value

If the Hardkey is installed, then the function returns a string with the Hardkey model name.

If the Hardkey is not installed, then the function returns 0.

Notes

You must attach the Hardkey before executing this function, or the function will not execute properly.

Examples

Tag Name Expression

Tag GetHardKeyModel() // Returned value = "Local Interface"

Tag GetHardKeyModel() // Returned value = "Advanced
Server"

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetHardKeySN
Returns the serial number of the Hardkey.

Function Group Execution Windows Embedded Thin Client

GetHardKeySN System Info Synchronous Supported Not supported Executed on Server

Syntax

This function takes no parameters.

Returned value

If the Hardkey is installed, then the function returns a string with the Hardkey serial number.

If the Hardkey is not installed, then the function returns 0.

Notes

You must attach the Hardkey before executing this function, or the function will not execute properly.

Examples

Tag Name Expression

Tag GetHardkeySN() // Returned value = 120.745

Tag GetHardkeySN() // Returned value = 224.941

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetIPAll
Returns the number of IP Addresses assigned to the local station and stores the IP Addresses in a
string array tag.

Function Group Execution Windows Embedded Thin Client

GetIPAll System Info Synchronous Supported Supported Supported

Syntax

GetIPAll("tagArrayIP", optRefresh)

tagArrayIP

Name of the string array tag receiving the IP addresses found. This name must be enclosed in
quotes, or the project will try to get the contents of the array tag.

optRefresh

Optional tag that triggers a refresh of this function, if you use it in a Text Data Link animation.
Every time this tag changes value, the project will refresh the function.

Returned value

n Number of IP addresses
found

- 1 Invalid number of
parameters

- 2 Invalid parameter type

Examples

Tag Name Expression

Tag GetIPAll("TagArrayIP") // Returned value = 1

Tag GetIPAll("TagArrayIP", Second) // Returned value =
2

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetMemoryCE
Returns the total memory available in a Windows Embedded device.

Function Group Execution Windows Embedded Thin Client

GetMemoryCE System Info Synchronous Not supported Supported Supported

Syntax

optNumType

A numeric flag that specifies which type of memory the project should retrieve from the device:

Value Description

0 Total program memory

1 Total storage memory

2 Total memory

This is an optional parameter; if no value is specified, then the default is 0.

Returned value

>0 Size of memory in bytes.

- 1 Coredll.dll file not found.

- 2 GetMemoryCE function not
found.

- 3 Invalid optional parameter.

Examples

Tag Name Expression

Tag GetMemoryCE(1)

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetNetMACID
Gets the MAC ID unique code from the currently installed network adapter(s).

Function Group Execution Windows Embedded Thin Client

GetNetMACID System Info Synchronous Supported Supported Supported

Syntax

GetNetMACID("optTagMACID", "optTagAdapterName")

optStrMACID

Name of a string tag, which receives the MAD ID of the network adapter. If there is more than
one network adapter currently installed in the station, the user can configure a string array tag
in this parameter, so each array position receives the MAC ID from one network adapter.

optStrAdapterName

Name of a string tag, which receives the name of the network adapter. If there is more than
one network adapter currently installed in the station, the user can configure a string array tag
in this parameter, so each array position receives the name from one network adapter. This
parameter is optional.

Returned value

Value Description

>0 Number of network adapters found.

0 No network adapters found.

-1 Invalid number of parameters.

-2 One of the parameters is not string type.

-3 Tag configured in optTagMACID does not exist.

-4 Tag configured in optTagAdapterName does not
exist.

Examples

Tag Name Expression

NumNIC GetNetMACID("MACIDTag")

NumNIC GetNetMACID("MACIDTag", "AdapterName")

NumNIC GetNetMACID("MACIDTag[1]", "AdapterName[1]")

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetOS
Reports the current operating system.

Function Group Execution Windows Embedded Thin Client

GetOS System Info Synchronous Supported Supported Supported

Syntax

This function takes no parameters.

Returned value

0 Windows 3.11

1 Windows 95/98/ME

2 Windows
2000/XP/Vista/7

3 Windows CE/Mobile

Examples

Tag Name Expression

Tag GetOS() //Returned value = 2

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetPrivateProfileString
Reads a specified parameter from an .ini file using the standard .ini format.

Function Group Execution Windows Embedded Thin Client

GetPrivateProfileString System Info Synchronous Supported Supported Supported

Syntax

GetPrivateProfileString(strSection, strName, strDefault, strFileName)

strSection

The section name to be read.

strName

The parameter name to be read.

strDefault

The default setting for this parameter. If the parameter is not found in the .ini file, the
function will return this default setting.

strFileName

The path and name of the .ini file to be read.

Returned value

Returns the value of the specified parameter.

Examples

Tag Name Expression

Tag GetPrivateProfileString("boot loader", "timeout", "50", "C:\boot.ini") //
Returned value = 30

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetProductPath
Gets the path to the program directory.

Function Group Execution Windows Embedded Thin Client

GetProductPath System Info Synchronous Supported Supported Supported

Syntax

This function takes no parameters.

Returned value

Returns the path to the program directory as a string.

Examples

Tag Name Expression

Tag GetProductPath() // Returned value = "C:\Program Files\InduSoft Web
Studio v7.0\"

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetRegValue
Gets a the value of a variable in the Windows registry.

Function Group Execution Windows Embedded Thin Client

GetRegValue System Info Synchronous Supported Supported Not supported

Syntax

GetRegValue(numMainKey, strKey, strValueName)

numMainKey

Numeric tag with the following possible values:

0 HKEY_LOCAL_MACHINE

1 HKEY_CLASSES_ROOT

2 HKEY_CURRENT_USER

3 HKEY_USERS

4 HKEY_CURRENT_CONFIG

5 HKEY_PERFORMANCE_DATA

strKey

Path where the value is located in the Main Key.

strVariableName

Name of the variable to get. The maximum length is 255 characters.

Returned value

If the function succeeds, then the function returns the variable value. Otherwise one of the following
error codes will be returned:

- 1 Invalid number of parameters or invalid Main Key.

- 2 Variable type is not supported. You can only read DWord or String values from
the registry.

- 3 Failed to read the variable value; verify that you have the proper security
rights.

Examples

Tag Name Expression

Tag GetRegValue(0, "HARDWARE\DESCRIPTION\System", "SystemBiosDate") // Returned
value = "08/14/03"

Tag GetRegValue(2, "Control Panel\Current", "Color Schemes") // Returned value =
"Windows Standard "

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetRegValueType
Gets the data type of the value of a variable in the Windows registry.

Function Group Execution Windows Embedded Thin Client

GetRegValueType System Info Synchronous Supported Supported Not supported

Syntax

GetRegValueType(numMainKey, strKey, strValueName)

numMainKey

Numeric tag with the following possible values:

0 HKEY_LOCAL_MACHINE

1 HKEY_CLASSES_ROOT

2 HKEY_CURRENT_USER

3 HKEY_USERS

4 HKEY_CURRENT_CONFIG

5 HKEY_PERFORMANCE_DATA

strKey

Path where the value is located in the Main Key.

strVariableName

Name of the variable to get. The maximum length is 255 characters.

Returned value

1 Variable type is String.

0 Variable type is DWord.

- 1 Invalid number of parameters or invalid Main Key.

- 2 Variable type is not supported. You can only read DWord or String values from
the registry.

- 3 Failed to read the variable value; verify that you have the proper security
rights.

Examples

Tag Name Expression

Tag GetRegValueType(0, "HARDWARE\DESCRIPTION\System", "SystemBiosDate") //
Returned value = 1

Tag GetRegValueType(2, "Control Panel\Desktop", "Smooth Scroll") // Returned
value = 0

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetServerHostName
Gets the host name of the project's Server station.

Function Group Execution Windows Embedded Thin Client

GetServerHostName System Info Synchronous Not supported Not supported Supported

Syntax

This function takes no parameters.

Returned value

Server host name for ISSymbol and 127.0.0.1 for others.

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

GetTickCount
Gets the current value of the clock ticks counter.

Function Group Execution Windows Embedded Thin Client

GetTickCount System Info Synchronous Supported Supported Supported

Syntax

This function takes no parameters.

Returned value

Returns an integer with the number of milliseconds counted by the clock for each initialization of the
operational system.

Examples

Tag Name Expression

Tag GetTickCount() // Returned value = 9400907

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

InfoAppAlrDir
Returns the file path of the project's Alarm sub-folder.

Function Group Execution Windows Embedded Thin Client

InfoAppAlrDir System Info Synchronous Supported Supported Supported

Syntax

This function takes no parameters.

Returned value

Returns the Alarm directory of the current project as a string.

Examples

Tag Name Expression

Tag InfoAppAlrDir() // Returned value = "C:\DemoApp\Alarm\"

Tag InfoAppAlrDir() // Returned value =
"C:\Studio\Projects\App\Alarm\"

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

InfoAppHSTDir
Returns the file path of the project's History sub-folder.

Function Group Execution Windows Embedded Thin Client

InfoAppHSTDir System Info Synchronous Supported Supported Supported

Syntax

This function takes no parameters.

Returned value

Returns the History directory for the current project as a string.

Examples

Tag Name Expression

Tag InfoAppHSTDir() // Returned value = "C:\DemoApp\HST\"

Tag InfoAppHSTDir() // Returned value =
"C:\Studio\Projects\App\HST\"

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

InfoDiskFree
Returns free disk space on the local computer.

Function Group Execution Windows Embedded Thin Client

InfoDiskFree System Info Synchronous Supported Not supported Supported

Syntax

strDisk

The name of the disk volume to be checked.

Returned value

Returns disposable free space in the disk in bytes.

Examples

Tag Name Expression

Tag InfoDiskFree("C") // Returned value =
2803804605.000000

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

InfoResources
Returns the local computer's disposable resources.

Function Group Execution Windows Embedded Thin Client

InfoResources System Info Synchronous Supported Supported Supported

Syntax

numSelect

A numeric flag that specifies which resource to examine:

Value Description

0 System functions (%)

1 GDI functions (%)

2 USER functions (%)

3 Memory (in bytes)

Examples

Tag Name Expression

Tag InfoResources(0) // Returned value = 76.000000

Tag InfoResources(1) // Returned value = 76.000000

Tag InfoResources(2) // Returned value = 80.000000

Tag InfoResources(3) // Returned value =
16150528.000000

Note: The only valid selection on an Windows PC station is 3. Selecting 0, 1 or 2 returns 0.000000
only.

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

IsActiveXReg
Determines whether an ActiveX control is registered with the operating system.

Function Group Execution Windows Embedded Thin Client

IsActiveXReg System Info Synchronous Supported Supported Supported

Syntax

IsActiveXReg(numType, strProgIDorFileName)

numType

A numeric flag that specifies a format for the strProgIDorFileName parameter:

0 Verify by Program
ID

1 Verify by File
Name

strProgIDorFileName

The program ID or file path of the ActiveX control.

Returned value

0 ActiveX is not
registered.

1 ActiveX is registered.

Examples

Tag Name Expression

Tag IsActiveXReg(0, "ISSYMBOL.ISSymbolCtrl.1") // Returned value = 0

Tag IsActiveXReg(1, "C:\WinNT\system32\MediaPlayer.ocx") // Returned
value = 1

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

IsAppChangedOnServer
When executed on the Client, this function checks to see if the project files available on the Server
are newer than the files currently on the Client.

Function Group Execution Windows Embedded Thin Client

IsAppChangedOnServer System Info Synchronous Supported Supported Supported

Syntax

optTagUpdateTrigger

An alphanumeric string enclosed in quotes, or the name of a String tag that contains the
desired string. This string, in turn, should be the name of the tag that will trigger the function
— when the value of this tag changes, the function is automatically executed. (Normally, a
function executes only when it is explicity called, such as with the Command animation.) To
execute the function at a regular interval, you can use one of project's system tags like Day or
Month.

This parameter is optional.

Returned value

0 No

1 Yes

Notes

For this function, "Server" means the station that is actually running your project and has the TCP/IP
Server module enabled, and "Client" means a Thin Client or Secure Viewer that is communicating
with the Server via TCP/IP. For more information, see Configuring a Web Solution.

Tip: If the files on the Server are newer — that is, if this function returns TRUE — then you can
use ReloadAppFromServer to update the Client.

Examples

Tag Name Expression

Tag IsAppChangedOnServer()

Tag IsAppChangedOnServer("CheckVersion") // Function is automatically called when
the value of CheckVersion changes.

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

NoInputTime
Returns the time elapsed since the last keyboard action.

Function Group Execution Windows Embedded Thin Client

NoInputTime System Info Synchronous Supported Supported Keyboard input only

Syntax

optTagUpdateTrigger

Optional tag that triggers an update when this function is used in a Text Data Link animation.
Every time this tag's value changes, the project triggers the function.

Returned value

Returns the time (in seconds) since the last keyboard action.

Examples

Tag Name Expression

Tag NoInputTime()

Note: You cannot implement this function directly from a Text object.

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

ProductVersion
Returns the program version number.

Function Group Execution Windows Embedded Thin Client

ProductVersion System Info Synchronous Supported Supported Supported

Syntax

This function takes no paramters.

Returned value

Returns the program version number as a real number.

Examples

Tag Name Expression

Tag ProductVersion() // Returned value = 7.000000

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

RegSaveCE
Saves the Windows Embedded system registry. This function will only work if the save registry
capability is enabled in the Windows Embedded device image.

Function Group Execution Windows Embedded Thin Client

RegSaveCE System Info Synchronous Not supported Supported Not supported

Syntax

This function takes no paramters.

Returned value

0 Success.

- 1 Failed to save
HKEY_CLASSES_ROOT.

- 2 Failed to save
HKEY_CURRENT_USER.

- 3 Failed to save
HKEY_LOCAL_MACHINE.

- 4 Failed to save HKEY_USERS.

- 5 Function executed in NT platform.

Note: This function calls the RegFlushKey function from the Windows CE API. The implementation
of this function is OEM dependent therefore it is not guaranteed to work with all the Windows
Embedded devices.

Examples

Tag Name Expression

n/a RegSaveCE() // Returned value = 0 if successful

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

ReloadAppFromServer
When executed on the Client, this function reloads the necessary project files from the Server while
maintaining the current state of the project on the Client.

Function Group Execution Windows Embedded Thin Client

ReloadAppFromServer System Info Synchronous Supported Supported Supported

Syntax

This function takes no paramters.

Returned value

This function always returns 0.

Notes

For this function, "Server" means the station that is actually running your project and has the TCP/IP
Server module enabled, and "Client" means a Thin Client or Secure Viewer that is communicating
with the Server via TCP/IP. For more information, see Configuring a Web Solution.

Tip: Before calling this function, you can use IsAppChangedOnServer to check the version of the
project files that are already on the Client. If the files on the Client match the files on the Server,
then you may choose not to call this function.

Examples

Tag Name Expression

Tag ReloadAppFromServer()

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

SaveAlarmFile
Use this function to enable/disable the saving feature for alarm history and to set the path where the
alarm history files must be handled.

Function Group Execution Windows Embedded Thin Client

SaveAlarmFile System Info Synchronous Supported Supported Not supported

Syntax

SaveAlarmFile(numType, optRemotePath)

numType

Tag containing the number and operation, as follows:

0 Disable save the alarm file to the local disk

1 Enable save the alarm file to local disk

2 Enable save the alarm file to local disk and to the remote path specified in
the OptRemotePath parameter

optRemotePath

Tag containing the name of the remote computer where the alarm file will be saved
simultaneously to the local computer and to the remote path when numType equals 2.

Returned value

0 Success

1 2nd parameter is not a
string

2 2nd parameter is missing

Examples

Tag Name Expression

Tag SaveAlarmFile(0)

Tag SaveAlarmFile(1)

Rag SaveAlarmFile(2, "Z:\Apps\AppDemo")

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

SetAppAlarmPath
Sets the Alarm path for the current project.

Function Group Execution Windows Embedded Thin Client

SetAppAlarmPath System Info Synchronous Supported Supported Executed on Server

Syntax

strPath

The new Alarm path for the current project.

Returned value

This function does not return any value.

Examples

Tag Name Expression

 SetAppAlarmPath("C:\Studio\Alarm\")

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

SetAppHSTPath
Sets the file path (directory) where Trend history files will be saved, in the proprietary format
(.HST).

Function Group Execution Windows Embedded Thin Client

SetAppHSTPath System Info Synchronous Supported Supported Executed on Server

Syntax

strPath

The file path (directory) where Trend history files will be saved.

Returned value

This function does not return any value.

Notes

This function is useful when you intend to change the file path during runtime. You can also set the
file path to a network drive by mapping it on the local station, or by using the following syntax:

\Network Drive\File Path

Please note that this function does not copy existing history files from the default directory to a new
one; it only sets the file path for new history files saved after the function is called.

Examples

Tag Name Expression

 SetAppHstPath("C:\Studio\History\")

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

SetDateFormat
Sets the format and separator for the date string.

Function Group Execution Windows Embedded Thin Client

SetDateFormat System Info Synchronous Supported Supported Supported

Syntax

SetDateFormat(strSeparator, strFomat)

strSeparator

The separator character for the date string.

strFormat

String tag, which specifies the order of the Month (M), Day (D), and Year (Y) in the date string.

DMY Day, Month, Year

MDY Month, Day, Year

YMD Year, Month, Day

Returned value

0 No error

1 Invalid
parameter

Examples

Tag Name Expression

Tag SetDateFormat("/", "MDY") // Date =
04/18/2002

Parent topic: System Info functions

Tag Name Expression

Tag SetDateFormat(":", "MYD") // Date =
04:2002:18

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Tag SetDateFormat(":", "MYD") // Date =
04:2002:18

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

SetKeyboardLanguage
Sets the language of any Virtual Keyboards in the project.

Function Group Execution Windows Embedded Thin Client

SetKeyboardLanguage System Info Synchronous Supported Supported Supported

Syntax

strLanguage

String tag with the language code used for the Virtual Keyboards. The currently available
options include:

EN English (default)

GE German

Returned value

0 Success

1 Error

Examples

Tag Name Expression

Tag SetKeyboardLanguage("EN")

Tag SetKeyboardLanguage(tagLanguage)

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

SetRegValue
Sets the value of a variable in the Windows registry.

Function Group Execution Windows Embedded Thin Client

SetRegValue System Info Synchronous Supported Supported Not supported

Syntax

SetRegValue(numMainKey, strKey, strVariableName, numType, strOrNumValue)

numMainKey

Numeric tag with the following possible values:

0 HKEY_LOCAL_MACHINE

1 HKEY_CLASSES_ROOT

2 HKEY_CURRENT_USER

3 HKEY_USERS

4 HKEY_CURRENT_CONFIG

5 HKEY_PERFORMANCE_DATA

strKey

Path where the value is located in the Main Key.

strVariableName

Name of the variable to be set. The maximum length is 255 characters.

numType

Two types are currently supported:

0 DWord

1 String

strOrNumValue

Variable value.

Returned value

0 Success.

- 1 Invalid number of parameters or invalid Main Key.

- 2 Invalid type.

- 3 Failed to read the variable value; verify that you have the proper
security rights.

Examples

Tag Name Expression

Tag SetRegValue(0, "HARDWARE\DEVICEMAP\SERIALCOMM", "\Device\Serial1", 1, "COM3")

// Returned value = 0 if successful

Tag SetRegValue(2, "Control Panel\Desktop", "Smooth Scroll", 0, 1) // Returned
value = 0 if successful

CAUTION:

This register can affect the Windows system configuration. You should be extremely
careful and edit the registry only when you are certain about the configuration.

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

SetWebConfig
Configures the Web settings for the current project. The settings configured in the function are updated on the HTML files of the project.
SetWebConfig
System Info
Synchronous
Supported
Supported
Executed on Server

Function Group Execution Windows Embedded Thin Client

Syntax

SetWebConfig(strServerIP, optStrBackupURL, optStrPathFile, optNumHostPort, optStrSecondaryServerIP, optNumProtocolFlag, optNumGtwPort, optStrGtwIP, optStrSecondaryGtwIP, optStrISSymbolURL)

strServerIP

Data Server IP Address. IP address (or hostname) of the computer where the TCP Server module of IWS is running.

optStrBackupURL

Optional alternative URL for the project's Web pages. The Thin Client will look for the Web pages in this URL if it does not find them in the same URL written in the Address field of the
Web browser.

optStrPathFile

Optional file path and name of the HTML file to be updated. If you specify only the file path without a file name, then all of the HTML files in the specified file path will be updated.

Note: You can specify an individual file (e.g., you only want to update one file. This is especially useful for projects running on Windows Embedded target systems.

optNumHostPort

Optional TCP Port number that the Thin Client must use to exchange data with the TCP Server module of IWS .

optStrSecondaryServerIP

Optional alternative data server IP address. The Thin Client will attempt to connect to the TCP Server module of IWS in this IP Address if it is not able to connect to the TCP Server
module running in the IP Address specified in the strServerIP parameter.

optNumProtocolFlag

Optional When you use the Web Tunneling Gateway option, this parameter specifies whether the Thin Client will use either HTTP to exchange data with the Web Server or HTTPS (SSL
– Secure Socket Layer). If this flag has the value 0, the Thin Client will use HTTP. If this flag has the value 1, the Thin Client will use HTTPS (SSL).

optNumGtwPort

Optional TCP Port number that the Thin Client must use to exchange data with the Web Server when using the Web Tunneling Gateway.

optStrGtwIP

Optional IP Address (or hostname) of the computer where the Web Tunneling Gateway is running.

optStrSecondaryGtwIP

Optional Alternative IP Address (or hostname) of the computer where the Web Tunneling Gateway is running. The Thin Client will attempt to connect to the Web Tunneling Gateway in
this IP Address if it is not able to connect to the Web Tunneling Gateway running in the IP Address specified in the optStrGtwIP parameter.

optStrISSymbolURL

Optional URL from where the updated version of ISSymbol (ActiveX control) must be downloaded if it is not properly registered in the Thin Client station.

Note:

You can use tags or expressions as arguments of this function. Therefore, you can use this function to configure the web settings automatically during runtime, according to the
network settings of each project (IP address, Web Server URL, and so forth).

Only the first parameter of this function (strServerIP) is mandatory. All other parameters are optional. The parameters that are not configured in the function assume the default
value configured in the Web tab of Project Settings.

The following parameters should be omitted unless you intend to use the Web Tunneling Gateway: optNumProtocolFlag , optNumGtwPort , optStrGtwIP , optStrSecondaryGtwIP ,
and optStrISSymbolURL .

Returned value
0
No error
1
Invalid number of parameters
2
Invalid Server IP address 1
3
Invalid URL
4
Invalid optional path
5
No Web pages found

Error Description

Examples
Tag
SetWebConfig("192.168.1.28")

Tag
SetWebConfig("192.168.1.28", "http://192.168.1.28/")

Tag
SetWebConfig(GetComputerIP(), "http://" + GetComputerIP() + "/")

Tag
SetWebConfig("192.168.1.28", "http://192.168.1.28/", "C:\MyWebPages\")

Tag

SetWebConfig("192.168.1.28", "http://192.168.1.28/", "C:\MyWebPages\", 1234)

Tag
SetWebConfig("192.168.1.28", "http://200.0.0.10/", "C:\MyWebPages\", 1234, "192.168.1.29", 0, 80, "200.0.0.1", "200.0.0.10", "http://200.0.0.10/MyISSymbol/")

Tag Name Expression

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

SNMPGet
Gets information from computers or network devices through the SNMP protocol.

Function Group Execution Windows Embedded Thin Client

SNMPGet System Info Synchronous Supported Not supported Supported

Syntax

SNMPGet(strAddress, strCommunity, strOID, "strTagName")

strAddress

The address of the machine/computer (e.g., "127.0.0.1" or "localhost").

strCommunity

SNMP community name when communicating with the computer (e.g., "public").

strOID

OID to be consulted (e.g., ".1.3.6.1.2.1.1.1.0").

strTagName

Name of the tag that will receive the requested value.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

Returned value

Value Description

0 No error

- 1 Invalid number of parameters

- 2 Invalid parameter

- 3 Cannot connect to the remote machine

- 4 Cannot connect to the remote machine

- 5 GET operation failed

Value Description

- 6 Invalid OID

- 7 Invalid tag name

- 8 Invalid tag type

- 9 This function is not supported in the current
OS

Examples

Tag Name Expression

ErrorTag SNMPGet("127.0.0.1", "public", ".1.3.6.1.2.1.1.1.0", "SysDescrTag")

//ErrorTag will receive the error code. If the function succeeds, the value in the
OID ".1.3.6.1.2.1.1.1.0" will be saved in the tag SysDescrTag.

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

- 6 Invalid OID

- 7 Invalid tag name

- 8 Invalid tag type

- 9 This function is not supported in the current
OS

Examples

Tag Name Expression

ErrorTag SNMPGet("127.0.0.1", "public", ".1.3.6.1.2.1.1.1.0", "SysDescrTag")

//ErrorTag will receive the error code. If the function succeeds, the value in the
OID ".1.3.6.1.2.1.1.1.0" will be saved in the tag SysDescrTag.

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

SNMPSet
Uses the Simple Network Management Protocol (SNMP) to set a value on a target computer of
network device.

Function Group Execution Windows Embedded Thin Client

SNMPSet System Info Synchronous Supported Not supported Supported

Syntax

SNMPSet(strAddress, strCommunity, strOID, Value, optNumType)

strAddress

The address of the target computer or device (e.g., "127.0.0.1" or "localhost").

strCommunity

The SNMP community name (e.g., "public") when communicating with the target computer or
device.

strOID

The Object ID (OID) to be set.

Value

The value to be set to the specified OID.

optNumType

A numeric value, or a tag of Integer type, specifying the data type of Value. This is an optional

parameter, but if it is included, then it must have one of following values:

Value Type Description

0 OCTETSTRING An ctet string variable

1 INTEGER32 A 32-bit signed integer
variable

2 TIMETICKS A timeticks variable

3 GAUGE32 A gauge variable

4 COUNTER32 A counter variable

5 IPADDRESS An IP address variable

Value Type Description

6 OBJECTIDENTIFIER An object identifier variable

7 SEQUENCE An ASN sequence variable

8 OPAQUE An opaque variable

Returned value

Value Description

0 No error

- 1 Invalid number of parameters

- 2 Invalid parameter

- 3 Cannot connect to the remote machine

- 4 Cannot connect to the remote machine

- 5 SET operation failed

- 6 Invalid OID

- 7 Invalid tag name

- 8 Invalid tag type

- 9 This function is not supported in the current
OS

Examples

Tag Name Expression

 SNMPSet("127.0.0.1", "public", ".1.3.6.1.2.1.1.1.0", 123, 1) //Sets an
integer value of 1 to the specified OID on the localhost (127.0.0.1).

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

6 OBJECTIDENTIFIER An object identifier variable

7 SEQUENCE An ASN sequence variable

8 OPAQUE An opaque variable

Returned value

Value Description

0 No error

- 1 Invalid number of parameters

- 2 Invalid parameter

- 3 Cannot connect to the remote machine

- 4 Cannot connect to the remote machine

- 5 SET operation failed

- 6 Invalid OID

- 7 Invalid tag name

- 8 Invalid tag type

- 9 This function is not supported in the current
OS

Examples

Tag Name Expression

 SNMPSet("127.0.0.1", "public", ".1.3.6.1.2.1.1.1.0", 123, 1) //Sets an
integer value of 1 to the specified OID on the localhost (127.0.0.1).

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > System Info functions >

WritePrivateProfileString
Writes a specified setting to the project viewer initialization file, using the standard .ini format.

Function Group Execution Windows Embedded Thin Client

WritePrivateProfileString System Info Synchronous Supported Supported Supported

Syntax

WritePrivateProfileString (strSection, strName, strValue, strFileName)

strSection

The section name to be written.

strName

The parameter name to be written.

strValue

The value to be written.

strFileName

The path and name of the .ini file to be written.

Returned value

The function returns 1 if the file was updated successfully.

Notes

When running on Windows Embedded this function will rewrite the entire file, therefore its use is not
recommended for lengthy files on Windows Embedded devices. The function will also add the
following lines at the end of the file when on a Windows Embedded device:

[FileBackUpControl]

Valid=1

Examples

Tag Name Expression

Tag WritePrivateProfileString(Section, Name, Value, FileName)

Tag WritePrivateProfileString("Options", "ds1", "Value",

"C:\Viewer.ini")

Parent topic: System Info functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Tags Database functions
These functions are used to directly change the values of project tags.

ExecuteAlarmAck
This function acknowledges an active alarm on the specified tag. The advantage of using this
function is that if used from the Thin Client, the Alarm task will store the user name and station
from which the alarm was acknowledged.

ForceTagChange
Forces the database to write a value to a tag and act as if it were a tag change even if the new
value is equal to the old value.

GetTagValue
Gets the value of the specified tag from the project tags database.

RunGlobalProcedureOnFalse
This function directly executes a VBScript procedure when the value of a specified
tag/expression becomes FALSE.

RunGlobalProcedureOnTrigger
This function directly executes a VBScript procedure when the value of a specified tag changes.

RunGlobalProcedureOnTrue
This function directly executes a VBScript procedure when the value of a specified
tag/expression becomes TRUE.

SetTagValue
Sets the value of the specified tag in the project tags database.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Tags Database functions >

ExecuteAlarmAck
This function acknowledges an active alarm on the specified tag. The advantage of using this function
is that if used from the Thin Client, the Alarm task will store the user name and station from which
the alarm was acknowledged.

Function Group Execution Windows Embedded Thin Client

ExecuteAlarmAck Tags Database Synchronous Supported Supported Supported

Syntax

ExecuteAlarmAck("strTagName", optStrComment, optStrAlarmType)

strTagName

Name of the tag on which the alarm will be acknowledged.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

optStrComment

An optional comment to send to the Alarm task, along with the user name and station.

optStrAlarmType

If more than one alarm is active on the specified tag, you can specify which alarm (e.g., Hi, Lo,
HiHi, LoLo) to acknowledge. Otherwise, the function acknowledges the most recently activated
alarm.

Returned value

Value Description

 0 Successfully executed.

-1 Invalid number of parameters.

-2 Invalid tag name.

Examples

Tag Name Expression

Tag ExecuteAlarmAck ("a","Hi alarm in tag a","Hi") // Returned value = 0 if
successfully executed

Parent topic: Tags Database functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Tags Database functions >

ForceTagChange
Forces the database to write a value to a tag and act as if it were a tag change even if the new value
is equal to the old value.

Function Group Execution Windows Embedded Thin Client

ForceTagChange Tags Database Synchronous Supported Supported Supported

Syntax

ForceTagChange("strTagName", numValue)

strTagName

The name of the tag being forced to accept the new value.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

numValue

The new value to be written to the specified tag.

Returned value

This function does not return any value.

Examples

Tag Name Expression

n/a ForceTagChange("TagA", 5)

Parent topic: Tags Database functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Tags Database functions >

GetTagValue
Gets the value of the specified tag from the project tags database.

Function Group Execution Windows Embedded Thin Client

GetTagValue Tags Database Synchronous Supported Supported Supported

Syntax

GetTagValue("strTagName", optNumRefresh)

strTagName

The name of the tag of which you want to get the value.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

optNumRefresh

Tag that you want to use as a trigger to refresh the function. When the value of the specified
Tag changes, the function is executed again. (Normally, a function executes only when the
object on which it is configured changes in some way, such as when a Pushbutton object is
clicked.) To execute the function at a regular interval, you can use one of project's system tags
such as Second, Minute or Hour.

Returned value

This function only returns the value of the Tag specified by strTagName. If the specified Tag does not
exist, then the function returns null.

Note: The value of the Tag specified by optNumRefresh does not affect the function's returned
value in any way.

Examples

Tag Name Expression

Tag Name Expression

requiredTag = 15 GetTagName("requiredTag", Second) // Return = 15

pointerTag = "Required
Tag"

requiredTag = 15

optNum = Second

GetTagName(pointerTag, optNum) // Return = 15

Parent topic: Tags Database functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

requiredTag = 15 GetTagName("requiredTag", Second) // Return = 15

pointerTag = "Required
Tag"

requiredTag = 15

optNum = Second

GetTagName(pointerTag, optNum) // Return = 15

Parent topic: Tags Database functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Tags Database functions >

RunGlobalProcedureOnFalse
This function directly executes a VBScript procedure when the value of a specified tag/expression
becomes FALSE.

Function Group Execution Windows Embedded Thin Client

RunGlobalProcedureOnFalse Tags Database Synchronous Supported Supported Supported

Syntax

strCondition

A project tag or expression.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

strProcedureOnFalse

The name of the procedure (in the Procedures folder) to execute when the value of
strCondition becomes FALSE (zero).

Returned value

This function returns the following possible values:

Value Description

0 Error

1 Success

Notes

Once this function is called, it remains active until the runtime project is stopped. That means every
time the tag/expression becomes FALSE, the procedure is executed. However, the procedure is
executed only once when the tag/expression becomes FALSE; it is not continuously executed while
the tag/expression is FALSE.

The procedure is executed on the Client. To execute a procedure on the Server, use the

RunGlobalProcedureOnServer function.

Examples

When the value of TagOnFalse becomes FALSE (zero), execute the procedure UsingOnFalse:

RunGlobalProcedureOnFalse("TagOnFalse", "UsingOnFalse")

Parent topic: Tags Database functions

Related reference
RunGlobalProcedureOnTrigger
RunGlobalProcedureOnTrue

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Tags Database functions >

RunGlobalProcedureOnTrigger
This function directly executes a VBScript procedure when the value of a specified tag changes.

Function Group Execution Windows Embedded Thin Client

RunGlobalProcedureOnTrigger Tags Database Synchronous Supported Supported Supported

Syntax

strTagName

The name of a project tag.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

strProcedureOnTrigger

The name of the procedure (in the Procedures folder) to execute when the value of the
specified tag changes.

Returned value

This function returns the following possible values:

Value Description

0 Error

1 Success

Notes

Once this function is called, it remains active until the runtime project is stopped. That means every
time the value of the tag changes, the procedure is executed.

The procedure is executed on the Client. To execute a procedure on the Server, use the
RunGlobalProcedureOnServer function.

Examples

When the value of TagTrigger changes, execute the procedure UsingTrigger:

RunGlobalProcedureOnTrigger("TagTrigger", "UsingTrigger")

Parent topic: Tags Database functions

Related reference
RunGlobalProcedureOnFalse
RunGlobalProcedureOnTrue

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Tags Database functions >

RunGlobalProcedureOnTrue
This function directly executes a VBScript procedure when the value of a specified tag/expression
becomes TRUE.

Function Group Execution Windows Embedded Thin Client

RunGlobalProcedureOnTrue Tags Database Synchronous Supported Supported Supported

Syntax

strCondition

A project tag or expression.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

strProcedureOnTrue

The name of the procedure (in the Procedures folder) to execute when the value of
strCondition becomes TRUE (non-zero).

Returned value

This function returns the following possible values:

Value Description

0 Error

1 Success

Notes

Once this function is called, it remains active until the runtime project is stopped. That means every
time the tag/expression becomes TRUE, the procedure is executed. However, the procedure is
executed only once when the tag/expression becomes TRUE; it is not continuously executed while the
tag/expression is TRUE.

The procedure is executed on the Client. To execute a procedure on the Server, use the

RunGlobalProcedureOnServer function.

Examples

When the value of TagOnTrue becomes TRUE (non-zero), execute the procedure UsingOnTrue:

RunGlobalProcedureOnTrue("TagOnTrue", "UsingOnTrue")

Parent topic: Tags Database functions

Related reference
RunGlobalProcedureOnFalse
RunGlobalProcedureOnTrigger

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Tags Database functions >

SetTagValue
Sets the value of the specified tag in the project tags database.

Function Group Execution Windows Embedded Thin Client

SetTagValue Tags Database Synchronous Supported Supported Supported

Syntax

SetTagValue("strTagName", TagValue)

strTagName

The name of the tag that you want to set.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

TagValue

The new value to be set to the specified tag.

Returned value

Value Description

- 1 Invalid tag name

0 No error

Examples

Tag Name Expression

TagA SetTagValue("TagA", "Hello") // Return = Hello

TagA SetTagValue("TagA", 123) // Return = 123

TagA TagB
= 15

SetTagValue("TagA", TagB) // Return = 15

Parent topic: Tags Database functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Loop functions
These functions are used to implement repeating, incrementing loop within a script.

For … Next
Implements a For … Next loop within a Math worksheet or Command animation. The section of
the script affected by the loop begins with the For() function call and ends with the Next
notation. The Next notation directs back to the beginning of the loop.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Loop functions >

For … Next
Implements a For … Next loop within a Math worksheet or Command animation. The section of the
script affected by the loop begins with the For() function call and ends with the Next notation. The
Next notation directs back to the beginning of the loop.

Function Group Execution Windows Embedded Thin Client

For Loop N/A Supported Supported Supported

Syntax

For(numInitialValue, numFinalValue, numStep) … Next

numInitialValue

The initial step (increment) of the loop.

numFinalValue

The final step (increment) of the loop.

numStep

The step (increment) of the loop.

Returned value

Returns the step on which the loop is currently running.

Examples

Tag Name Expression

Tag For(1, 5, 1)

Next

Note: You must partner every For function with a Next notation. As shown in the example, you
must place the Next notation in the tag field of the math script.

Parent topic: Loop functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

ODBC functions
These functions are used interact with an external database via Open Database Connectivity (ODBC).

Note: These functions are provided to support legacy database interfaces. In most cases, we
recommend that you use the newer Database/ERP connections manager and functions.

ODBCBeginTrans
Begins a transaction with the connected data source.

ODBCBindCol
Binds a column to a tag.

ODBCCanAppend
Returns whether the database will allow you to add new records.

ODBCCanTransact
Returns whether the database allows transactions.

ODBCCanUpdate
Returns whether the database can be updated.

ODBCClose
Closes a connection to the database.

ODBCCommitTrans
Commits a transaction. Call this function upon completing transactions.

ODBCDelete
Deletes the current record.

ODBCExecuteSQL
Directly executes an SQL statement.

ODBCInsert
Inserts a new record in the database.

ODBCIsBOF
Returns whether you have gone above the first record of the record set. (Call this function
before scrolling from record to record.)

ODBCIsDeleted

Reports whether the current record was deleted.

ODBCIsEOF
Reports whether you have gone beyond the last record of the record set. (Call this function as
you scroll from record to record.)

ODBCIsFieldNULL
Reports whether a specified field in a record set was flagged as NULL.

ODBCIsFieldNullable
Reports whether a specified field is nullable (i.e., can be set to a NULL value).

ODBCMove
Moves the current record pointer within a record set, either forward or backward.

ODBCMoveFirst
Moves to the first record within the record set.

ODBCMoveLast
Moves to the last record within the record set.

ODBCMoveNext
Moves to the next record within the record set.

ODBCMovePrev
Moves to the next record within the record set.

ODBCOpen
Opens a connection to the database and returns a numeric handler to be used by other ODBC
functions.

ODBCQuery
Retrieves the currently selected record from a database.

ODBCRollBack
Reverses the changes made during a transaction.

ODBCSetFieldNULL
Flags a field data member in the record set as NULL (specifically having no value) or as non-NULL.

ODBCSetFilter
Constrains the records selected in a database.

ODBCSetSort
Sorts the records selected in a database.

ODBCUnbindCol
Unbinds a column that was previously bound using the ODBCBindCol function.

ODBCUpdate
Updates the current record.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCBeginTrans
Begins a transaction with the connected data source.

Function Group Execution Windows Embedded Thin Client

ODBCBeginTrans ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Success

1 Invalid handler

2 Database not open

3 Error beginning
transaction

Examples

Tag Name Expression

Tag ODBCBeginTrans(5)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCBindCol
Binds a column to a tag.

Function Group Execution Windows Embedded Thin Client

ODBCBindCol ODBC Synchronous Supported Not supported Executed on Server

Syntax

ODBCBindCol(numHandler, strColName, strColType, strTagName)

numHandler

The handler returned by the ODBCOpen function.

strColName

The Database column name.

strColType

The SQL data type (one of the following):

SQL_BIT

SQL_TINYINT

SQL_LONGVARCHAR

SQL_CHAR

SQL_VARCHAR

SQL_DECIMAL

SQL_NUMERIC

SQL_DATE

SQL_TIME

SQL_TIMESTAMP

SQL_DOUBLE

SQL_REAL

SQL_SMALLINT

SQL_INTEGER

strTagName

The name of the tag to bind to the column.

Returned value

0 Success

1 Invalid Handler

2 Invalid parameter type

3 One of the parameters has an empty
string

4 ColType contains an invalid type

Notes

Every time you finish binding columns, you must call the ODBCQuery function.

Examples

Tag Name Expression

Tag ODBCBindCol(5, "OrderDate", "SQL_DATE", "Order_Date"

)

See also: ODBCUnbindCol()

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCCanAppend
Returns whether the database will allow you to add new records.

Function Group Execution Windows Embedded Thin Client

ODBCCanAppend ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Database does not allow appending new records

Non-
Zero

Database does allow appending new records

Examples

Tag Name Expression

Tag ODBCCanAppend(5)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCCanTransact
Returns whether the database allows transactions.

Function Group Execution Windows Embedded Thin Client

ODBCCanTransact ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Database does not allow transactions.

Non-
Zero

Database does allow transactions.

Examples

Tag Name Expression

Tag ODBCCanTransact(2)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCCanUpdate
Returns whether the database can be updated.

Function Group Execution Windows Embedded Thin Client

ODBCCanUpdate ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Database does not allow updates.

Non-
Zero

Database does allow updates.

Examples

Tag Name Expression

Tag ODBCCanUpdate(6)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCClose
Closes a connection to the database.

Function Group Execution Windows Embedded Thin Client

ODBCClose ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Success

1 Invalid
Handler

Examples

Tag Name Expression

Tag ODBCClose(5)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCCommitTrans
Commits a transaction. Call this function upon completing transactions.

Function Group Execution Windows Embedded Thin Client

ODBCCommitTrans ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Success

1 Invalid handler

2 Database not open

3 Error committing
transaction

Examples

Tag Name Expression

Tag ODBCCommitTrans(1)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCDelete
Deletes the current record.

Function Group Execution Windows Embedded Thin Client

ODBCDelete ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Success

1 Invalid handler

2 Database not
open

3 Delete error

Notes

After a successful deletion, you must explicitly call one of the "move" functions (i.e., ODBCMove,
ODBCMoveFirst, ODBCMoveLast, ODBCMoveNext, ODBCMovePrev) to move off the deleted record.

Examples

Tag Name Expression

Tag ODBCDelete(5)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCExecuteSQL
Directly executes an SQL statement.

Group Execution Windows PC Windows CE Thin Client

ODBC Synchronous Supported Not
supported

Executed
on Server

Syntax

ODBCExecuteSQL(numHandler, strSqlCommand)

numHandler

The handler returned by the ODBCOpen function.

strSqlCommand

A valid SQL statement.

Returned value

0 Success

1 Invalid handler

2 Database not open

3 Invalid parameter

4 Error executing SQL
command

Note: This function does not return any records, regardless of the statement that is executed.

Examples

Tag Name Expression

Tag ODBCExecuteSQL(3, ")

Tag ODBCExecuteSQL(4, ")

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCInsert
Inserts a new record in the database.

Function Group Execution Windows Embedded Thin Client

ODBCInsert ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Success

1 Invalid handler

2 Database not
open

3 Insert error

Notes

This function uses the values of the tags bound by the ODBCBindCol function to create the new
record.

Examples

Tag Name Expression

Tag ODBCInsert(7)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCIsBOF
Returns whether you have gone above the first record of the record set. (Call this function before
scrolling from record to record.)

Function Group Execution Windows Embedded Thin Client

ODBCIsBOF ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Record found

non-zero Record set contains no records or you move backward, above the first
record

You also can use this function along with the ODBCIsEOF function to determine whether the record
set contains any records or is empty. Immediately after calling the ODBCQuery function, and if the
record set contains no records, ODBCIsBOF returns non-zero. When you open a record set with at
least one record, the first record is the current record and ODBCIsBOF returns a zero (0). If the first
record is the current record, and you call ODBCMovePrev, ODBCIsBOF will subsequently return a
non-zero.

Examples

Tag Name Expression

Tag ODBCIsBOF(1)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCIsDeleted
Reports whether the current record was deleted.

Function Group Execution Windows Embedded Thin Client

ODBCIsDeleted ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Record set is not positioned on a deleted record.

non-
zero

Record set is positioned on a deleted record.

If you move to a record and this function returns a non-zero, then you must move to another record
before you can perform any other operations.

Examples

Tag Name Expression

Tag ODBCIsDeleted(8)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCIsEOF
Reports whether you have gone beyond the last record of the record set. (Call this function as you
scroll from record to record.)

Function Group Execution Windows Embedded Thin Client

ODBCIsEOF ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Record found.

non-zero Record set contains no records or you moved forward, after the last
record.

You can use this function along with the ODBCIsBOF function to determine whether the record set
contains any records or is empty. Immediately after calling the ODBCQuery function, and if the
record set contains no records, ODBCIsBOF returns non-zero. When you open a record set with at
least one record, the first record is the current record and ODBCIsEOF returns a zero (0). If the last
record is the current record, and you call ODBCMoveNext, ODBCIsEOF will subsequently return a
non-zero.

Examples

Tag Name Expression

Tag ODBCIsEOF(5)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCIsFieldNULL
Reports whether a specified field in a record set was flagged as NULL.

Function Group Execution Windows Embedded Thin Client

ODBCIsFieldNULL ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

strColName

The column name.

Returned value

0 The specified field is not flagged as Null.

Non-
Zero

The specified field is flagged as Null.

Examples

Tag Name Expression

Tag ODBCIsFieldNULL(7, "CustomerName")

Tag ODBCIsFieldNULL(3, "CompanyName")

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCIsFieldNullable
Reports whether a specified field is nullable (i.e., can be set to a NULL value).

Function Group Execution Windows Embedded Thin Client

ODBCIsFieldNullable ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

strColName

The column name.

Returned value

0 The specified field is not flagged as Nullable.

Non-
Zero

The specified field is flagged as Nullable.

Examples

Tag Name Expression

Tag ODBCIsFieldNullable(1, "Price")

Tag ODBCIsFieldNullable(1, "Model")

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCMove
Moves the current record pointer within a record set, either forward or backward.

Function Group Execution Windows Embedded Thin Client

ODBCMove ODBC Synchronous Supported Not supported Executed on Server

Description

Moves the current record pointer within a record set, either forward or backward.

Syntax

numHandler

The handler returned by the ODBCOpen function.

numOffset

The number of rows to move forward or backward:

Positive values move forward, toward the end of the record set.

Negative values move backward, toward the beginning of the record set.

A value of 0 refreshes the current record.

Returned value

0 Success

1 Invalid handler

2 Database not
open

3 Move error

Examples

Tag Name Expression

Tag ODBCMove(2, 3)

Tag ODBCMove(8, 2)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCMoveFirst
Moves to the first record within the record set.

Function Group Execution Windows Embedded Thin Client

ODBCMoveFirst ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Success.

1 Invalid handler.

2 Database not
open.

3 Move error.

Examples

Tag Name Expression

Tag ODBCMoveFirst(4)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCMoveLast
Moves to the last record within the record set.

Function Group Execution Windows Embedded Thin Client

ODBCMoveLast ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Success

1 Invalid handler

2 Database not
open

3 Move error

Examples

Tag Name Expression

Tag ODBCMoveLast(7)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCMoveNext
Moves to the next record within the record set.

Function Group Execution Windows Embedded Thin Client

ODBCMoveNext ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Success

1 Invalid handler

2 Database not open

3 End of record set
reached

4 Move error

Examples

Tag Name Expression

Tag ODBCMoveNext(9)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCMovePrev
Moves to the next record within the record set.

Function Group Execution Windows Embedded Thin Client

ODBCMovePrev ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Success

1 Invalid handler

2 Database not open

3 Beginning of record set
reached

4 Move error

Examples

Tag Name Expression

Tag ODBCMovePrev(2)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCOpen
Opens a connection to the database and returns a numeric handler to be used by other ODBC
functions.

Function Group Execution Windows Embedded Thin Client

ODBCOpen ODBC Synchronous Supported Not supported Executed on Server

Syntax

ODBCOpen(strDsn, strUser, strPassw, strTable, strFilter, strSort)

strDsn

The name of the data source.

strUser

The user name.

strPassw

The password.

strTable

The name of the database table

strFilter

The SQL WHERE clause.

strSort

The SQL ORDER BY clause.

Returned value

n On success, returns the handler to identify the
database

- 1 Invalid parameter

- 2 DSN or TableName contain an empty string

Notes

This function does not read or write any data; it simply creates a handle to manipulate the database.
You must bind the columns using the ODBCBindCol function, and then you must call the ODBCQuery
function to retrieve the first record.

Examples

Tag Name Expression

Tag ODBCOpen("MyDSNFile", "Alex", "", "Table1", "Name='Mayer'", "Name

ASC")

Tag ODBCOpen("DSNFileName", "Robert", "Robot", "Table1", "", "")

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCQuery
Retrieves the currently selected record from a database.

Function Group Execution Windows Embedded Thin Client

ODBCQuery ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Success

1 Invalid handler

2 No columns bound

3 Cannot open
database

4 Cannot restart
database

5 Query error

Notes

If you modify the column binding, or if you modify the filter and sort, then you must call this function
again.

Examples

Tag Name Expression

Tag ODBCQuery(6)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCRollBack
Reverses the changes made during a transaction.

Function Group Execution Windows Embedded Thin Client

ODBCRollBack ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Success

1 Invalid handler

2 Database no open

3 Error rolling back
transaction

Examples

Tag Name Expression

Tag ODBCRollback(4)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCSetFieldNULL
Flags a field data member in the record set as NULL (specifically having no value) or as non-NULL.

Function Group Execution Windows Embedded Thin Client

ODBCSetFieldNULL ODBC Synchronous Supported Not supported Executed on Server

Syntax

ODBCSetFieldNULL(numHandler, strColName, numValue)

numHandler

The handler returned by the ODBCOpen function.

strColName

The column name.

numValue

A numeric tag that specifies the field data as NULL if 0 and non-NULL if non-zero.

Returned value

0 Success

1 Invalid handler

2 Database not open

3 Invalid parameter

4 Invalid column
name

Examples

Tag Name Expression

Tag ODBCSetFieldNULL(2, "Price", 1)

Tag ODBCSetFieldNULL(4, "CompanyName", 0)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCSetFilter
Constrains the records selected in a database.

Function Group Execution Windows Embedded Thin Client

ODBCSetFilter ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

strFilter

The a SQL WHERE clause.

Returned value

0 Success

1 Invalid handler

2 Invalid
parameter

Notes

You may find this function useful for selecting a subset of records, such as "all salespersons based in
California" ("state = 'CA'"). Remember to call ODBCQuery after calling this function.

Examples

Tag Name Expression

Tag ODBCSetFilter(3, "Name='Morgan'")

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCSetSort
Sorts the records selected in a database.

Function Group Execution Windows Embedded Thin Client

ODBCSetSort ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

strSort

The SQL ORDER BY clause.

Returned value

0 Success

1 Invalid handler

2 Invalid parameter
type

Notes

You can use this feature to sort the records in one or more columns. Remember to call ODBCQuery
after calling this function.

Examples

Tag Name Expression

Tag ODBCSetSort(5, "Name DESC")

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCUnbindCol
Unbinds a column that was previously bound using the ODBCBindCol function.

Function Group Execution Windows Embedded Thin Client

ODBCUnbindCol ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

strColName

The column name.

Returned value

0 Success

1 Invalid handler

2 Invalid parameter
type

3 Column not bound

Examples

Tag Name Expression

Tag ODBCUnbindCol(7, "Name")

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ODBC functions >

ODBCUpdate
Updates the current record.

Function Group Execution Windows Embedded Thin Client

ODBCUpdate ODBC Synchronous Supported Not supported Executed on Server

Syntax

numHandler

The handler returned by the ODBCOpen function.

Returned value

0 Success

1 Invalid handler

2 Database not
open

3 Update error

Notes

This function uses the values of the tags bound by the ODBCBindCol function to update the current
record.

Examples

Tag Name Expression

Tag ODBCUpdate(1)

Parent topic: ODBC functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Email functions
These functions are used to configure and send email from within a project.

CnfEmail
This function configures the email settings used by other features in the project that can send
email, such as Alarm worksheets and the SendEmail and SendEmailExt functions.

GetStatusSendEmailExt
Returns status of the last email sent using the SendEmailExt function.

SendEmail
This function sends an email message.

SendEmailExt
Sends e-mail messages with attached files.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Email functions >

CnfEmail
This function configures the email settings used by other features in the project that can send email, such as Alarm
worksheets and the SendEmail and SendEmailExt functions.
CnfEmail
Email
Synchronous
Supported
Supported
Supported

Function Group Execution Windows Embedded Thin Client

Syntax

strSMTP

The hostname or IP address of the outgoing email server, which is also known as the SMTP server. You can include
a port number if the server does not use one of the standard SMTP ports.

Note: For projects that will run on Windows Embedded devices, you must specify an IP address.

strFrom

The email address from which emails will be sent and at which emails may be received. This should be a valid
address on the POP3 server (see strPOP3 below).

strPOP3

The hostname or IP address of the incoming email server, which is also known as the POP3 server. You can include
a port number if the server does not use one of the standard POP3 ports.

Note: For projects that will run on Windows Embedded devices, you must specify an IP address.

strUser

The username to be used to log onto the POP3 server.

strPassword

The password to be used to log onto the POP3 server.

optNumTimeout

The timeout limit (in seconds) to be used when sending email. If no response is received from the SMTP server
within this period of time, then the operation is aborted.

This is an optional parameter; if no timeout is specified, then the project will keep trying forever until it receives a
response. You should specify some timeout, however, to make sure that your project won't freeze.

optNumAuthType

optStrSMTPUser

optStrSMTPPassword

By default, SMTP servers do not require authentication for outgoing email. If your server does require
authentication, set optNumAuthType to 1 and then specify the username and password.

Please note that if your SMTP username and password are the same as your POP3 username and password, then
you can skip optStrSMTPUser and optStrSMTPPassword . The project will automatically use the values from
strUser and strPassword .

Returned value
0
Success
1
Invalid format for strSMTP
2
Invalid format for strFrom
3
Invalid format for strPOP3
4
Invalid format for strUser
5
Invalid format for strPassword
6
Invalid format for optNumTimeout
7
Wrong number of parameters
8
Error getting host IP address (invalid POP3 server)
9
Error connecting to POP3 server
10
Error sending username
11
Error sending password
12
SMTP server does not support selected authentication mode
13
Invalid SMTP username

14
Authentication failed

Value Description

Notes

The email configuration created by this function works only within the Windows process where the function was called.

For example, if you place a Button object in a screen and then set the object to call this function when it is pressed, then
the resulting email configuration will work only on the Client station where the screen is displayed and the button is
pressed. It will not work on any other Client stations nor on the Server station, because the project viewer running on the
Client station only exchanges data (i.e., changes in tag values) with the data server running on the Server station. One
cannot directly call functions on the other; it can only use triggers to force the other to call functions. Please note that is
true even when the Client station and the Server station are the same physical device, because the project viewer and the
data server are still two separate processes in Windows.

If you want an email configuration to apply to your project's Background Task — for example, to be able to send emails
when alarms become active — then you must call this function in some place like the project's Startup Script , a Script
Group , or a Math worksheet .

Examples

CnfEmail("smtp.company.com", "Robert@company.com", "pop.company.com", "RobertH", "Shades556", 100)

CnfEmail("smtp.company.com:4455", "Robert@company.com", "pop.company.com:9900", "RobertH", "Shades556", 5, 1)

CnfEmail("195.11.22.33:4455", "Robert@company.com", "195.66.77.88:9900", "RobertH", "Shades556", 5, 1, "JohnS", "abcd1234")

Parent topic: Email functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Email functions >

GetStatusSendEmailExt
Returns status of the last email sent using the SendEmailExt function.

Function Group Execution Windows Embedded Thin Client

GetStatusSendEmailExt Email Synchronous Supported Supported Supported

Syntax

optTagName

Optional tag that causes the function to update its return value. This parameter is optional but
you must use it when configuring this function for an object animation (e.g., Text Data Link,
Position).

Returned value

- 2 Incorrect version of the INDMail.DLL library.

- 1 The INDMail.DLL library is corrupted.

0 SendEmailExt function is not being executed.

1 Still sending last email. Cannot execute the SendEmailExt function.

2 Last email was sent successfully. You can execute the SendEmailExt
function again.

3 There was an error sending the last email. Execute the SendEmailExt
function again.

Examples

Tag Name Expression

Tag GetStatusSendEmailExt(Second)

Tag GetStatusSendEmailExt()

Parent topic: Email functions

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Email functions >

SendEmail
This function sends an email message.

Function Group Execution Windows Embedded Thin Client

SendEmail Email Synchronous Supported Supported Supported

Syntax

strSubject

The subject of the email.

strMessage

The message body of the email, up to 255 characters long.

strTo

The email address of the intended recipient.

Returned value

Value Description

0 Success

1 Invalid format for strSubject

2 Invalid format for strMessage

3 Invalid format for strTo

4 Wrong number of parameters

5 Start Socket error

6 Error getting host IP Address (i.e., invalid SMTP
server)

7 Error connecting to SMTP server

8 Error sending HELO command (i.e., initialization)

9 Error sending MAIL command (i.e., the "From"
address)

Value Description

10 Error sending RCPT command (i.e., the "To"
address)

11 Error sending DATA (i.e., the message body)

12 Error sending SMTP authentication command

13 Invalid username

14 Invalid password

Notes

Before you can send any email, you must first use the CnfEmail function to configure the email
settings. Incorrect settings can result in several different error codes (see "Returned value" above).

Also, SendEmail cannot be used to send an email that contains Unicode characters. To do that, use
the SendEmailExt function instead.

Examples

SendEmail("Hi!", "How are you?", "rogers@pnd.net")

SendEmail(statusSummary, statusDetail, adminAddress)

Parent topic: Email functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

10 Error sending RCPT command (i.e., the "To"
address)

11 Error sending DATA (i.e., the message body)

12 Error sending SMTP authentication command

13 Invalid username

14 Invalid password

Notes

Before you can send any email, you must first use the CnfEmail function to configure the email
settings. Incorrect settings can result in several different error codes (see "Returned value" above).

Also, SendEmail cannot be used to send an email that contains Unicode characters. To do that, use
the SendEmailExt function instead.

Examples

SendEmail("Hi!", "How are you?", "rogers@pnd.net")

SendEmail(statusSummary, statusDetail, adminAddress)

Parent topic: Email functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Email functions >

SendEmailExt
Sends e-mail messages with attached files.

Function Group Execution Windows Embedded Thin Client

SendEmailExt Email Asynchronous Supported Supported Supported

Syntax

SendEMailExt(strSubject, strMessage, strTo, optStrCc, optStrBcc, optStrFile1, … , optStrFileN)

strSubject

The e-mail subject (up to 255 characters).

strMessage

The e-mail message (up to 255 characters).

strTo

The recipient's address. You can specify more than one recipient, using a semicolon (;) to
separate the addresses.

optStrCc

The recipients' addresses to be Cc'ed. You can specify more than one recipient, using a
semicolon (;) to separate the addresses.

This is an optional parameter, but if you need to use subsequent parameters, then you can
specify a null string ("") here.

optStrBcc

The recipients' addresses to be Bcc'ed. You can specify more than one recipient, using a
semicolon (;) to separate the addresses.

This is an optional parameter, but if you need to use subsequent parameters, then you can
specify a null string ("") here.

optStrFile (1-N)

Complete file paths and names of file attachments.

Returned value

- 4 Some of the attached files were not found.

- 3 Wrong number of parameters (at least three parameters are
required).

- 2 The INDMail.DLL library version is incorrect.

- 1 The INDMail.DLL library is corrupted.

0 Success

1 Cannot execute the function because the last e-mail has not been
sent yet.

2 Internal error

Notes

Before you can send any email, you must first use the CnfEmail function to configure the email
settings. Incorrect settings can result in several different error codes (see "Returned value" above).

Examples

Tag Name Expression

Tag SendEmailExt("Subject", "Message", "Sam@universe.com", "", "", "C:\Projects

eport.txt")

Tag SendEmailExt("Subject", "Message", "David@Ohio.net", "Ted@Austin.com",

"Bart@Springfield.gov", "C:\TechRef51.doc")

Parent topic: Email functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Dial-up functions
These functions are used to configure the computer's modem (if any) and establish dial-up
connections to other computers.

Note: These functions are not supported on Windows 7.

DialError
Returns the error codes regarding each connection.

DialGetClientIP
This function gets the IP address of a Remote Access Service (RAS) client station.

DialGetServerIP
DialGetServerIP is a built-in scripting function that gets the IP address of a Remote Access
Service (RAS) server station.

DialStatus
Returns the status of the dial-up connection.

DialUp
Establishes a dial-up connection.

DialUpToCE
Runs the DialUpToCE program, which sends the information necessary to CERasSvr.exe calls back
to the Server.

FindAllDevices
Returns the list of all the available modems and direct connection interfaces (COM ports) in the
local station.

FindModem
Returns the list of all available modems in the local station.

HangUp
Hangs-up a dial-up connection.

PhoneDialUp
Dials to a phone number using Telephony Application Program Interface (TAPI).

PhoneDisableListen
Stops listening to the modem for incoming calls.

PhoneEnableListen
Resumes listening to the modem for incoming calls.

PhoneHangUp
Hangs up a dial-up connection previously established with the PhoneDialUp function.

PhoneStatus

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

DialError
Returns the error codes regarding each connection.

Function Group Execution Windows Embedded Thin Client

DialError Dial-up Synchronous Supported (see note) Supported Supported

Syntax

DialError(numType, strPhonebookEntryOrModem, "optError", optRefresh)

numType

A numeric flag that specifies the content of the strPhonebookEntryorModem parameter.

0: Phonebook Name

1: Modem Name

2: Direct Connection Name

strPhonebookEntryOrModem

The Phonebook Name, Modem Name, or Direct Connection Name used to make the connection.
The numType parameter specifies which of these methods is used.

optError

Optional The name of the string tag receiving the Error Message.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

optRefresh

Optional tag, which causes the function to update its return value. This parameter is optional
but you must use it when configuring this function for an object animation (e.g., Text Data
Link, Position).

Returned value

Value Description

0 OK

Value Description

- 1 Error: INDRas.DLL not found.

- 2 Error: INDRas.DLL damaged.

- 3 Error: invalid number of parameters (minimum=2).

-4 Invalid value for the numType parameter (0 or 1).

-5 PhoneBook or Modem does not exist.

600 An operation is pending.

601 The port handle is invalid.

602 The port is already open.

603 Caller's buffer is too small.

604 Wrong information specified.

605 Cannot set port information.

606 The port is not connected

607 The event is invalid.

608 The device does not exist.

609 The device type does not exist.

610 The buffer is invalid.

611 The route is not available.

612 The route is not allocated.

613 Invalid compression specified.

614 Out of buffers.

615 The port was not found.

616 An asynchronous request is pending.

617 The port or device is already disconnecting.

618 The port is not open.

619 The port is disconnected.

620 There are no endpoints.

621 Cannot open the phone book file.

622 Cannot load the phone book file.

623 Cannot find the phone book entry.

624 Cannot write the phone book file.

625 Invalid information found in the phone book file.

626 Cannot load a string.

- 1 Error: INDRas.DLL not found.

- 2 Error: INDRas.DLL damaged.

- 3 Error: invalid number of parameters (minimum=2).

-4 Invalid value for the numType parameter (0 or 1).

-5 PhoneBook or Modem does not exist.

600 An operation is pending.

601 The port handle is invalid.

602 The port is already open.

603 Caller's buffer is too small.

604 Wrong information specified.

605 Cannot set port information.

606 The port is not connected

607 The event is invalid.

608 The device does not exist.

609 The device type does not exist.

610 The buffer is invalid.

611 The route is not available.

612 The route is not allocated.

613 Invalid compression specified.

614 Out of buffers.

615 The port was not found.

616 An asynchronous request is pending.

617 The port or device is already disconnecting.

618 The port is not open.

619 The port is disconnected.

620 There are no endpoints.

621 Cannot open the phone book file.

622 Cannot load the phone book file.

623 Cannot find the phone book entry.

624 Cannot write the phone book file.

625 Invalid information found in the phone book file.

626 Cannot load a string.

Value Description

627 Cannot find key.

628 The port was disconnected.

629 The data link was terminated by the remote machine.

630 The port was disconnected due to hardware failure.

631 The port was disconnected by the user.

632 The structure size is incorrect.

633 The port is already in use or is not configured for Remote Access dial out.

634 Cannot register your computer on on the remote network.

635 Unknown error.

636 The wrong device is attached to the port.

637 The string could not be converted.

638 The request has timed out.

639 No asynchronous net available.

640 A NetBIOS error occurred.

641 The server cannot allocate NetBIOS resources needed to support the client.

642 One of your NetBIOS names is already registered on the remote network.

643 A network adapter at the server failed.

644 You will not receive network message pop-ups.

645 Internal authentication error.

646 The account is not permitted to log on at this time of day.

647 The account is disabled.

648 The password has expired.

649 The account does not have Remote Access permission.

650 The Remote Access server is not responding.

651 Your modem (or other connecting device) has reported an error.

652 Unrecognized response from the device.

653 A macro required by the device was not found in the device .INF file section.

654 A command or response in the device .INF file section refers to an undefined acro.

655 The <message macro was not found in the device .INF file secion.

656 The <defaultoff macro in the device .INF file section contains an undefined macro.

657 The device .INF file could not be opened.

658 The device name in the device .INF or media .INI file is too long.

627 Cannot find key.

628 The port was disconnected.

629 The data link was terminated by the remote machine.

630 The port was disconnected due to hardware failure.

631 The port was disconnected by the user.

632 The structure size is incorrect.

633 The port is already in use or is not configured for Remote Access dial out.

634 Cannot register your computer on on the remote network.

635 Unknown error.

636 The wrong device is attached to the port.

637 The string could not be converted.

638 The request has timed out.

639 No asynchronous net available.

640 A NetBIOS error occurred.

641 The server cannot allocate NetBIOS resources needed to support the client.

642 One of your NetBIOS names is already registered on the remote network.

643 A network adapter at the server failed.

644 You will not receive network message pop-ups.

645 Internal authentication error.

646 The account is not permitted to log on at this time of day.

647 The account is disabled.

648 The password has expired.

649 The account does not have Remote Access permission.

650 The Remote Access server is not responding.

651 Your modem (or other connecting device) has reported an error.

652 Unrecognized response from the device.

653 A macro required by the device was not found in the device .INF file section.

654 A command or response in the device .INF file section refers to an undefined acro.

655 The <message macro was not found in the device .INF file secion.

656 The <defaultoff macro in the device .INF file section contains an undefined macro.

657 The device .INF file could not be opened.

658 The device name in the device .INF or media .INI file is too long.

Value Description

659 The media .INI file refers to an unknown device name.

660 The device .INF file contains no responses for the command.

661 The device.INF file is missing a command.

662 Attempted to set a macro not listed in device .INF file section.

663 The media .INI file refers to an unknown device type.

664 Cannot allocate memory.

665 The port is not configured for Remote Access.

666 Your modem (or other connecting device) is not functioning.

667 Cannot read the media .INI file.

668 The connection dropped.

669 The usage parameter in the media .INI file is invalid.

670 Cannot read the section name from the media .INI file.

671 Cannot read the device type from the media .INI file.

672 Cannot read the device name from the media .INI file.

673 Cannot read the usage from the media .INI file.

674 Cannot read the maximum connection BPS rate from the media .INI file.

675 Cannot read the maximum carrier BPS rate from the media .INI file.

676 The line is busy.

677 A person answered instead of a modem.

678 There is no answer.

679 Cannot detect carrier.

680 There is no dial tone.

681 General error reported by device.

682 ERROR_WRITING_SECTIONNAME

683 ERROR_WRITING_DEVICETYPE

684 ERROR_WRITING_DEVICENAME

685 ERROR_WRITING_MAXCONNECTBPS

686 ERROR_WRITING_MAXCARRIERBPS

687 ERROR_WRITING_USAGE

688 ERROR_WRITING_DEFAULTOFF

689 ERROR_READING_DEFAULTOFF

690 ERROR_EMPTY_INI_FILE

659 The media .INI file refers to an unknown device name.

660 The device .INF file contains no responses for the command.

661 The device.INF file is missing a command.

662 Attempted to set a macro not listed in device .INF file section.

663 The media .INI file refers to an unknown device type.

664 Cannot allocate memory.

665 The port is not configured for Remote Access.

666 Your modem (or other connecting device) is not functioning.

667 Cannot read the media .INI file.

668 The connection dropped.

669 The usage parameter in the media .INI file is invalid.

670 Cannot read the section name from the media .INI file.

671 Cannot read the device type from the media .INI file.

672 Cannot read the device name from the media .INI file.

673 Cannot read the usage from the media .INI file.

674 Cannot read the maximum connection BPS rate from the media .INI file.

675 Cannot read the maximum carrier BPS rate from the media .INI file.

676 The line is busy.

677 A person answered instead of a modem.

678 There is no answer.

679 Cannot detect carrier.

680 There is no dial tone.

681 General error reported by device.

682 ERROR_WRITING_SECTIONNAME

683 ERROR_WRITING_DEVICETYPE

684 ERROR_WRITING_DEVICENAME

685 ERROR_WRITING_MAXCONNECTBPS

686 ERROR_WRITING_MAXCARRIERBPS

687 ERROR_WRITING_USAGE

688 ERROR_WRITING_DEFAULTOFF

689 ERROR_READING_DEFAULTOFF

690 ERROR_EMPTY_INI_FILE

Value Description

691 Access denied because username and/or password is invalid on the domain.

692 Hardware failure in port or attached device.

693 ERROR_NOT_BINARY_MACRO

694 ERROR_DCB_NOT_FOUND

695 ERROR_STATE_MACHINES_NOT_STARTED

696 ERROR_STATE_MACHINES_ALREADY_STARTED

697 ERROR_PARTIAL_RESPONSE_LOOPING

698 A response keyname in the device .INF file is not in the expected format.

699 The device response caused buffer overflow.

700 The expanded command in the device .INF file is too long.

701 The device moved to a BPS rate not supported by the COM driver.

702 Device response received when none expected.

703 The Application does not allow user interaction the connection requires interaction
with the user to complete successfully

704 ERROR_BAD_CALLBACK_NUMBER

705 ERROR_INVALID_AUTH_STATE

706 ERROR_WRITING_INITBPS

707 X.25 diagnostic indication.

708 The account has expired.

709 Error changing password on domain The password may be too short or may match
a previously used password.

710 Serial overrun errors were detected while communicating with your modem.

711 RasMan initialization failure Check the event log.

712 Biplex port initializing Wait a few seconds and redial.

713 No active ISDN lines are available.

714 No ISDN channels are available to make the call.

715 Too many errors occurred because of poor phone line quality.

716 The Remote Access IP configuration is unusable.

717 No IP addresses are available in the static pool of Remote Access IP addresses.

718 Timed out waiting for a valid response from the remote PPP peer.

719 PPP terminated by remote machine.

720 No PPP control protocols configured.

721 Remote PPP peer is not responding.

691 Access denied because username and/or password is invalid on the domain.

692 Hardware failure in port or attached device.

693 ERROR_NOT_BINARY_MACRO

694 ERROR_DCB_NOT_FOUND

695 ERROR_STATE_MACHINES_NOT_STARTED

696 ERROR_STATE_MACHINES_ALREADY_STARTED

697 ERROR_PARTIAL_RESPONSE_LOOPING

698 A response keyname in the device .INF file is not in the expected format.

699 The device response caused buffer overflow.

700 The expanded command in the device .INF file is too long.

701 The device moved to a BPS rate not supported by the COM driver.

702 Device response received when none expected.

703 The Application does not allow user interaction the connection requires interaction
with the user to complete successfully

704 ERROR_BAD_CALLBACK_NUMBER

705 ERROR_INVALID_AUTH_STATE

706 ERROR_WRITING_INITBPS

707 X.25 diagnostic indication.

708 The account has expired.

709 Error changing password on domain The password may be too short or may match
a previously used password.

710 Serial overrun errors were detected while communicating with your modem.

711 RasMan initialization failure Check the event log.

712 Biplex port initializing Wait a few seconds and redial.

713 No active ISDN lines are available.

714 No ISDN channels are available to make the call.

715 Too many errors occurred because of poor phone line quality.

716 The Remote Access IP configuration is unusable.

717 No IP addresses are available in the static pool of Remote Access IP addresses.

718 Timed out waiting for a valid response from the remote PPP peer.

719 PPP terminated by remote machine.

720 No PPP control protocols configured.

721 Remote PPP peer is not responding.

Value Description

722 The PPP packet is invalid.

723 The phone number including prefix and suffix is too long.

724 The IPX protocol cannot dial-out on the port because the machine is an IPX router.

725 The IPX protocol cannot dial-in on the port because the IPX router is not installed

726 The IPX protocol cannot be used for dial-out on more than one port at a time.

727 Cannot access TCPCFG.DLL.

728 Cannot find an IP adapter bound to Remote Access.

729 SLIP cannot be used unless the IP protocol is installed.

730 Computer registration is not complete.

731 The protocol is not configured.

732 The PPP negotiation is not converging.

733 The PPP control protocol for this network protocol is not available on the server.

734 The PPP link control protocol terminated.

735 The requested address was rejected by the server.

736 The remote computer terminated the control protocol.

737 Loopback detected.

738 The server did not assign an address.

739 The authentication protocol required by the remote server cannot use the
Windows NT encrypted password Redial, entering the password explicitly.

740 Invalid TAPI configuration.

741 The local computer does not support the required encryption type.

742 The remote computer does not support the required encryption type.

743 The remote computer requires encryption.

744 Cannot use the IPX network number assigned by remote server Check the event
log.

745 ERROR_INVALID_SMM

746 ERROR_SMM_UNINITIALIZED

747 ERROR_NO_MAC_FOR_PORT

748 ERROR_SMM_TIMEOUT

749 ERROR_BAD_PHONE_NUMBER

750 ERROR_WRONG_MODULE

751 Invalid callback number Only the characters 0 to 9, T, P, W, (,), -, @, and space are
allowed in the number.

722 The PPP packet is invalid.

723 The phone number including prefix and suffix is too long.

724 The IPX protocol cannot dial-out on the port because the machine is an IPX router.

725 The IPX protocol cannot dial-in on the port because the IPX router is not installed

726 The IPX protocol cannot be used for dial-out on more than one port at a time.

727 Cannot access TCPCFG.DLL.

728 Cannot find an IP adapter bound to Remote Access.

729 SLIP cannot be used unless the IP protocol is installed.

730 Computer registration is not complete.

731 The protocol is not configured.

732 The PPP negotiation is not converging.

733 The PPP control protocol for this network protocol is not available on the server.

734 The PPP link control protocol terminated.

735 The requested address was rejected by the server.

736 The remote computer terminated the control protocol.

737 Loopback detected.

738 The server did not assign an address.

739 The authentication protocol required by the remote server cannot use the
Windows NT encrypted password Redial, entering the password explicitly.

740 Invalid TAPI configuration.

741 The local computer does not support the required encryption type.

742 The remote computer does not support the required encryption type.

743 The remote computer requires encryption.

744 Cannot use the IPX network number assigned by remote server Check the event
log.

745 ERROR_INVALID_SMM

746 ERROR_SMM_UNINITIALIZED

747 ERROR_NO_MAC_FOR_PORT

748 ERROR_SMM_TIMEOUT

749 ERROR_BAD_PHONE_NUMBER

750 ERROR_WRONG_MODULE

751 Invalid callback number Only the characters 0 to 9, T, P, W, (,), -, @, and space are
allowed in the number.

Value Description

752 A syntax error was encountered while processing a script.

753 The connection could not be disconnected because it was created by the Multi-
Protocol Router.

Notes

This function is not supported on Windows 7.

Examples

Tag Name Expression

Tag DialError(0, "Office DialUp")

Tag DialError(1, "USRobotics_SportsterFaxModem", "StatusMessage",

second)

Tag DialError(2, "DirectDial", "DialupError")

See also: FindModem()

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

752 A syntax error was encountered while processing a script.

753 The connection could not be disconnected because it was created by the Multi-
Protocol Router.

Notes

This function is not supported on Windows 7.

Examples

Tag Name Expression

Tag DialError(0, "Office DialUp")

Tag DialError(1, "USRobotics_SportsterFaxModem", "StatusMessage",

second)

Tag DialError(2, "DirectDial", "DialupError")

See also: FindModem()

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

DialGetClientIP
This function gets the IP address of a Remote Access Service (RAS) client station.

Function Group Execution Windows Embedded Thin Client

DialGetClientIP Dial-up Synchronous Supported (see note) Supported Supported

Syntax

numType

The type of information specified by strPhoneBookOrModem: 0 is a Phonebook Name, 1 is a
Modem Name, and 2 is a Direct Connection Name.

strPhoneBookOrModem

The Phonebook Name, Modem Name, or Direct Connection Name used to make the connection.

tagClientIP

The name of a String tag that will receive the IP address.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

optTagRefresh

The name of a tag that, whenever the value of the tag changes, will trigger the function to
refresh its returned value.

Also, this parameter is optional but you must include it when you configure the function on an
object animation such as Text Data Link or Position.

Returned value

This function returns the following possible values:

Value Description

-5 DialGetClientIP was not found in
IndRAS.dll.

-4 Invalid type; check numType.

-3 Incorrect number of parameters.

-2 DialStatus was not found in IndRAS.dll.

-1 IndRAS.dll was not loaded.

n Status code returned by DialStatus.

This is the value returned by the function itself. The IP address is written to the tag specified by
tagClientIP.

Notes

This function must be executed on the RAS client station, not on the server station. (Essentially, the
station gets its own IP address.)

Also, this function is not supported on Windows 7.

Examples

Use the Phonebook Name "Office DialUp" and write the resulting IP address to ClientIPTag:

DialGetClientIP(0, "Office DialUp", "ClientIPTag")

Use the Modem Name "USRobotics_SportsterFaxModem," write the resulting IP address to
ClientIPAddress, and refresh every second (that is, every time the system tag Second changes):

DialGetClientIP(1, "USRobotics_SportsterFaxModem", "ClientIPAddress", Second)

Use the Direct Connection Name "DirectDial" and write the resulting IP address to IPAdd:

DialGetClientIP(2, "DirectDial", "IPAdd")

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

DialGetServerIP
DialGetServerIP is a built-in scripting function that gets the IP address of a Remote Access Service
(RAS) server station.

Group Execution Windows Embedded Thin Client

Dial-up Synchronous Supported (see Notes) Not Supported Supported

Syntax

numType

The type of information specified by strPhoneBookOrModem: 0 is a Phonebook Name, 1 is a
Modem Name, and 2 is a Direct Connection Name.

strPhoneBookOrModem

The Phonebook Name, Modem Name, or Direct Connection Name used to make the connection.

tagServerIP

The name of a String tag that will receive the IP address.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

optTagRefresh

The name of a tag that, whenever the value of the tag changes, will trigger the function to
refresh its returned value.

Also, this parameter is optional but you must include it when you configure the function on an
object animation such as Text Data Link or Position.

Returned value

This function returns the following possible values:

Value Description

-5 DialGetServerIP was not found in
IndRAS.dll.

-4 Invalid type; check numType.

-3 Incorrect number of parameters.

-2 DialStatus was not found in IndRAS.dll.

-1 IndRAS.dll was not loaded.

n Status code returned by DialStatus.

This is the value returned by the function itself. The IP address is written to the tag specified by
tagServerIP.

Notes

This function must be executed on the RAS client station, not on the server station. (Essentially, the
station gets the IP address of the server to which it is connected.)

Also, this function is not supported on Windows 7.

Examples

Use the Phonebook Name "Office DialUp" and write the resulting IP address to ServerIPTag:

DialGetServerIP(0, "Office DialUp", "ServerIPTag")

Use the Modem Name "USRobotics_SportsterFaxModem," write the resulting IP address to
ServerIPAddress, and refresh every second (that is, every time the system tag Second changes):

DialGetServerIP(1, "USRobotics_SportsterFaxModem", "ServerIPAddress", Second)

Use the Direct Connection Name "DirectDial" and write the resulting IP address to IPAdd:

DialGetServerIP(2, "DirectDial", "IPAdd")

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

DialStatus
Returns the status of the dial-up connection.

Function Group Execution Windows Embedded Thin Client

DialStatus Dial-up Synchronous Supported (see note) Supported Supported

Note: This function is not supported on Windows 7.

Syntax

DialStatus(numType, strPhonebookEntryOrModem, "optStatus", optRefresh)

numType

A numeric flag that specifies the content of the strPhonebookEntryorModem parameter.

0: Phonebook Name

1: Modem Name

2: Direct Connection Name

strPhonebookEntryOrModem

The Phonebook Name, Modem Name, or Direct Connection Name used to make the connection.
The numType parameter specifies which of these methods is used.

optStatus

Optional The name of the string tag receiving the status message.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

optRefresh

Optional tag that causes the function to update its return value. This parameter is optional, but
you must use it when configuring this function for an object animation (e.g., Text Data Link,
Position).

Returned value

Value Description

-5 PhoneBook or modem does not exist

-4 Invalid value for the numType parameter (0 or 1)

-3 Error: invalid number of parameters (minimum = 2)

-2 Error: INDRAS.DLL damaged

-1 Error: INDRAS.DLL not found

0 Opening the port…

1 Port was opened successfully.

2 Connecting to the device…

3 The device has connected successfully.

4 All devices in the device chain have successfully connected.

5 Verifying the user name and password…

6 An authentication event has occurred.

7 Requested another validation attempt with a new user.

8 Server has requested a callback number.

9 The client has requested to change the password

10 Registering your computer on the network…

11 The link-speed calculation phase is starting…

12 An authentication request is being acknowledged.

13 Reauthentication (after callback) is starting.

14 The client has successfully completed authentication.

15 The line is about to disconnect for callback.

16 Delaying to give the modem time to reset for callback.

17 Waiting for an incoming call from server.

18 Projection result information is available.

19 User authentication is being initiated or retried.

20 Client has been called back and is about to resume
authentication.

21 Logging on to the network…

22 Subentry has been connected.

23 Subentry has been disconnected

24 Terminal state supported by RASPHONE.EXE.

25 Retry authentication state supported by RASPHONE.EXE.

Value Description

26 Callback state supported by RASPHONE.EXE.

27 Change password state supported by RASPHONE.EXE.

8192 Connected to remote server successfully!

8193 Disconnected.

Examples

Tag Name Expression

Tag DialStatus(0, "Office DialUp")

Tag DialStatus(1, "USRobotics_SportsterFaxModem", "StatusMessage",

second)

Tag DialStatus(2, "DirectDial", "DialupError")

See also: FindModem()

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

26 Callback state supported by RASPHONE.EXE.

27 Change password state supported by RASPHONE.EXE.

8192 Connected to remote server successfully!

8193 Disconnected.

Examples

Tag Name Expression

Tag DialStatus(0, "Office DialUp")

Tag DialStatus(1, "USRobotics_SportsterFaxModem", "StatusMessage",

second)

Tag DialStatus(2, "DirectDial", "DialupError")

See also: FindModem()

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

DialUp
Establishes a dial-up connection.
DialUp
Dial-up
Asynchronous
Supported (see note)
Supported
Supported

Function Group Execution Windows Embedded Thin Client

Note: This function is not supported on Windows 7.

Syntax

DialUp(numType, strPhonebookEntryOrModem, strUserName, strPassword, optStrDomain, strPhoneNumber)

numType

A numeric flag that specifies the content of the strPhonebookEntryorModem parameter.

0: Phonebook Name

1: Modem Name

2: Direct Connection Name

strPhonebookEntryOrModem

The Phonebook Name, Modem Name, or Direct Connection Name used to make the connection.
The numType parameter specifies which of these methods is used.

strUserName

The Username to use for logging on.

strPassword

The Password to use for logging on.

optStrDomain

Optional The domain name to specify when logging on.

strPhoneNumber

The phone number to dial (used only when the parameter numType=1).

Returned value
0
OK: dialing started
- 1
Error: INDRAS.DLL not found
- 2
Error: INDRAS.DLL damaged
- 3
Error: invalid number of parameters (minimum=5)
-4
Invalid value for the numType parameter (0 or 1)
-5
Invalid value for the strPhonebookEntryOrModem parameter (string)
-6
PhoneBook or Modem does not exist
-7
PhoneBook or Modem is in use
-8

Depends of the numType parameter:

If numType = 0: Could not read properties from PhoneBook.

If numType = 1: More than 1000 connections are enabled at same time.

-9
Unable to create a temporary PhoneBook.

Notes

The operating system's RAS Server executes the dial-in for Windows PC stations automatically.

Examples
Tag
DialUp(0, "OfficeDialup", "Guest", "Password")

Tag
DialUp(1, "USRobotics_SportsterFaxModem", "HR12378", "HRPass", "15125554321")

Tag
DialUp(2, "DirectDial", "Rberton", "MyPassword", "156.48.25.0")

Tag Name Expression

See also : FindModem()

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

DialUpToCE
Runs the DialUpToCE program, which sends the information necessary to CERasSvr.exe calls back to the Server.
DialUpToCE
Dial-up
Asynchronous
Supported (see note)
Not supported
Supported

Function Group Execution Windows Embedded Thin Client

Note: This function is not supported on Windows 7.

Syntax

DialUpToCE(numModem, strDialPhone, strMyNumber, strUser, strPassword, optStrDomain, optAutoDial, optAutoClose)

numModem

The modem used to dial to the Windows CE remote station.

strDialPhone

The telephone number of the Windows CE remote station.

strMyNumber

The telephone number sent to the Windows CE remote station. CERasSvr.exe will call back to this phone
number.

strUser

The user name to be sent to Windows CE remote station. CERasSvr.exe will use this name to connect to the
Windows XP/Vista/7 computer after calling back to it.

strPassword

The password to be sent to Windows CE remote station. CERasSvr.exe will use this password to connect to
the Windows XP/Vista/7 computer after calling back to it.

optStrDomain

Optional The domain name to specify when logging on.

optAutoDial

Optional tag, which can be set to one of the following:

1: Triggers the DialupToCE connection automatically when the function is executed

0: Requests confirmation before triggering the DialupToCE connection automatically when the function
is executed

optAutoClose

Optional tag, which can be set to one of the following:

1: Closes the DialUpToCE dialog automatically after dialing the Windows CE remote station

0: Leaves the DialUpToCE dialog open

Returned value
0
Fail, unable to call DialUpToCE .
1
Success, DialUpToCE executed.

Notes

The DialUpToCE program was developed to dial a remote Windows CE station. Because Windows CE v3.00 does
not provide a RAS Server, you must be running the CERasSvr.exe program on the Windows Embedded device to
answer a call, and call back to a Windows XP/Vista/7 computer using parameters sent by the DialUpToCE
function. You must configure the RAS Server service on the Windows XP/Vista/7 computer to answer the call
back from the Windows Embedded device and set the TCP/IP connection.

Examples
Tag
DialUpToCE(0, "12344321", "98765432", "Administrator", "MyPass")

Tag
DialUpToCE(0, "12344321", "98765432", "Administrator", "MyPass", "", 1, 1)

Tag Name Expression

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

FindAllDevices
Returns the list of all the available modems and direct connection interfaces (COM ports) in the local
station.

Function Group Execution Windows Embedded Thin Client

FindAllDevices Dial-up Synchronous Supported (see note) Supported Supported

Note: This function is not supported on Windows 7.

Syntax

FindAllDevices("tagArray")

tagArray

Name of a string array tag receiving the list of available modems and direct connection
interfaces.

Returned value

Returns the number of modems and/or interfaces found.

Examples

Tag Name Expression

Tag FindAllDevices("SerialConnections[1]")

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

FindModem
Returns the list of all available modems in the local station.

Function Group Execution Windows Embedded Thin Client

FindModem Dial-up Synchronous Supported (see note) Supported Supported

Note: This function is not supported on Windows 7.

Syntax

FindModem("tagArray")

tagArray

Name of a string array tag receiving the list of available modems.

Returned value

Returns the number of modems found.

Notes

You can use this function to get the serial interface name for a dial-up connection via modem, and
then use this information to fill the strPhonebookEntryOrModem parameter for the DialError,
DialStatus, DialUp, and HangUp functions.

Examples

Tag Name Expression

Tag FindModem("Modems[1]")

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

HangUp
Hangs-up a dial-up connection.

Function Group Execution Windows Embedded Thin Client

HangUp Dial-up Synchronous Supported (see note) Supported Supported

Note: This function is not supported on Windows 7.

Syntax

HangUp(numType, strPhonebookEntryOrModem)

numType

A numeric flag that specifies the content of the strPhonebookEntryorModem parameter.

0: Phonebook Name

1: Modem Name

2: Direct Connection Name

strPhonebookEntryOrModem

The Phonebook Name, Modem Name, or Direct Connection Name used to make the connection.
The numType parameter specifies which of these methods is used.

Returned value

0 OK.

-1 Error: INDRAS.DLL not found

-2 Error: INDRAS.DLL damaged

-3 Invalid value for the numType parameter (0
or 1)

-4 PhoneBook or modem does not exist

-5 No configured modems exist

Examples

Tag Name Expression

Tag HangUp(0, "OfficeDialup")

Tag HangUp(1, "USRobotics_SportsterFaxModem")

Tag HangUp(2, "DirectDial", "Rberton", "MyPassword"

)

See also: FindModem()

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

PhoneDialUp
Dials to a phone number using Telephony Application Program Interface (TAPI).

Function Group Execution Windows Embedded Thin Client

PhoneDialUp Dial-up Asynchronous Supported (see note) Not supported Supported

Note: This function is not supported on Windows 7.

Syntax

PhoneDialUp(strPhoneNumber, optStrModemName)

strPhoneNumber

Telephone number the function will call.

optStrModemName

Name of the modem used to dial. If you do not specify a modem, the function will use the first
modem found on the operating system.

Returned value

 0 OK (dial triggered)

- 1 Invalid number of parameters

- 3 INDTAPI.DLL library not found

-4 PhoneDialUp () function not supported by the current
INDTAPI.DLL library

Examples

Tag Name Expression

 PhoneDialUp ("512-123-4567")

 PhoneDialUp (StringPhoneNumberTag)

Parent topic: Dial-up functions

Tag Name Expression

 PhoneDialUp (StringPhoneNumberTag, StringModemNameTag

)

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

 PhoneDialUp (StringPhoneNumberTag, StringModemNameTag

)

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

PhoneDisableListen
Stops listening to the modem for incoming calls.

Function Group Execution Windows Embedded Thin Client

PhoneDisableListen Dial-up Synchronous Supported (see note) Not supported Supported

Note: This function is not supported on Windows 7.

Syntax

PhoneDisableListen(optStrModemName)

optStrModemName

Name of the modem used to dial. If you do not specify a modem, the function will use the first
modem found on the operating system.

Returned value

1 OK (stop listening for incoming calls)

- 1 INDTAPI.DLL library not found

- 2 PhoneDisableListen () function not supported by the current
INDTAPI.DLL library

Examples

Tag Name Expression

 PhoneDisableListen()

 PhoneDisableListen("Hayes Compatible Modem on COM1"

)

 PhoneDisableListen(StringModemNameTag)

See also: PhoneEnableListen()

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

PhoneEnableListen
Resumes listening to the modem for incoming calls.

Function Group Execution Windows Embedded Thin Client

PhoneEnableListen Dial-up Synchronous Supported (see note) Not supported Supported

Note: This function is not supported on Windows 7.

Syntax

PhoneEnableListen(optStrModemName)

optStrModemName

Name of the modem used to dial. If you do not specify a modem, the function will use the first
modem found on the operating system.

Returned value

1 OK (listening for incoming calls)

0 Error executing the PhoneEnableListen() function

- 1 INDTAPI.DLL library not found

- 2 PhoneEnableListen () function not supported by the current
INDTAPI.DLL library

Examples

Tag Name Expression

 PhoneEnableListen()

 PhoneEnableListen("Hayes Compatible Modem on COM1"

)

 PhoneEnableListen(StringModemNameTag)

See also: PhoneDisableListen()

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

PhoneHangUp
Hangs up a dial-up connection previously established with the PhoneDialUp function.

Function Group Execution Windows Embedded Thin Client

PhoneHangUp Dial-up Asynchronous Supported (see note) Not supported Supported

Note: This function is not supported on Windows 7.

Syntax

PhoneHangUp(optStrModemName)

optStrModemName

Name of the modem used to dial. If you do not specify a modem, the function will use the first
modem found on the operating system.

Returned value

 1 OK (dial connection was dropped)

- 1 INDTAPI.DLL library not found

- 2 PhoneHangUp () function not supported by the current
INDTAPI.DLL library

Examples

Tag Name Expression

 PhoneHangUp()

 PhoneHangUp("Hayes Compatible Modem on COM1")

 PhoneHangUp(StringModemNameTag)

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Dial-up functions >

PhoneStatus

Function Group Execution Windows Embedded Thin Client

PhoneStatus Dial-up Synchronous Supported (see note) Not supported Supported

Note: This function is not supported on Windows 7.

Description

Checks the status of the current connections.

Syntax

PhoneStatus ("strStatus", optStrModemName)

strStatus

Name of the tag that will receive the status description text

optStrModemName

Name of the modem used to dial. If you do not specify a modem, the function will use the first
modem found on the operating system

Returned value

0 "Ready to make a
call"

1 "Call was shut
down"

2 "Line Ringing"

3 "Dial Tone"

4 "Dialing Call"

5 "Call is Proceeding"

6 "Ring Back"

7 "Line is Busy"

8 "Line is Idle"

9 "Disconnected"

Examples

Tag Name Expression

Tag Status
Code

PhoneStatus("String Tag Status")

Tag Status
Code

PhoneStatus("String Tag Status", "Hayes Compatible Modem on COM1")

Tag Status
Code

PhoneStatus("String Tag Status", "StringModemNameTag")

Parent topic: Dial-up functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

ActiveX and .NET Control functions
These functions are used to directly run ActiveX and .NET Control objects in the project, as well as to
get and set property values on those objects.

XGet
This function gets the current value of a Property on an ActiveX Control or .NET Control object.

XRun
This function runs a Method on an ActiveX Control or .NET Control object.

XSet
This function sets the value of a Property on an ActiveX Control or .NET Control object.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ActiveX and .NET Control functions >

XGet
This function gets the current value of a Property on an ActiveX Control or .NET Control object.

Function Group Execution Windows Embedded Thin Client

XGet ActiveX and .NET
Control

Asynchronous Supported ActiveX Controls only (see
Notes)

Supported

Syntax

strName

The unique name of the ActiveX Control or .NET Control object, as configured in the Name field
of the Object Properties dialog.

strProperties

The Property that you want to get the value of. Available Properties are listed in the
Configuration (for an ActiveX Control) or Members (for a .NET Control) dialog.

Returned value

Returns the value of the specified Property.

Notes

This function cannot be used in Tasks or in the Global Procedures script. Also, this function is not
supported for .NET Control objects running on a Windows Embedded station.

Examples

Get the current value of the Color property on the ActiveX Control object named "ActXRec":

XGet("ActXRec", "Color")

Parent topic: ActiveX and .NET Control functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ActiveX and .NET Control functions >

XRun
This function runs a Method on an ActiveX Control or .NET Control object.

Function Group Execution Windows Embedded Thin Client

XRun ActiveX and .NET
Control

Asynchronous Supported ActiveX Controls only (see
Notes)

Supported

Syntax

strName

The unique name of the ActiveX Control or .NET Control object, as configured in the Name field
of the Object Properties dialog.

strMethod

The Method that you want to run. Available Methods are listed in the Configuration (for an
ActiveX Control) or Members (for a .NET Control) dialog.

Parameter(1…N)

Data of various types that are required by the Method to run. The number of parameters can
range from 0 to 255 and depends on the specified Method. The data types (e.g., Boolean,
Integer, Real or String) of referring tags must match the parameters on the Method.

Returned value

Returns the Method result as reported by the ActiveX Control or .NET Control object. Not all Methods
return results.

Notes

This function cannot be used in Tasks or in the Global Procedures script. Also, this function is not
supported for .NET Control objects running on a Windows Embedded station.

Examples

Run the XPos method on the ActiveX Control named "ActXCir," with four original values passed to the
method:

XRun("ActXCir", "XPos", FALSE, 12, 4.6, "This is my text.")

Run the XPos method on the ActiveX Control named "ActXCir," with four referring tags passed to the
method:

XRun("ActXCir", "XPos", TagA, TagB, TagC, TagD)

Parent topic: ActiveX and .NET Control functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > ActiveX and .NET Control functions >

XSet
This function sets the value of a Property on an ActiveX Control or .NET Control object.

Function Group Execution Windows Embedded Thin Client

XSet ActiveX and .NET
Control

Asynchronous Supported ActiveX Controls only (see
Notes)

Supported

Syntax

strName

The unique name of the ActiveX Control or .NET Control object, as configured in the Name field
of the Object Properties dialog.

strProperties

The Property that you want to set the value of. Available Properties are listed in the
Configuration (for an ActiveX Control) or Members (for a .NET Control) dialog.

Value

A tag, expression, or data value of any type; the value to which you want to set the Property.

Returned value

This function does not return any value.

Notes

This function cannot be used in Tasks or in the Global Procedures script. Also, this function is not
supported for .NET Control objects running on a Windows Embedded station.

Examples

Set the value of the Display property on the ActiveX Control named "ActXDisplay" to "Status
Normal":

XSet("ActXDisplay", "Display", "Status Normal")

Parent topic: ActiveX and .NET Control functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Event Logger functions
These functions are used to send events and comments to the Event Logger.

SendEvent
Sends an event to the Event Logger.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Event Logger functions >

SendEvent
Sends an event to the Event Logger.

Function Group Execution Windows Embedded Thin Client

SendEvent Event Logger Synchronous Supported Supported Supported

Description

Use to send an event to the Event Log file. When the Comment option is enabled, the user is
prompted to enter a comment after executing the SendEvent() function. This comment will be saved
in the Event Log file.

Syntax

SendEvent(strEvent, optBoolFlag, optStrComment)

strEvent

The text to be saved in the Event Logger.

optBoolFlag

If omitted or 0 (zero), the event does not have a comment. Otherwise, there is a comment
associated to the event.

optStrComment

The text of the comment for the event saved in the database. If omitted, a standard dialog
prompts the user to type a comment.

Returned value

0 Success

1 Event Logger is disabled in the Event Settings dialog

2 Event Logger is enabled, but Custom Messages are disabled in the Event
Settings dialog

Notes

This function is synchronous. Therefore, the execution of the function finishes only after the event
data (including the comment, if any) is saved in the database file. It is recommended that you do not
configure this function in background tasks (e.g., Math and Scheduler), unless you do not plan to use
the comment or configure it directly (type from the dialog) in the function.

Examples

Tag Name Expression

Tag SendEvent("Valve Open") // Saves the event message.

Tag SendEvent("Valve Open Oven No. " + OvenID) // Saves the event message
concatenated with the value of the OvenID tag.

Tag SendEvent("Valve Open" , 1) // Displays the dialog where the operator can
type comments.

Tag SendEvent("Valve Open" , 1 , TagComment) // Saves the event message with the
comment configured in the TagComment tag.

Parent topic: Event Logger functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

FTP functions
These functions are used to configure the FTP settings for the project, as well as to get files from and
put files on a remote server.

CnfFTP
This function configures the FTP settings used by other features in the project that can transfer
files, such the FTPGet and FTPPut functions.

FTPGet
Gets a file from a remote server and saves it on the local machine.

FTPPut
Puts a file on a remote server.

FTPStatus
This function returns the current status of a file transfer started with FTPGet or FTPPut.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > FTP functions >

CnfFTP
This function configures the FTP settings used by other features in the project that can transfer files,
such the FTPGet and FTPPut functions.

Function Group Execution Windows Embedded Thin Client

CnfFTP FTP Synchronous Supported Supported Supported

Syntax

CnfFTP(strServer, optStrUser, optStrPwn, optNumPassiveMode, optNumPort)

strServer

The address of the FTP server.

optStrUser

The username for the FTP account.

This parameter is optional; if no value is given, then the username "anonymous" is used by
default.

optStrPwd

The password for the FTP account.

This parameter is optional; if no value is given, then the password is left blank.

optNumPassiveMode

A numeric flag that specifies whether Passive FTP mode is enabled. (Passive FTP can be used to
bypass some firewall configurations.)

0 Passive FTP mode is
disabled.

1 Passive FTP mode is
enabled.

This parameter is optional; if no value is given, then Passive FTP mode is disabled by default.

optNumPort

The TCP/IP port number.

This parameter is optional; if no value is given, then port 21 is used by default.

Returned value

0 Success

- 1 Invalid number of
parameters

- 2 Invalid server name

- 3 Invalid user name

Note: This function does not actually conncect to the server, so these error codes do not show
the quality of the connection. They only show whether the FTP settings have been successfully
configured.

Notes

You must call this function at least once to configure these settings before you can use the FTPGet
and FTPPut functions to transfer files.

Example

Tag Name Expression

Tag CnfFTP("ftp.mycompany.com", "admin", "12345", 1) // Configures the FTP server
using passive mode.

Parent topic: FTP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > FTP functions >

FTPGet
Gets a file from a remote server and saves it on the local machine.

Function Group Execution Windows Embedded Thin Client

FTPGet FTP Asynchronous Supported Supported Supported

Syntax

FTPGet(strRemoteFile, strLocalFile, numTransferType, numOverwrite)

strRemoteFile

The full path and name of the desired file on the remote server, using the syntax "/file
path/file name.extension". Some FTP servers are case sensitive, so you should always use

correct capitalization.

strLocalFile

The full path and name where you want to save the file on the local machine, using the syntax
"C:\file name.extension".

numTransferType

A numeric flag that specifies the file transfer type. This parameter is optional; if no value is
given, then the transfer type is unknown (0) by default.

0 Unknown

1 ASCII

2 Binary

10 Unknown, without
caching

11 ASCII, without caching

12 Binary, without caching

Note: In most cases, you should use option 10. This automatically detects the format
(ASCII or Binary) of the remote file and sets the transfer type accordingly, and it also
forces the project to download the file from the actual FTP server rather than from an
intervening proxy or cache server.

numOverWrite

A numeric value that specifies whether the local file (specified by strLocalFile) may be

overwritten if it already exists. This parameter is optional; the default value is 0.

0 Do not overwrite — return an error if the file
already exists.

1 Overwrite.

Returned value

1 Failed to open FTP
connection

0 Success

-1 Invalid number of
parameters

-2 Unknown system error

-3 Invalid remote file

-4 Invalid local file

-5 Invalid transfer type

Notes

Before you can call this function, you must configure the FTP settings (i.e., server address and login)
using the CnfFTP function.

Also, this function is executed asynchronously, so you must call the FTPStatus function to see if the
transfer has been completed successfully.

Example

Tag Name Expression

Tag FTPGet("\Reports\040303.txt", "C:\Report.txt") // Retrieves the file 040303.txt
in the Reports directory, from the FTP server that was previously specified by
CnfFTP(), It then saves the file locally at C:\Report.txt.

Parent topic: FTP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > FTP functions >

FTPPut
Puts a file on a remote server.

Function Group Execution Windows Embedded Thin Client

FTPPut FTP Asynchronous Supported Supported Supported

Syntax

FTPPut(strLocalFile, strRemoteFile, numTransferType)

strLocalFile

Full qualified name of the local file (e.g., "C:\file.extension")

strRemoteFile

Full qualified name of the remote file (e.g., "/Folder/File.extension"). Note that some FTP
servers are case sensitive, so you have to enter the name of the file with the correct
capitalization.

numTransferType

0 Unknown

1 ASCII

2 Binary

Default is 0.

Returned value

1 Failed to create FTP thread

0 Success

- 1 Invalid number of
parameters

- 2 Unknown system error

- 3 Invalid remote file

-4 Invalid local file

-5 Invalid transfer type

Notes

Before you can call this function, you must configure the FTP settings (i.e., server address and login)
using the CnfFTP function.

Also, this function is executed asynchronously, so you must call the FTPStatus function to see if the
transfer has been completed successfully.

Example

Tag Name Expression

Tag FTPPut("C:\Report.txt", "\Reports\040303.txt") // Retrieves the file
C:\Report.txt with the name 040303.txtin the folder Reports in the FTP Server.

Parent topic: FTP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > FTP functions >

FTPStatus
This function returns the current status of a file transfer started with FTPGet or FTPPut.

Function Group Execution Windows Embedded Thin Client

FTPStatus FTP Synchronous Supported Supported Supported

Syntax

strStatusTag

Name of the string tag that will receive the current status description when the function
returns.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

Returned value

1 Transaction executed successfully

2 Resolving name

3 Name resolved

4 Connecting to server

5 Connected to server

6 Closing connection

7 Connection closed

8 Sending request

9 Request sent

10 Receiving response

11 Intermediate response received

12 Response received

13 Request completed

0 No transaction is being executed

- 2 Invalid opttagErrorDescription

-6 Error opening connection (see status string for
details)

-7 Error establishing connection (see status string for
details)

-8 Error receiving the file (see status string for details)

-9 Transfer pending

Example

Tag Name Expression

Tag FTPStatus("StatusDescription") // Retrieves the status of a current transfer.
The return code is stored in the StatusCode tag and the description in the
StatusDescription tag.

Parent topic: FTP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language >

Database/ERP functions
These functions are used interact with external databases and ERP systems using SQL-like
commands.

DBCursorClose
Closes the cursor and releases the result set.

DBCursorColumnCount
Gets the total number of columns in a SQL result set.

DBCursorColumnInfo
Gets information about a column in a SQL result set. The column is specified by number rather
than by name, so this function can be used to retrieve unknown column names.

DBCursorCurrentRow
Returns the row number of the current row (i.e., the cursor position) in a SQL result set.

DBCursorGetValue
Gets the value of the specified column of the current row (i.e., the cursor position) in a SQL
result set.

DBCursorMoveTo
Moves the cursor to the specified row in a SQL result set and copies that row's values to the
mapped tags. If the specified row doesn't exist — that is, if it's outside the range of the result
set — then the function returns an error code and doesn't change the mapped tags.

DBCursorNext
Moves the cursor to the next row in a SQL result set and copies that row's values to the mapped
tags. If there is no next row — that is, if the current row is the last — then the function returns
an error code and doesn't change the mapped tags.

DBCursorOpen
Selects a set of rows and columns in a database table, initializes the cursor at the first row of
the result set, copies that row's values to mapped tags, and then returns a cursor handle that
can be referenced by other DB/ERP functions.

DBCursorOpenSQL
Selects a set of rows and columns in a database table, initializes the cursor at the first row of
the result set, copies that row's values to mapped tags, and then returns a cursor handle that
can be referenced by other DB/ERP functions. (This function is equivalent to a SQL SELECT
statement.)

DBCursorPrevious

Moves the cursor to the previous row of the result set and copies that row's values to the
mapped tags. If there is no previous row — that is, If the current row is the first — then the
function returns an error code and doesn't change the mapped tags.

DBCursorRowCount
Gets the total number of rows in a SQL result set.

DBDelete
Deletes selected rows from a database table. (This function is equivalent to a SQL DELETE
statement.)

DBExecute
DBExecute is a built-in scripting function that executes a custom SQL statement on an external
database. If the statement is a query (e.g., SELECT), then the database values are copied to
specified array tags.

DBInsert
Inserts one new row into a database table. (This function is equivalent to a SQL INSERT
statement.)

DBSelect
DBSelect is a built-in scripting function that selects a result set from an external database
(equivalent to a SQL SELECT statement), maps the columns to array tags in your project, and
copies the values from the result set to the array tags.

DBUpdate
Selects a result set and then writes the same value to all rows of a specified column. (This
function is equivalent to a SQL UPDATE statement.)

SyncAlarm
Synchronizes the alarm database.

SyncAlarmStatus
Returns the status of a previously called SyncAlarm function.

SyncEvent
Synchronizes the event database.

SyncEventStatus
Returns the status of a previously called SyncEvent function.

SyncTrend
Synchronizes the trend database.

SyncTrendStatus
Returns the status of a previously called SyncTrend function.

Parent topic: Appendix: Built-in Scripting Language
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBCursorClose
Closes the cursor and releases the result set.

Function Group Execution Windows Embedded Thin Client

DBCursorClose Database/ERP Synchronous Supported Supported Supported

Note: This feature emulates SQL (Structured Query Language) database operations. You should
be familiar with how SQL commands are formed and executed before you use this feature.

Syntax

DBCursorClose(numCur, "optStrErrorTag")

numCur

The cursor handle of the result set. The cursor handle is returned by DBCursorOpen or
DBCursorOpenSQL.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during
runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

In case of error, returns a negative number. Otherwise, returns 0.

Notes

When the cursor is closed, it is destroyed and cannot be used again. You must create a new cursor
using DBCursorOpen or DBCursorOpenSQL.

Examples

As used in a Math worksheet:

Tag Name Expression

nErrorCode DBCursorClose(nCursor)

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBCursorColumnCount
Gets the total number of columns in a SQL result set.

Function Group Execution Windows Embedded Thin Client

DBCursorColumnCount Database/ERP Synchronous Supported Supported Supported

Note: This feature emulates SQL (Structured Query Language) database operations. You should
be familiar with how SQL commands are formed and executed before you use this feature.

Syntax

DBCursorColumnCount(numCur, "optStrErrorTag")

numCur

The cursor handle of the result set. The cursor handle is returned by DBCursorOpen or
DBCursorOpenSQL.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during
runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

Returns the number of columns. In case of error, returns a negative number.

Notes

See also DBCursorRowCount.

Examples

As used in a Math worksheet:

Tag Name Expression

nErrorCode DBCursorColumnCount(nCursor)

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBCursorColumnInfo
Gets information about a column in a SQL result set. The column is specified by number rather than
by name, so this function can be used to retrieve unknown column names.

Function Group Execution Windows Embedded Thin Client

DBCursorColumnInfo Database/ERP Synchronous Supported Supported Supported

Note: This feature emulates SQL (Structured Query Language) database operations. You should
be familiar with how SQL commands are formed and executed before you use this feature.

Syntax

DBCursorColumnInfo(numCur, numColumn, numTypeInfo, "optStrErrorTag")

numCur

The cursor handle of the result set. The cursor handle is returned by DBCursorOpen or
DBCursorOpenSQL.

numColumn

The number of the column about which you want to get information. Remember that a result
set may include only some of the columns in the original database table.

numTypeInfo

The type of information you want to get about the column:

Value Description

0 Column name

1 Column data type

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during
runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

In case of error, returns a negative number. Otherwise, returns 0.

Examples

As used in a Math worksheet:

Tag Name Expression

nErrorCode DBCursorColumnInfo(nCursor, 2, 0) // Gets the column name of the second
column in the result set.

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBCursorCurrentRow
Returns the row number of the current row (i.e., the cursor position) in a SQL result set.

Function Group Execution Windows Embedded Thin Client

DBCursorCurrentRow Database/ERP Synchronous Supported Supported Supported

Note: This feature emulates SQL (Structured Query Language) database operations. You should
be familiar with how SQL commands are formed and executed before you use this feature.

Syntax

DBCursorCurrentRow(numCur, "optStrErrorTag")

numCur

The cursor handle of the result set. The cursor handle is returned by DBCursorOpen or
DBCursorOpenSQL.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during
runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

Returns the number of the current row. In case of error, returns a negative number.

Examples

As used in a Math worksheet:

Tag Name Expression

nRow DBCursorCurrentRow(nCursor)

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBCursorGetValue
Gets the value of the specified column of the current row (i.e., the cursor position) in a SQL result
set.

Function Group Execution Windows Embedded Thin Client

DBCursorGetValue Database/ERP Synchronous Supported Supported Supported

Note: This feature emulates SQL (Structured Query Language) database operations. You should
be familiar with how SQL commands are formed and executed before you use this feature.

Syntax

DBCursorGetValue(numCur, strColumn, "optStrErrorTag")

numCur

The cursor handle for the result set. The cursor handle is returned by DBCursorOpen or
DBCursorOpenSQL.

strColumn

The name of the column.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during
runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

Returns the value of the specified column. If the value is NULL or the cursor is invalid, then it returns
an empty string with quality BAD.

Examples

As used in a Math worksheet:

Tag Name Expression

Tag DBCursorGetValue(nCursor, "Column1")

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBCursorMoveTo
Moves the cursor to the specified row in a SQL result set and copies that row's values to the mapped
tags. If the specified row doesn't exist — that is, if it's outside the range of the result set — then the
function returns an error code and doesn't change the mapped tags.

Function Group Execution Windows Embedded Thin Client

DBCursorMoveTo Database/ERP Synchronous Supported Supported Supported

Note: This feature emulates SQL (Structured Query Language) database operations. You should
be familiar with how SQL commands are formed and executed before you use this feature.

Syntax

DBCursorMoveTo(numCur, numRow, "optStrErrorTag")

numCur

The cursor handle of the result set. The cursor handle is returned by DBCursorOpen or
DBCursorOpenSQL.

numRow

The row of the result set to which the cursor will be moved.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during
runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

In case of error, returns a negative number. Otherwise, returns 0.

Examples

As used in a Math worksheet:

Tag Name Expression

nErrorCode DBCursorMoveTo(nCursor, 4) // Moves the cursor to the fourth row of the result
set and copies those values.

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBCursorNext
Moves the cursor to the next row in a SQL result set and copies that row's values to the mapped
tags. If there is no next row — that is, if the current row is the last — then the function returns an
error code and doesn't change the mapped tags.

Function Group Execution Windows Embedded Thin Client

DBCursorClose Database/ERP Synchronous Supported Supported Supported

Group Execution Windows PC Windows CE Thin Client

DB/ERP Synchronous Supported Supported Supported

Note: This feature emulates SQL (Structured Query Language) database operations. You should
be familiar with how SQL commands are formed and executed before you use this feature.

Syntax

DBCursorNext(numCur, "optStrErrorTag")

numCur

The cursor handle of the result set. The cursor handle is returned by DBCursorOpen or
DBCursorOpenSQL.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during
runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

In case of error, returns a negative number. Otherwise, returns 0.

Examples

As used in a Math worksheet:

Tag Name Expression

nErrorCode DBCursorNext(nCursor)

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBCursorOpen
Selects a set of rows and columns in a database table, initializes the cursor at the first row of the result set,
copies that row's values to mapped tags, and then returns a cursor handle that can be referenced by other
DB/ERP functions.
DBCursorOpen
Database/ERP
Synchronous
Supported
Supported
Supported

Function Group Execution Windows Embedded Thin Client

Note: This feature emulates SQL (Structured Query Language) database operations. You should be
familiar with how SQL commands are formed and executed before you use this feature.

Syntax

DBCursorOpen(strDBConn, strTable, optStrCondition, optStrColumns, optStrTags, optStrOrder, "optStrErrorTag")

strDBConn

The name of the database connection. Connections are configured in the Database/ERP folder.

strTable

The name of the table in the database.

optStrCondition

A string specifying which rows of the table to select. This is equivalent to the SQL WHERE clause, and
the string should follow the same syntax.

This is an optional parameter. If no rows are specified, then all rows of the table will be selected.

optStrColumns

A string specifying which columns of the table to select. This list of column names should be comma-
delimited.

This is an optional parameter. If no columns are specified, then all columns of the table will be
selected.

optStrTags

A string specifying the project tags to which the columns will be mapped. This list of tag names
should be comma-delimited and in the same order as the columns specified by optStrColumns . As the

cursor is moved through the result set, the values in the current row are copied to these tags.

This is an optional parameter. If no tags are specified, then no values will be copied.

optStrOrder

The order in which the rows will be sorted. This is equivalent to the SQL ORDER BY clause, and the
string should follow the same syntax.

This is an optional parameter. If no order is specified, then the rows will be left in the default order of
the table.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else the
project will try to get the value of the named tag.

This is an optional parameter.

Returned value

Returns a numeric value that represents the cursor handle. In case of error, returns a negative number.

Notes

This function is equivalent to a SQL SELECT statement, except that it breaks the clauses of the statement
into separate function parameters. If you know SQL and want to construct your own SELECT statement
from scratch, you may use DBCursorOpenSQL instead.

See also DBCursorClose .

Examples

As used in a Math worksheet:
nCursor

DBCursorOpen("DB1", "Table1", "Column1 > 3", "Column1, Column2", "Tag1, Tag2", "Column1, Column2 DESC",

"TagError") // Opens Table1 of DB1 and selects all rows where Column1 has a value greater than 3.
Column1 is mapped to Tag1, and Column2 is mapped to Tag2. Rows are ordered first by Column1, then by
Column2, in descending order. Error messages are written to TagError.

Tag Name Expression

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBCursorOpenSQL
Selects a set of rows and columns in a database table, initializes the cursor at the first row of the result set, copies that row's values to mapped tags, and then returns a cursor
handle that can be referenced by other DB/ERP functions. (This function is equivalent to a SQL SELECT statement.)
DBCursorOpenSQL
Database/ERP
Synchronous
Supported
Supported
Supported

Function Group Execution Windows Embedded Thin Client

Note: This feature emulates SQL (Structured Query Language) database operations. You should be familiar with how SQL commands are formed and executed before you
use this feature.

Syntax

DBCursorOpenSQL(strDBConn, strSQL, optStrTags, "optStrErrorTag")

strDBConn

The name of the database connection. Connections are configured in the Database/ERP folder.

strSQL

A string that gives a complete, syntactically correct SQL SELECT statement.

Note: In SQL, curly brackets ({}) are typically used to enclose an expression that must be evaluated before the entire SQL statement is executed. For example:

SELECT * INTO inmates FROM OPENROWSET ('MSDASQL','Driver={Microsoft Text Driver (*.txt; *.csv)} ;DEFAULTDIR=C:\;Extensions=CSV;','SELECT * FROM flat.csv')

In IWS , however, curly brackets are used to reference tags in text fields that are not normally evaluated (e.g., in the caption of a Button object). If you pass a SQL
statement that includes such an expression to DBCursorOpenSQL , then the project will try to evaluate the expression as a tag reference and the function will fail.

To pass the SQL statement so that the project can correctly evaluate the expression, create a new String tag that contains the text of the expression and then
reference the tag in the SQL statement. For example:

$AuxTag = "{Microsoft Text Driver (*.txt; *.csv)} "

$DBCursorOpenSQL("inmates", "SELECT * INTO inmates FROM OPENROWSET ('MSDASQL','Driver= {AuxTag};DEFAULTDIR=C:\;Extensions=CSV;','SELECT * FROM flat.csv')")

optStrTags

A string that lists the project tags to which the columns will be mapped. This list of tag names should be comma-delimited and in the same order as the columns specified
by the WHERE clause of strSQL . As the cursor is moved through the result set, the values in the current row are copied to these tags.

This is an optional parameter. If no tags are specified, then no values will be copied.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

Returns a numeric value that represents the cursor handle. In case of error, returns a negative number.

Notes

See also DBCursorClose .

Examples

As used in a Math worksheet:
nCursor

DBCursorOpenSQL("DB1", "SELECT Column1, Column2 FROM Table1 WHERE Column1 > 3 ORDER BY Column1, Column2 DESC", "Tag1, Tag2")

Tag Name Expression

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBCursorPrevious
Moves the cursor to the previous row of the result set and copies that row's values to the mapped
tags. If there is no previous row — that is, If the current row is the first — then the function returns
an error code and doesn't change the mapped tags.

Function Group Execution Windows Embedded Thin Client

DBCursorPrevious Database/ERP Synchronous Supported Supported Supported

Note: This feature emulates SQL (Structured Query Language) database operations. You should
be familiar with how SQL commands are formed and executed before you use this feature.

Syntax

DBCursorPrevious(numCur, "optStrErrorTag")

numCur

The cursor handle of the result set. The cursor handle is returned by DBCursorOpen or
DBCursorOpenSQL.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during
runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

In case of error, returns a negative number. Otherwise, returns 0.

Examples

As used in a Math worksheet:

Tag Name Expression

nErrorCode DBCursorPrevious(nCursor)

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBCursorRowCount
Gets the total number of rows in a SQL result set.

Function Group Execution Windows Embedded Thin Client

DBCursorRowCount Database/ERP Synchronous Supported Supported Supported

Note: This feature emulates SQL (Structured Query Language) database operations. You should
be familiar with how SQL commands are formed and executed before you use this feature.

Description

Gets the total number of rows in a SQL result set.

See also DBCursorColumnCount().

Syntax

DBCursorRowCount(numCur, "optStrErrorTag")

numCur

The cursor handle of the result set. The cursor handle is returned by DBCursorOpen or
DBCursorOpenSQL.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during
runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

Returns the number of rows. In case of error, returns a negative number.

Notes

See also DBCursorColumnCount.

Examples

As used in a Math worksheet:

Tag Name Expression

nRowCount DBCursorRowCount(nCursor)

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBDelete
Deletes selected rows from a database table. (This function is equivalent to a SQL DELETE
statement.)

Function Group Execution Windows Embedded Thin Client

DBDelete Database/ERP Synchronous Supported Supported Supported

Note: This feature emulates SQL (Structured Query Language) database operations. You should
be familiar with how SQL commands are formed and executed before you use this feature.

Syntax

DBDelete(strDBConn, strTable, strCondition, "optStrErrorTag")

strDBConn

The name of the database connection. Connections are configured in the Database/ERP
folder.

strTable

The name of the table in the database.

strCondition

A string that specifies which rows of the table to select. This is equivalent to the SQL WHERE
clause, and the string should follow the same syntax.

Tip: To delete all rows in the table, make the condition statement a single space (" ").

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during
runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

Returns the number of rows deleted from the table. In case of error, returns a negative number.

Examples

As used in a Math worksheet:

Tag Name Expression

nRowsDeleted DBDelete("DB1", "Table1", "Column1 > 1000", "TagError") // Deletes all rows in
Table1 where the value of Column1 is greater than 1000. The returned value
(i.e., the number of rows deleted) is written to TagError.

Tag DBDelete("DB1", "Table1", " ") // Deletes all rows of Table1.

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBExecute
DBExecute is a built-in scripting function that executes a custom SQL statement on an external database. If the statement is a query (e.g., SELECT), then the database
values are copied to specified array tags.
DBExecute
Database/ERP
Synchronous
Supported
Supported
Supported

Function Group Execution Windows Embedded Thin Client

Syntax

strDBConn

The name of the database connection. Connections are configured in the Database/ERP folder in the Project Explorer .

strSQL

A complete, syntactically correct SQL statement.

Note: In SQL, curly brackets ({}) are typically used to enclose an expression that must be evaluated before the entire SQL statement is executed. For
example:

SELECT * INTO inmates FROM OPENROWSET ('MSDASQL','Driver={Microsoft Text Driver (*.txt; *.csv)} ;DEFAULTDIR=C:\;Extensions=CSV;','SELECT * FROM flat.csv')

In IWS , however, curly brackets are used to reference project tags in text fields that are not normally evaluated (e.g., in the caption of a Button object). If
you pass a SQL statement that includes such an expression to DBExecute , then the project will try to evaluate the expression as a tag reference and the
function will fail.

To pass the SQL statement so that the project can correctly evaluate the expression, create a new string tag that contains the text of the expression and then
reference that tag in the SQL statement. For example:

AuxTag = "{Microsoft Text Driver (*.txt; *.csv)} "

DBExecute("inmates", "SELECT * INTO inmates FROM OPENROWSET ('MSDASQL','Driver= {AuxTag};DEFAULTDIR=C:\;Extensions=CSV;','SELECT * FROM flat.csv')")

optStrTags

A comma-delimited list of the names of array tags in your project, to which the columns of a SQL SELECT result set will be mapped. The database values will be
copied to these array tags, with the first row of the result set being copied to array index 0. Make sure the arrays are large enough to receive all of the rows in the
result set.

This parameter is required only when strSQL contains a SQL SELECT statement. For all other types of statements, this parameter is ignored and can be omitted.
However, if you need to maintain the syntax of the function in order to continue through to optStrErrorTag , then give this parameter an empty string ("").

optNumMaxRows

The maximum number of rows to be copied from a SQL SELECT result set. In most cases, to copy all of the rows, specify a number greater than the expected
number of rows in the result set.

This parameter is required only when strSQL contains a SQL SELECT statement. For all other types of statements, this parameter is ignored and can be omitted.
However, if you need to maintain the syntax of the function in order to continue through to optStrErrorTag , then give this parameter a value of 0.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

This function returns the total number of rows affected by the SQL statement. If an error occurs, then it returns a negative number.

Please note this is the value returned by the function itself; in the case of a SQL SELECT statement, the database values are copied to the array tags specified by
optStrTags .

Notes

This feature emulates SQL (Structured Query Language) database operations. You should be familiar with how SQL statements are formed and executed before you use
this feature.

Examples

DBExecute("DB1", "INSERT INTO Table1(Column1,Column2) values(1,1)")

DBExecute("DB1", "SELECT max(Column1),max(Column2) FROM Table1", "Tag1,Tag2", 1, "TagError")

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBInsert
Inserts one new row into a database table. (This function is equivalent to a SQL INSERT statement.)

Function Group Execution Windows Embedded Thin Client

DBInsert Database/ERP Synchronous Supported Supported Supported

Note: This feature emulates SQL (Structured Query Language) database operations. You should
be familiar with how SQL commands are formed and executed before you use this feature.

Syntax

DBInsert(strDBConn, strTable, strValues, optStrColumns, "optStrErrorTag")

strDBConn

The name of the database connection. Connections are configured in the Database/ERP folder
in the Project Explorer.

strTable

The name of the table in the database.

strValues

A string that lists the values to be written in the new row. This list of values should be comma-
delimited, and string values must be enclosed in single quotes.

optStrColumns

A string that lists the columns into which the values will be written. This list of column names
should be comma-delimited and in the same order as the values specified by strValues.

This is an optional parameter. If no columns are specified, then the values will be written in the
default column order of the database table.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during
runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

In case of error, returns a negative number. Otherwise, returns 1.

Examples

As used in a Math worksheet:

Tag Name Expression

nErrorCode DBInsert("DB1", "Table1", "1, 'one'", "Column1,

Column2")

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBSelect
DBSelect is a built-in scripting function that selects a result set from an external database (equivalent to a
SQL SELECT statement), maps the columns to array tags in your project, and copies the values from the
result set to the array tags.
DBSelect
Database/ERP
Synchronous
Supported
Supported
Supported

Function Group Execution Windows Embedded Thin Client

Syntax

strDBConn

The name of the database connection. Connections are configured in the Database/ERP folder in
the Project Explorer .

strTable

The name of the database table from which you want to select.

strTags

A comma-delimited list of the names of array tags in your project, to which the columns of the
database table will be mapped. The database values will be copied to these array tags, with the first
row of the result set being copied to array index 0. Make sure the arrays are large enough to receive
all of the rows in the result set.

strColumns

A comma-delimited list of which columns in the database table to select. The list order should
correspond to the list in strTags .

To select all of the columns in the table, in their original order, give this parameter an empty string
("").

strCondition

A statement specifying which rows in the database table to select. This is equivalent to the SQL
WHERE clause and must follow the same syntax.

To select all of the rows in the table, give this parameter an empty string ("").

strOrder

A statement specifying the order in which the rows should be sorted. This is equivalent to the SQL
ORDER BY clause and must follow the same syntax.

To leave the rows in their original order, give this parameter an empty string ("").

optNumMaxRows

The maximum number of rows to be copied. In most cases, to copy all of the rows, specify a number
greater than the expected number of rows in the result set.

This is an optional parameter; if no value is specified, then only the first row of the result set will be
copied.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else the
project will try to get the value of the named tag.

This is an optional parameter.

Returned value

This function returns the total number of rows in the result set. If an error occurs, then it returns a
negative number.

Please note this is the value returned by the function itself; the database values are copied to the array
tags specified by strTags .

Notes

This feature emulates SQL (Structured Query Language) database operations. You should be familiar with
how SQL statements are formed and executed before you use this feature.

Examples

DBSelect("DB1", "Table1", "Array1,Array2", "Column1,Column2", "", "")

DBSelect("DB1", "Table1", "Array1,Array2", "Column1,Column2", "Column2 < Column1", "Column1", 4, "TagError")

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

DBUpdate
Selects a result set and then writes the same value to all rows of a specified column. (This function is
equivalent to a SQL UPDATE statement.)

Function Group Execution Windows Embedded Thin Client

DBUpdate Database/ERP Synchronous Supported Supported Supported

Note: This feature emulates SQL (Structured Query Language) database operations. You should
be familiar with how SQL commands are formed and executed before you use this feature.

Syntax

DBUpdate(strDBConn, strTable, strValues, strColumns, optStrCondition, "optStrErrorTag")

strDBConn

The name of the database connection. Connections are configured in the Database/ERP folder
in the Project Explorer.

strTable

The name of the table in the database.

strValues

A string that lists the values to be written to the columns. This list of values should be comma-
delimited, and string values must be enclosed in single quotes.

strColumns

A string that lists the columns into which the values will be written. This list of column names
should be comma-delimited and in the same order as the values specified by strValues.

optStrCondition

A string that specifies which rows of the table to select. This is equivalent to the SQL WHERE
clause, and the string should follow the same syntax.

This is an optional parameter. If no rows are specified, then all rows of the table will be
selected.

optStrErrorTag

The name of a String tag that will receive detailed error messages, if errors occur during
runtime.

Note: The tag name must be enclosed in quotes, as shown in the syntax diagram, or else
the project will try to get the value of the named tag.

This is an optional parameter.

Returned value

Returns the number of rows updated. In case of error, returns a negative number.

Examples

As used in a Math worksheet:

Tag Name Expression

Tag DBUpdate("DB1", "Table1", "'X'", "Column2", "Column1 = 1", "TagError") // In
Table1 of DB1, for all rows where Column1 equals 1, writes "X" to Column2.

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

SyncAlarm
Synchronizes the alarm database.

Function Group Execution Windows Embedded Thin Client

SyncAlarm Database/ERP Asynchronous Supported Supported Executed on Server

Syntax

SyncAlarm(optStrStartDate, optStrEndDate)

optStrStartDate

String with the start date. If this parameter is not specified, then the current date is used.

optStrEndDate

String with the end date. If this parameter is not specified, then the function uses the same as
the start date.

Returned value

Value Description

1 Fail to start synchronization; the database is probably being
synchronized.

0 Success

-1 Invalid group number

-2 The format is not set to "Database".

-4 Start date specified is invalid.

-5 End date specified is invalid.

-6 Start date is greater than the end date.

Notes

This function is executed asynchronously, so it doesn't return the result of the synchronization. To
get that information, use the SyncAlarmStatus function.

Examples

Tag Name Expression

Tag SyncAlarm() // Synchronizes the database using the current date

Tag SyncAlarm("10/20/2004") // Synchronizes the database only for the day
10/20/2004

Tag SyncAlarm("10/20/2004", "10/28/2004") // Synchronizes the database from
10/20/2004 to 10/28/2004

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

SyncAlarmStatus
Returns the status of a previously called SyncAlarm function.

Function Group Execution Windows Embedded Thin Client

SyncAlarmStatus Database/ERP Synchronous Supported Supported Executed on Server

Syntax

This function takes no parameters.

Returned value

Value Description

3 Synchronization has finished.

2 Fail synchronizing

1 Still synchronizing

0 No synchronization is being
executed.

-1 The format is not set to "Database".

Examples

Tag Name Expression

Tag SyncAlarmStatus()

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

SyncEvent
Synchronizes the event database.

Function Group Execution Windows Embedded Thin Client

SyncEvent Database/ERP Asynchronous Supported Supported Executed on Server

Syntax

SyncEvent(optStrStartDate, optStrEndDate)

optStrStartDate

String with the start date. If this parameter is not specified, then the current date is used.

optStrEndDate

String with the end date. If this parameter is not specified, then the function uses the same as
the start date.

Returned value

Value Description

1 Fail to start synchronization; the database is probably being
synchronized.

0 Success

-1 Invalid group number

-2 The format is not set to "Database".

-4 Start date specified is invalid.

-5 End date specified is invalid.

-6 Start date is greater than the end date.

Notes

This function is executed asynchronously, so it doesn't return the result of the synchronization. To
get that information, use the SyncEventStatus function.

Examples

Tag Name Expression

Tag SyncEvent() // Synchronizes the database using the current date

Tag SyncEvent("10/20/2004") // Synchronizes the database only for the day
10/20/2004

Tag SyncEvent("10/20/2004", "10/28/2004") // Synchronizes the database from
10/20/2004 to 10/28/2004

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

SyncEventStatus
Returns the status of a previously called SyncEvent function.

Function Group Execution Windows Embedded Thin Client

SyncEventStatus Database/ERP Synchronous Supported Supported Executed on Server

Syntax

This function takes no parameters.

Returned value

Value Description

3 Synchronization has finished.

2 Fail synchronizing

1 Still synchronizing

0 No synchronization is being
executed.

-1 The format is not set to "Database".

Examples

Tag Name Expression

Tag SyncEventStatus()

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

SyncTrend
Synchronizes the trend database.

Function Group Execution Windows Embedded Thin Client

SyncTrend Database/ERP Asynchronous Supported Supported Executed on Server

Syntax

SyncTrend(numGroup, optStrStartDate, optStrEndDate)

numGroup

Trend group/worksheet number.

optStrStartDate

String with the start date. If this parameter is not specified, then the current date is used.

optStrEndDate

String with the end date. If this parameter is not specified, then the function uses the same as
the start date.

Returned value

Value Description

1 Fail to start synchronization; the database is probably being
synchronized.

0 Success

-1 Invalid group number

-2 The format is not set to "Database".

-4 Start date specified is invalid.

-5 End date specified is invalid.

-6 Start date is greater than the end date.

Notes

This function is executed asynchronously, so it doesn't return the result of the synchronization. To
get that information, use the SyncTrendStatus function.

Examples

Tag Name Expression

Tag SyncTrend(1) // Synchronizes the group 1 database using the current date

Tag SyncTrend(1, "10/20/2004") // Synchronizes the group 1 database only for the
day 10/20/2004

Tag SyncTrend(1, "10/20/2004", "10/28/2004") // Synchronizes the group 1 database
from 10/20/2004 to 10/28/2004

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Appendix: Built-in Scripting Language > Database/ERP functions >

SyncTrendStatus
Returns the status of a previously called SyncTrend function.

Function Group Execution Windows Embedded Thin Client

SyncTrendStatus Database/ERP Synchronous Supported Supported Executed on Server

Syntax

numGroup

Trend group/worksheet number.

Returned value

Value Description

3 Synchronization has finished.

2 Fail synchronizing

1 Still synchronizing

0 No synchronization is being
executed.

-1 The format is not set to "Database".

Examples

Tag Name Expression

Tag SyncTrendStatus(1)

Parent topic: Database/ERP functions
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Overview of VBScript
VBScript is a simple, standard and flexible scripting language that allows you to implement logics and
algorithms within your project.

IWS implements Visual Basic Scripting Edition 5.5 or higher. Because IWS hosts VBScript, you can
take advantage of every feature provided by this language, such as:

Syntax, operators and functions.

The ability to create new variables and procedures (functions and/or sub-routines).

Access to properties, methods and/or events from COM objects, including ActiveX controls.

The ability to execute the logics in any platform that supports VBScript, including Microsoft
Windows-based PCs (running as the IWS Server station), Microsoft Windows Embedded devices
(via CEView), and Internet Explorer (via the Thin Client).

Note: If you are not sure if the image loaded on your device supports VBScript, please consult
the hardware manufacturer. The hardware manufacturer must enable the support for VBScript
on the Windows Embedded device, so CEView will be able to execute the scripts configured in the
VBScript language on the device.

The aim of this documentation is to provide an overview about the integration of VBScript with
InduSoft Web Studio. Furthermore, it can be used as a quick reference for the most used features of
the language. For a full description of the language as well as its interfaces and functions, please
consult Microsoft. (At the time of this writing, the VBScript documentation could be accessed directly
at the Microsoft Developer Network. This link, however, is beyond our control and may change
without notice.)

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

VBScript Interfaces in the Software

The following table provides a summary of the VBScript interfaces supported by InduSoft Web
Studio:

Interface Scope for Procedures and
Variables

Execution Functionality

Global Procedures Graphics and Tasks - Declaration of
Procedures

Graphics Script Graphics Script interface
only

Server (Viewer) + Thin
Clients

Declaration of
Variables

Declaration of
Procedures

Execution

Screen Script Screen where the script is
configured

Server (Viewer) + Thin
Clients

Declaration of
Variables

Declaration of
Procedures

Execution

Command
animation

Object where the script is
configured

Server (Viewer) + Thin
Clients

Declaration of
Variables

Execution

ActiveX Events Object where the script is
configured

Server (Viewer) + Thin
Clients

Declaration of
Variables

Execution

Startup Script All Script Sheets from Tasks Server (BGTask) Declaration of
Variables

Declaration of
Procedures

Execution

Script Groups Script Group only Server (BGTask) Declaration of
Variables

Execution

The following picture illustrates the scope of each VBScript interface and the order that they are

scanned by IWS:

Figure 1.

The illustration shows that the Global Procedures are shared by the Graphic Module and the
Background Task. However, the other VBScript interfaces are either from the Graphic Module or from
the Background Task, and they do not share variables or procedures between them. They are
independent of each other.

Note: Although the Graphics Script is scanned by IWS before the Screen Scripts, the procedures
and variables declared in the Graphics Script interface are NOT available for any script interface
configured on the screens. You must use the Global Procedures interface to implement
procedures that must be available for all screens.

When writing your code in a VBScript interface, you can access any tag from the IWS tags database
or any function from the Built-in Scripting Language by applying the "$" prefix to the tag/function
name, as in the examples below:
$Time 'Returns the value of the tag Time from the tags database
$MyTag 'Returns the value of the tag MyTag from the tags database
$Open("main") 'Executes the Open() built-in function to open the "main" screen

Therefore, you can create scripts using built-in functions from IWS, tags from the IWS tags database,
VBScript functions, VBScript variables, ActiveX properties, methods or events, and any other
interface available. The IWS tags are shared by all modules from IWS, including the Graphic Module
and the Background Task.

Global Procedures

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

VBScript Interfaces in the Software >

Global Procedures
This Global Procedures interface is used create a library of VBScript functions and sub-routines that
can be called by any other scripting interface in IWS. The procedures declared here are never directly
executed during runtime; they must be explicitly called by another script.

CAUTION:

IWS will not prevent you from declaring two or more functions with the same name.
(This includes functions imported from external files; see "Importing Functions from
an External File" below.) However, if you do, then your project may behave
unexpectedly during runtime. Make sure that all of your functions are named
correctly.

To use the Global Procedures interface:

In the Global tab of the Project Explorer, right-click the Global Procedures folder and choose
Open from the shortcut menu.

Figure 1. Global Procedures - Open option

The Global Procedures interface is displayed.

Figure 2. Global Procedures Interface

1.

Declare your functions and sub-routines in the interface. For example:2.
Option Explicit

2.

'Keep the Option Explicit statement in the first line of this interface.

'Procedures with global scope can be implemented here
'Global variables are NOT supported in this interface

Sub MyMessage(message)
 MsgBox(message,0)
End Sub

Function MyAdd(number1, number2)
 MyAdd = number1 + number2
 Call MyMessage("The sum is" & MyAdd & ".")
End Function

Note: You can declare local variables within each procedure, but you cannot declare global
variables in this interface. In most cases, you should use tags instead.

Save your changes. The functions and sub-routines are added to the Global Procedures folder in
the Project Explorer.

Figure 3. Global Procedures Tree

3.

Organizing Procedures into Subfolders

You can organize declared procedures into subfolders within the Global Procedures folder. To organize
procedures:

In the Global Procedures interface, insert the following line before the procedures that you want
to group together:

1.

'$region:foldername

…where foldername is the name of the subfolder. For example:
Option Explicit
'Keep the Option Explicit statement in the first line of this interface.

'Procedures with global scope can be implemented here

'Global variables are NOT supported in this interface

'$region:My Subroutines
Sub MyMessage(message)
 MsgBox(message,0)
End Sub

'$region:My Functions
Function MyAdd(number1, number2)
 MyAdd = number1 + number2
 Call MyMessage("The sum is" & MyAdd & ".")
End Function

Save your changes. The procedures are organized into subfolders in the Project Explorer.2.

Importing Functions from an External File

You can also import functions from an external file and add them to the Global Procedures folder.
This is useful if you have a library of existing functions that you want to reuse.

To import functions:

Save and close all open screens and worksheets.1.

Right-click the Global Procedures folder and then choose Import… from the shortcut menu.

The Import - Global Procedures dialog is displayed.

Figure 4. Import – Global Procedures dialog

2.

In the File field, click Browse to open a standard Windows file browser and select a global
procedures file. (This is a plain text file that has been saved with the .gis file extension.)

3.

Select Replace functions if they already exist to overwrite functions in the Global
Procedures folder with functions imported from the file, if the functions have the same names.

4.

5.

6.

4.

In the Functions area, you can import All functions from the global procedures file (*.gis) or
Only selected functions.

5.

Click Import.6.

After the functions are imported, they should be available in the Global Procedures folder.

Parent topic: VBScript Interfaces in the Software
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

VBScript Interfaces in the Software >

Graphics Script

The Graphics Script interface can be edited by its icon from the Graphics tab of the Project Explorer:

Figure 1.

This interface can be used to execute logics on the following events, based on pre-defined sub-
routines:

Graphics_OnStart() : The code configured within this sub-routine is automatically executed just
once when the graphic module is started. This interface is useful for initializing variables or
executing logics that must be implemented when running the project.

Graphics_WhileRunning() : The code configured within this sub-routine is automatically executed
continuously while the graphic module is running. The rate in which this sub-routine is called
depends on the performance of the platform where the project is running.

Graphics_OnEnd() : The code configured within this sub-routine is automatically executed just
once when the graphic module is closed.

Graphics_OnScreenResize(width, height) : The code configured within this sub-routine is

automatically executed just once when the screen resolution of the runtime station changes.
The new width and height of the screen (in pixels) are passed to the sub-routine as parameters.

Note: The Graphics_OnScreenResize() sub-routine is intended for projects running in CEView
on Windows Embedded devices that can switch between Portrait and Landscape display
modes. It is not supported for projects running on Windows PC or in the Thin Client.

Important: Do not change the name of the predefined sub-routines. If you do, then the system
will not be able to automatically execute them.

Example:
'Variables with local scope can be declared and initialized here
Dim MyDate
MyDate = Date()
Dim MyValue
MyValue = 100

'Procedures with local scope can be implemented here
Function MyNewProcedure(nCount)
 MyNewProcedure = nCount + 1
End Function

Function AreaRec(side1, side2)
 AreaRec = side1 * side2
End Function

Sub CheckHiLimit(myValue, myHiLimit)
 If myValue > myHiLimit Then
 MsgBox("Value out of range")
 End If
End Sub

'This procedure is executed just once when the graphic module is started
Sub Graphics_OnStart()
 MsgBox("Welcome to the system!")
End Sub

'This procedure is executed continuously while the graphic module is running
Sub Graphics_WhileRunning()
 If $UserName = "Guest" Then
 $MyFlag = 0
 End If
End Sub

'This procedure is executed just once when the graphic module is closed
Sub Graphics_OnEnd()
 $LogOff()
End Sub

When the Sub-routines Are Executed

On the Server (where InduSoft Web Studio or CEView is running):

The graphic module is the Viewer task.

The Graphics_OnStart() sub-routine is executed once on the Server when the Viewer task is
launched.

The Graphics_WhileRunning() sub-routine keeps being executed on the Server while the Viewer
task is running. The Graphics_OnEnd() sub-routine is executed once on the Server when the
Viewer task is shut down.

On the Thin Client or Secure Viewer:

The graphic module is the ISSymbol control.

The Graphics_OnStart() sub-routine is executed once on the Thin Client station after logging in
successfully.

The Graphics_WhileRunning() sub-routine keeps being executed on the Thin Client station while
the ISSymbol control is hosted by the Web Browser.

The Graphics_OnEnd() sub-routine is executed once on the Thin Client station when the Web
Browser is shut down (or when the ISSymbol control is no longer hosted by the Web Browser).

The execution of the Graphic Script sub-routines on the Server is completely independent of the
execution on the Thin Client and Secure Viewer stations.

Calling Graphics Script Procedures in Other VBScript Interfaces

The three predefined sub-routines are strictly local to the Graphic Script interface and are executed
only on the events described above. Other procedures defined in the interface, however — under the
'Procedures with local scope heading — may be called in any other Screen Script or Command
animation. The procedures are called by using the syntax Graphics.procedure_name.

Taking the function MyNewProcedure that was declared in the example above, you could place a Button
object on your project screen and then apply a Command animation to it with the following line:

$NewTag = Graphics.MyNewProcedure($OldTag)

Parent topic: VBScript Interfaces in the Software
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

VBScript Interfaces in the Software >

Screen Script

To edit the screen script for a project screen, do one of the following:

On the Graphics tab of the ribbon, in the Screen group, click Script; or

Right-click in the screen and then select Screen Script option from the shortcut menu.

This interface can be used to execute logics on the following events, based on preconfigured sub-
routines:

Screen_IsClosedByReplace(): This procedure determines whether the screen is automatically
closed when another screen is opened to replace it. If the procedure is given a value of 0 or
FALSE, then automatic closing is disabled. When the function is given a positive value (e.g., 1) or
TRUE, or if the procedure is not declared at all, then automatic closing is enabled.

Screen_OnOpen(): The code configured within this sub-routine is automatically executed just once
when the screen is opened.

Screen_WhileOpen(): The code configured within this sub-routine is automatically executed
continuously while its screen is open. The rate in which this sub-routine is called depends on the
performance of the platform where the project is running.

Screen_OnClose():The code configured within this sub-routine is automatically executed just once
when the screen is closed.

The variables and procedures declared in this interface are available for the VBScript interfaces of the
screen where the Screen Script is configured.

CAUTION:

Do not change the names of the preconfigured sub-routines described above. If you
do, then the system will not be able to call them.

Note:

The execution of the Screen Script sub-routines on the server is totally independent of the
execution on the Thin Client stations. In other words, these sub-routines are executed
asynchronously.

The procedures and/or variables declared in the Screen Script interface have local scope.
They can be called only from the specific screen on which they are declared.

Example:
'Variables available on this screen can be declared and initialized here
Dim Counter

'Procedures available on this screen can be implemented here
Function AreaCircle(radius)
 AreaCircle = Sqr(radius) * $Pi()
End Function

Sub CheckLoLimit (myValue, myLoLimit)
 If myValue < myLoLimit Then
 MsgBox("Value out of range")
 End If
End Sub

'This procedure determines whether the screen is automatically closed
Function Screen_IsClosedByReplace()
 Screen_IsClosedByReplace = $ReplaceModeTag
End Function

'This procedure is executed just once when this screen is open
Sub Screen_OnOpen()
 MsgBox("The screen was open!")
End Sub

'This procedure is executed continuously while this screen is open
Sub Screen_WhileOpen()
 If Counter < 100 Then
 Counter = Counter + 1
 Else
 Counter = 0
 End If
 $SimulationTag = Counter
End Sub

'This procedure is executed just once when this screen is closed
Sub Screen_OnClose()
 MsgBox("The screen will be closed!")
End Sub

Parent topic: VBScript Interfaces in the Software
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

VBScript Interfaces in the Software >

Command Animation

To edit the Command animation interface, do the following:

Select the object.1.

Click the Command animations icon in the Animations group.2.

Right-click on the object. The Object Properties dialog for the Command animation will open.3.

Click the Config… button.4.

Select VBScript as the Type.5.

5.

Use this interface to execute logics when the user clicks on the object where the Command animation
is applied (during runtime) or presses the shortcut (Key) associated with the Command animation.

Variables declared in this interface are available for this interface only (local scope). In other words,
they are not available for any other object in the project. You cannot implement procedures in this
interface. You can, however, call procedures implemented in the Global Procedures or in the Screen
Script interface for the same screen where the Command animation is configured.

Note: For more information, see Command animation.

Example:
'The script below will be executed when the user clicks on the object
'where this animation is configured
$MyValue = InputBox("Please enter the new set-point", "Set-point")

Parent topic: VBScript Interfaces in the Software
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

VBScript Interfaces in the Software >

ActiveX Events

To edit the ActiveX Events interface, select the Script option from the Events tab of the ActiveX
object inserted on the screen.

Click the ActiveX Control icon in the Active Objects toolbar.

The Insert ActiveX Control dialog opens.

1.

Select the ActiveX Control that you wish to use and then click OK.2.

The object that symbolizes the selected ActiveX Control will display. Right-click on this object to
open the Object Properties dialog.

3.

4.

Click the Configuration button. The Configuration dialog will open. Click the Events tab.4.

Click the … button in the Script column.5.

Use this interface to execute logics when an ActiveX object triggers an event.

Variables declared in this interface are available for this interface only (local scope). In other words,
they are not available for any other object in the project.

You cannot implement procedures in this interface. You can, however, call procedures implemented in

the Global Procedures or in the Screen Script interface for the same screen where the ActiveX object
is configured.

Note: For more information, see ActiveX Control object.

Example:
'The script below will be executed when the Calendar Control ActiveX
'triggers its "AfterUpdate" event
$MyYear = CalendarControl1.Year
$MyMonth = CalendarControl1.Month
$MyDay = CalendarControl1.Day

Parent topic: VBScript Interfaces in the Software
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Operators

Table 1. Arithmetic Operators

Symbol Name Description

^ Exponentiation Raises a number to the power of an exponent.

- Unary negation Finds the difference between two numbers or indicates
the negative value of a numeric expression.

* Multiplication Multiplies two numbers.

/ Division Divides two numbers and returns a floating-point result.

\ Integer division Divides two numbers and returns an integer result.

Mod Modulus arithmetic Divides two numbers and returns only the remainder.

+ Addition Finds the sum of two numbers.

- Subtraction Finds the difference between two numbers or indicates
the negative value of a numeric expression.

& String concatenation Forces string concatenation of two expressions.

Table 2. Comparison Operators

Symbol Name Description

= Equality Comparison is True if the first expression is equal to the
second expression.

<> Inequality Comparison is True if the first expression is different
from the second expression.

< Less than Comparison is True if the first expression is less than
the second expression.

> Greater than Comparison is True if the first expression is greater than
the second expression.

<= Less than or equal to Comparison is True if the first expression is less than or
equal to the second expression.

>= Greater than or equal to Comparison is True if the first expression is greater than
or equal to the second expression.

Is Object equivalence Compares two object reference variables. Comparison is
True if both object names refer to the same object.

Table 3. Logical Operators

Symbol Name Description

Not Logical negation Performs logical negation on an expression.

And Logical conjunction Performs a logical conjunction on two
expressions.

Or Logical disjunction Performs a logical disjunction on two
expressions.

Xor Logical exclusion Performs a logical exclusion on two
expressions.

Eqv Logical equivalence Performs a logical equivalence on two
expressions.

Imp Logical implication Performs a logical implication on two
expressions.

Table 4. Assignment Operators

Symbol Name Description

= Assignment Assigns a value to a variable or
property.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Constants

Table 1. Color Constants

Constant Value Description

vbBlack &h00 Black

vbRed &hFF Red

vbGreen &hFF00 Green

vbYellow &hFFFF Yellow

vbBlue &hFF0000 Blue

vbMagenta &hFF00FF Magenta

vbCyan &hFFFF00 Cyan

vbWhite &hFFFFFF White

Table 2. Comparison Constants

Constant Value Description

vbBinaryCompare 0 Perform a binary
comparison

vbTextCompare 1 Perform a textual
comparison

Table 3. Date & Time Constants

Constant Value Description

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

vbUseSystemDayOfWeek 0 Use the day of the week specified in your system
settings for the first day of the week.

vbFirstJan1 1 Use the week in which January 1 occurs (default).

Constant Value Description

vbFirstFourDays 2 Use the first week that has at least four days in the
new year.

vbFirstFullWeek 3 Use the first full week of the year.

Table 4. Date Format Constants

Constant Value Description

vbGeneralDate 0 Display a date and/or time. For real numbers, display
a date and time. If there is no fractional part, display
only a date. If there is no integer part, display time
only. Date and time display is determined by your
system settings.

vbLongDate 1 Display a date using the long date format specified in
your computer's regional settings.

vbShortDate 2 Display a date using the short date format specified in
your computer's regional settings.

vbLongTime 3 Display a time using the long time format specified in
your computer's regional settings.

vbShortTime 4 Display a time using the short time format specified in
your computer's regional settings.

Table 5. Miscellaneous Constants

Constant Value Description

vbObjectError -2147221504 User-defined error numbers should be greater
than this value.

Table 6. Box Constants – Buttons & Icons

Constant Value Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbFirstFourDays 2 Use the first week that has at least four days in the
new year.

vbFirstFullWeek 3 Use the first full week of the year.

Table 4. Date Format Constants

Constant Value Description

vbGeneralDate 0 Display a date and/or time. For real numbers, display
a date and time. If there is no fractional part, display
only a date. If there is no integer part, display time
only. Date and time display is determined by your
system settings.

vbLongDate 1 Display a date using the long date format specified in
your computer's regional settings.

vbShortDate 2 Display a date using the short date format specified in
your computer's regional settings.

vbLongTime 3 Display a time using the long time format specified in
your computer's regional settings.

vbShortTime 4 Display a time using the short time format specified in
your computer's regional settings.

Table 5. Miscellaneous Constants

Constant Value Description

vbObjectError -2147221504 User-defined error numbers should be greater
than this value.

Table 6. Box Constants – Buttons & Icons

Constant Value Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

Constant Value Description

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is the default.

vbDefaultButton2 256 Second button is the default.

vbDefaultButton3 512 Third button is the default.

vbDefaultButton4 768 Fourth button is the default.

vbApplicationModal 0 Application modal. The user must respond to the
message box before continuing work in the current
application.

vbSystemModal 4096 System modal. On Win16 systems, all programs are
suspended until the user responds to the message
box. On Win32 systems, this constant provides a
program modal message box that always remains on
top of any other programs you may have running.

Table 7. Box Constants – Selected Button

Constant Value Description

vbOK 1 OK button was clicked.

vbCancel 2 Cancel button was
clicked.

vbAbort 3 Abort button was
clicked.

vbRetry 4 Retry button was
clicked.

vbIgnore 5 Ignore button was
clicked.

vbYes 6 Yes button was clicked.

vbNo 7 No button was clicked.

Table 8. String Constants

Constant Value Description

vbCr Chr(13) Carriage return

VbCrLf Chr(13) &
Chr(10)

Carriage return…linefeed combination

vbFormFeed Chr(12) Form feed; not useful in Microsoft Windows

vbLf Chr(10) Line feed

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is the default.

vbDefaultButton2 256 Second button is the default.

vbDefaultButton3 512 Third button is the default.

vbDefaultButton4 768 Fourth button is the default.

vbApplicationModal 0 Application modal. The user must respond to the
message box before continuing work in the current
application.

vbSystemModal 4096 System modal. On Win16 systems, all programs are
suspended until the user responds to the message
box. On Win32 systems, this constant provides a
program modal message box that always remains on
top of any other programs you may have running.

Table 7. Box Constants – Selected Button

Constant Value Description

vbOK 1 OK button was clicked.

vbCancel 2 Cancel button was
clicked.

vbAbort 3 Abort button was
clicked.

vbRetry 4 Retry button was
clicked.

vbIgnore 5 Ignore button was
clicked.

vbYes 6 Yes button was clicked.

vbNo 7 No button was clicked.

Table 8. String Constants

Constant Value Description

vbCr Chr(13) Carriage return

VbCrLf Chr(13) &
Chr(10)

Carriage return…linefeed combination

vbFormFeed Chr(12) Form feed; not useful in Microsoft Windows

Constant Value Description

vbLf Chr(10) Line feed

vbNewLine Chr(13) &
Chr(10) or
Chr(10)

Platform-specific newline character; whatever is
appropriate for the platform

vbNullChar Chr(0) Character having the value 0

vbNullString String having
value 0

Not the same as a zero-length string (""); used for
calling external procedures

vbTab Chr(9) Horizontal tab

vbVerticalTab Chr(11) Vertical tab; not useful in Microsoft Windows

Table 9. Tristate Constants

Constant Value Description

vbUseDefault - 2 Use default from computer's
regional settings.

vbTrue - 1 TRUE

vbFalse 0 FALSE

Table 10. VarType Constants

Constant Value Description

vbEmpty 0 Uninitialized (default)

vbNull 1 Contains no valid data

vbInteger 2 Integer subtype

vbLong 3 Long subtype

vbSingle 4 Single subtype

vbDouble 5 Double subtype

vbCurrency 6 Currency subtype

vbDate 7 Date subtype

vbString 8 String subtype

vbObject 9 Object

vbError 10 Error subtype

vbBoolean 11 Boolean subtype

vbVariant 12 Variant (used only for arrays of
variants)

vbDataObject 13 Data access object

vbLf Chr(10) Line feed

vbNewLine Chr(13) &
Chr(10) or
Chr(10)

Platform-specific newline character; whatever is
appropriate for the platform

vbNullChar Chr(0) Character having the value 0

vbNullString String having
value 0

Not the same as a zero-length string (""); used for
calling external procedures

vbTab Chr(9) Horizontal tab

vbVerticalTab Chr(11) Vertical tab; not useful in Microsoft Windows

Table 9. Tristate Constants

Constant Value Description

vbUseDefault - 2 Use default from computer's
regional settings.

vbTrue - 1 TRUE

vbFalse 0 FALSE

Table 10. VarType Constants

Constant Value Description

vbEmpty 0 Uninitialized (default)

vbNull 1 Contains no valid data

vbInteger 2 Integer subtype

vbLong 3 Long subtype

vbSingle 4 Single subtype

vbDouble 5 Double subtype

vbCurrency 6 Currency subtype

vbDate 7 Date subtype

vbString 8 String subtype

vbObject 9 Object

vbError 10 Error subtype

vbBoolean 11 Boolean subtype

vbVariant 12 Variant (used only for arrays of
variants)

Constant Value Description

vbDataObject 13 Data access object

vbDecimal 14 Decimal subtype

vbByte 17 Byte subtype

vbArray 8192 Array

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

vbDataObject 13 Data access object

vbDecimal 14 Decimal subtype

vbByte 17 Byte subtype

vbArray 8192 Array

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Objects and Collections

Class Object

The object created using the Class statement. Provides access to the events of the class.

Debug Object

An intrinsic global object that can send output to a script debugger, such as the Microsoft Script
Debugger.

Err Object

Contains information about runtime errors. Accepts the Raise and Clear methods for generating
and clearing runtime errors.

Match Object

Provides access to the read-only properties of a regular expression match.

Matches Collection

Collection of regular expression Match objects.

Regular Expression (RegExp) Object

Provides simple regular expression support.

SubMatches Collection

Collection of regular expression submatch strings.
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Properties

Description

Returns or sets a descriptive string associated with an error.

FirstIndex

Returns the position in a search string where a match occurs.

Global

Sets or returns a Boolean value that indicates if a pattern should match all occurrences in an
entire search string or just the first one.

HelpContext

Sets or returns a context ID for a topic in a Help File.

HelpFile

Sets or returns a fully qualified path to a Help File.

IgnoreCase

Sets or returns a Boolean value that indicates if a pattern search is case-sensitive or not.

Length

Sets or returns a Boolean value that indicates if a pattern search is case-sensitive or not.

Number

Returns or sets a numeric value specifying an error. Number is the Err object's default
property.

Pattern

Sets or returns the regular expression pattern being searched for.

Source

Returns or sets the name of the object or application that originally generated the error.

Value

Returns the value or text of a match found in a search string.
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Statements

Call

Transfers control to a Sub or Function procedure.

Class

Declares the name of a class, as well as a definition of the variables, properties, and methods
that comprise the class.

Const

Declares constants for use in place of literal values.

Dim

Declares variables and allocates storage space.

Do…Loop

Repeats a block of statements while a condition is True or until a condition becomes True.

Erase

Reinitializes the elements of fixed-size arrays and deallocates dynamic-array storage space.

Execute

Executes one or more specified statements.

ExecuteGlobal

Executes one or more specified statements in the global namespace of a script.

Exit

Exits a block of Do…Loop, For…Next, Function, or Sub code.

For Each…Next

Repeats a group of statements for each element in an array or collection.

For…Next

Repeats a group of statements a specified number of times.

Function

Declares the name, arguments, and code that form the body of a Function procedure.

If…Then…Else

Conditionally executes a group of statements, depending on the value of an expression.

Option Explicit

Forces explicit declaration of all variables in a script.

Private

Declares private variables and allocates storage space. Declares, in a Class block, a private
variable.

Property Get

Declares, in a Class block, the name, arguments, and code that form the body of a Property
procedure that gets (returns) the value of a property.

Property Let

Declares, in a Class block, the name, arguments, and code that form the body of a Property
procedure that assigns (sets) the value of a property.

Property Set

Declares, in a Class block, the name, arguments, and code that form the body of a Property
procedure that sets a reference to an object.

Public

Declares public variables and allocates storage space. Declares, in a Class block, a private
variable.

Ramdomize

Initializes the random-number generator.

ReDim

Declares dynamic-array variables, and allocates or reallocates storage space at procedure
level.

Rem

Includes explanatory remarks in a program.

Select

Executes one of several groups of statements, depending on the value of an expression.

Set

Assigns an object reference to a variable or property, or associates a procedure reference with
an event.

Stop

Suspends execution.

Sub

Declares the name, arguments, and code that form the body of a Sub procedure.

While

Executes a series of statements as long as a given condition is True.

With

Executes a series of statements on a single object.
InduSoft Web Studio v7.0 Technical Reference

Copyright © 2003–2010 Indusoft, Inc.

Methods

Clear

Clears all property settings of the Err object.

Execute

Executes a regular expression search against a specified string.

Raise

Generates a runtime error.

Replace

Replaces text found in a regular expression search.

Test

Executes a regular expression search against a specified string and returns a Boolean value
that indicates if a pattern match was found.

Write

Sends strings to the script debugger.

WriteLine

Sends strings to the script debugger, followed by a newline character.
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Functions

Function Names

Abs Array Asc Atn

CBool CByte CCur CDate

CDbl Chr CInt CLng

Conversions Cos CreateObject CSng

CStr Date DateAdd DateDiff

DatePart DateSerial DateValue Day

Derived Math Escape Eval Exp

Filter FormatCurrency FormatDateTime FormatNumber

FormatPercent GetLocale GetObject GetRef

Hex Hour InputBox InStr

InStrRev Int, Fix IsArray IsDate

IsEmpty IsNull IsNumeric IsObject

Join LBound LCase Left

Len LoadPicture Log LTrim; RTrim; and Trim

Maths Mid Minute Month

MonthName MsgBox Now Oct

Replace RGB Right Rnd

Round ScriptEngine ScriptEngineBuildVersion ScriptEngineMajorVersion

ScriptEngineMinorVersion Second SetLocale Sgn

Sin Space Split Sqr

StrComp String StrReverse Tan

Time Timer TimeSerial TimeValue

TypeName UBound UCase Unescape

VarType Weekday WeekdayName Year

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Keywords

Empty

The Empty keyword is used to indicate an uninitialized variable value. This is not the same
thing as Null.

False

The False keyword has a value equal to 0.

Nothing

The Nothing keyword in VBScript is used to disassociate an object variable from any actual
object.

Null

The Null keyword is used to indicate that a variable contains no valid data. This is not the same
thing as Empty.

True

The True keyword has a value equal to -1.
InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Errors

Table 1. VBScript Runtime Errors

Error
Number

Description

5 Invalid procedure call or argument

6 Overflow

7 Out of memory

9 Subscript out of range

10 This array is fixed or temporarily locked

11 Division by zero

13 Type mismatch

14 Out of string space

17 Can't perform requested operation

28 Out of stack space

35 Sub or function not defined

48 Error in loading DLL

51 Internal error

91 Object variable not set

92 For loop not initialized

94 Invalid use of Null

424 Object required

429 ActiveX component can't create object

430 Class doesn't support Automation

432 File name or class name not found during Automation operation

438 Object doesn't support this property or method

445 Object doesn't support this action

447 Object doesn't support current locale setting

448 Named argument not found

449 Argument not optional

450 Wrong number of arguments or invalid property assignment

Error
Number

Description

451 Object not a collection

458 Variable uses an Automation type not supported in VBScript

462 The remote server machine does not exist or is unavailable

481 Invalid picture

500 Variable is undefined

502 Object not safe for scripting

503 Object not safe for initializing

504 Object not safe for creating

505 Invalid or unqualified reference

506 Class not defined

507 An exception occurred

5008 Illegal assignment

5017 Syntax error in regular expression

5018 Unexpected quantifier

5019 Expected ']' in regular expression

5020 Expected ')' in regular expression

5021 Invalid range in character set

Table 2. VBScript Syntax Errors

Error Number Description

1001 Out of memory

1002 Syntax error

1005 Expected '('

1006 Expected ')'

1010 Expected identifier

1011 Expected '='

1012 Expected 'If'

1013 Expected 'To'

1014 Expected 'End'

1015 Expected 'Function'

1016 Expected 'Sub'

451 Object not a collection

458 Variable uses an Automation type not supported in VBScript

462 The remote server machine does not exist or is unavailable

481 Invalid picture

500 Variable is undefined

502 Object not safe for scripting

503 Object not safe for initializing

504 Object not safe for creating

505 Invalid or unqualified reference

506 Class not defined

507 An exception occurred

5008 Illegal assignment

5017 Syntax error in regular expression

5018 Unexpected quantifier

5019 Expected ']' in regular expression

5020 Expected ')' in regular expression

5021 Invalid range in character set

Table 2. VBScript Syntax Errors

Error Number Description

1001 Out of memory

1002 Syntax error

1005 Expected '('

1006 Expected ')'

1010 Expected identifier

1011 Expected '='

1012 Expected 'If'

1013 Expected 'To'

1014 Expected 'End'

1015 Expected 'Function'

Error Number Description

1016 Expected 'Sub'

1017 Expected 'Then'

1018 Expected 'Wend'

1019 Expected 'Loop'

1020 Expected 'Next'

1021 Expected 'Case'

1022 Expected 'Select'

1023 Expected expression

1024 Expected statement

1025 Expected end of statement

1026 Expected integer constant

1027 Expected 'While' or 'Until'

1028 Expected 'While,' 'Until,' or end of statement

1029 Expected 'With'

1030 Identifier too long

1037 Invalid use of 'Me' keyword

1038 'loop' without 'do'

1039 Invalid 'exit' statement

1040 Invalid 'for' loop control variable

1041 Name redefined

1042 Must be first statement on the line

1044 Cannot use parentheses when calling a Sub

1045 Expected literal constant

1046 Expected 'In'

1047 Expected 'Class'

1048 Must be defined inside a Class

1049 Expected Let or Set or Get in property declaration

1050 Expected 'Property'

1051 Number of arguments must be consistent across properties
specification

1052 Cannot have multiple default property/method in a Class

1053 Class initialize or terminate do not have arguments

1016 Expected 'Sub'

1017 Expected 'Then'

1018 Expected 'Wend'

1019 Expected 'Loop'

1020 Expected 'Next'

1021 Expected 'Case'

1022 Expected 'Select'

1023 Expected expression

1024 Expected statement

1025 Expected end of statement

1026 Expected integer constant

1027 Expected 'While' or 'Until'

1028 Expected 'While,' 'Until,' or end of statement

1029 Expected 'With'

1030 Identifier too long

1037 Invalid use of 'Me' keyword

1038 'loop' without 'do'

1039 Invalid 'exit' statement

1040 Invalid 'for' loop control variable

1041 Name redefined

1042 Must be first statement on the line

1044 Cannot use parentheses when calling a Sub

1045 Expected literal constant

1046 Expected 'In'

1047 Expected 'Class'

1048 Must be defined inside a Class

1049 Expected Let or Set or Get in property declaration

1050 Expected 'Property'

1051 Number of arguments must be consistent across properties
specification

1052 Cannot have multiple default property/method in a Class

1053 Class initialize or terminate do not have arguments

Error Number Description

1054 Property Set or Let must have at least one argument

1055 Unexpected 'Next'

1057 'Default' specification must also specify 'Public'

1058 'Default' specification can only be on Property Get

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

1054 Property Set or Let must have at least one argument

1055 Unexpected 'Next'

1057 'Default' specification must also specify 'Public'

1058 'Default' specification can only be on Property Get

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

VBScript Editor IntelliSense
IntelliSense provides an array of options that make language references easily accessible. When
coding, you do not need to leave the Code Editor or the Immediate Mode command window to
perform searches on language elements. You can keep your context, find the information you need,
insert language elements directly into your code, and even have IntelliSense complete your typing for
you.

IntelliSense comprises the following options…

List Members

You can display a list of valid members from class tags, fields from any tag, properties/methods from
an ActiveX object, or functions from the Built-in Scripting Language. Selecting from the list inserts
the member into your code.

When you type the $ character on any VBScript interface, a list box will automatically open with the
list of all tags available for the current project as well as all functions from the Built-in Scripting
Language.

Figure 1.

When you type the name of a class tag followed by the dot character (.) on any VBScript interface,
a list box will automatically open with the list of all members from the class tag:

Figure 2.

When you type the name of a tag followed by the hyphen and greater than characters (->) on any
VBScript interface, a list box will automatically open with the list of all fields available for this tag:

Figure 3.

The items are displayed in alphabetic order, and each item has an icon to identify its main type, as
follows:

Icon Type

Boolean Tag

Integer Tag

Real Tag

String Tag

Class Tag

Function from the Built-in Scripting
Language

When you type the name of an ActiveX control that is inserted on the screen followed by the dot
character (.) on any VBScript interface from the screen where the ActiveX object is inserted, a list
box will automatically open with the list of all properties and methods from the object:

Figure 4.

The items are displayed in alphabetic order, and each item has an icon to identify its main type, as
follows:

Icon Type

Property from the ActiveX
object

Method from the ActiveX object

Parameter Quick Info

The Quick Info option displays pop-up boxes with the information about the functions from the Built-
in Scripting Language. The information includes all the parameters supported by this function, with
the currently configured one in bold text.

Figure 5.

Complete Word

Complete word finishes a tag, member, field, function, or ActiveX property/method name once you
have entered enough characters to disambiguate the term. After you type the first few letters of the
name, you can press Ctrl+Space to complete the name automatically.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

VBScript Compared to VBA

While VBScript and Visual Basic for Applications (VBA) are similar and are both based on the Visual
Basic standard language, there are advantages to using VBScript for IWS users:

VBScript is supported for the Microsoft Windows Embedded operating system, and VBA is not.

VBScript brings active scripting to a wide variety of environments, including Web client scripting
in Microsoft Internet Explorer. This prevents operations that may present risks for the Thin
Client user, such as direct access to local files.

VBScript was designed to be simple and easy to learn, with some standards from VBA modified
in VBScript to make it more straightforward. For example, in VBScript the user does not have to
worry about the type of each variable when declaring them because VBScript assumes the
proper type for each variable automatically.

The following table lists VBScript features that VBA does not have.

Category Feature/Keyword

Declarations Class

Miscellaneous Eval

Execute

Objects RegExp

Script Engine
Identification

ScriptEngine

ScriptEngineBuildVersion

ScriptEngineMajorVersion

The following table lists VBA features that VBScript does not have.

Category Omitted Feature/Keyword

Array Handling Option Base

Declaring arrays with lower bound <> 0

Collection Add, Count, Item, Remove

Access to collections using ! character

Conditional
Compilation

#Const

#If...Then...#Else

Control Flow DoEvents

GoSub...Return, GoTo

Category Omitted Feature/Keyword

On Error GoTo

On...GoSub, On...GoTo

Line numbers, Line labels

Conversion CVar, CVDate

Str, Val

Data Types All intrinsic data types except Variant

Type...End Type

Date/Time Date statement, Time statement

DDE LinkExecute, LinkPoke, LinkRequest, LinkSend

Debugging Debug.Print

End, Stop

Declaration Declare (for declaring DLLs)

Optional

ParamArray

Static

Error Handling Erl

Error

Resume, Resume Next

File Input/Output All traditional Basic file I/O

Financial All financial functions

Object
Manipulation

TypeOf

Objects Clipboard

Collection

Operators Like

Options Deftype

Option Base

Option Compare

Option Private Module

Select Case Expressions containing the Is keyword or any comparison operators

Expressions containing a range of values using the To keyword

On Error GoTo

On...GoSub, On...GoTo

Line numbers, Line labels

Conversion CVar, CVDate

Str, Val

Data Types All intrinsic data types except Variant

Type...End Type

Date/Time Date statement, Time statement

DDE LinkExecute, LinkPoke, LinkRequest, LinkSend

Debugging Debug.Print

End, Stop

Declaration Declare (for declaring DLLs)

Optional

ParamArray

Static

Error Handling Erl

Error

Resume, Resume Next

File Input/Output All traditional Basic file I/O

Financial All financial functions

Object
Manipulation

TypeOf

Objects Clipboard

Collection

Operators Like

Options Deftype

Option Base

Option Compare

Option Private Module

Select Case Expressions containing the Is keyword or any comparison operators

Expressions containing a range of values using the To keyword

Category Omitted Feature/Keyword

Strings Fixed-length strings

LSet, RSet

Mid Statement

StrConv

Using Objects Collection access using !

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Strings Fixed-length strings

LSet, RSet

Mid Statement

StrConv

Using Objects Collection access using !

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Screen Events

In addition to the Screen Script, you can configure logics using the Built-in Scripting Language for the
On Open, While Open and On Close events for the screen (see the Screen Logic interface from the
Screen Attributes dialog). If you configure the Screen Script (VBScript language) and the Screen
Logic (Built-in Scripting Language), IWS will respect the following execution order:

Event Order of execution

When opening the
screen Screen_OnOpen() sub-routine from the Screen Script interface

(VBScript language)

On Open from the Screen Logic interface (Built-in Scripting
Language)

When closing the
screen On Close from the Screen Logic interface (Built-in Scripting

Language)

Screen_OnClose() sub-routine from the Screen Script interface
(VBScript language)

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

MsgBox and InputBox Functions
The MsgBox() and InputBox() functions from the VBScript language allow you to display pop-up
messages during runtime. These functions are synchronous. When either one is executed, the
remaining instructions from the code will not be executed before the pop-up messages launched by
the functions are closed.

Note: The text displayed in these pop-up messages are not affected by the Translation Tool of
IWS, unless you configure the text explicitly using the $Ext() function from the Built-in Scripting
Language.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

VBScript Procedures
In VBScript, there are two kinds of procedures; the Sub procedure and the Function procedure.

Sub Procedures

A Sub procedure is a series of VBScript statements (enclosed by Sub and End Sub statements) that
perform actions but don't return a value. A Sub procedure can take arguments (constants, variables,
or expressions that are passed by a calling procedure). If a Sub procedure has no arguments, its Sub
statement must include an empty set of parentheses ().

The following Sub procedure uses two intrinsic (built-in) VBScript functions, MsgBox and InputBox, to
prompt a user for information. It then displays the results of a calculation based on that information.
The calculation is performed in a Function procedure created with VBScript. The Function procedure is
shown after the following discussion.
Sub ConvertTemp()
 temp = InputBox("Please enter the temperature in degrees F.", 1)
 MsgBox "The temperature is " & Celsius(temp) & " degrees C."
End Sub

Function Procedures

A Function procedure is a series of VBScript statements enclosed by the Function and End Function
statements. A Function procedure is similar to a Sub procedure, but can also return a value. A
Function procedure can take arguments (constants, variables or expressions that are passed to it by
a calling procedure). If a Function procedure has no arguments, its Function statement must include
an empty set of parentheses. A Function returns a value by assigning a value to its name in one or
more statements of the procedure. The return type of a Function is always a Variant.

In the following example, the Celsius function calculates degrees Celsius from degrees Fahrenheit.
When the function is called from the ConvertTemp Sub procedure, a variable containing the argument
value is passed to the function. The result of the calculation is returned to the calling procedure and
displayed in a message box.
Sub ConvertTemp()
 temp = InputBox("Please enter the temperature in degrees F.", 1)
 MsgBox "The temperature is " & Celsius(temp) & " degrees C."
End Sub

Function Celsius(fDegrees)
 Celsius = (fDegrees - 32) * 5 / 9
End Function

Getting Data Into and Out of Procedures

Each piece of data is passed into your procedures using an argument . Arguments serve as

placeholders for the data you want to pass into your procedure. You can name your arguments any
valid variable name. When you create a procedure using either the Sub statement or the Function
statement, parentheses must be included after the name of the procedure. Any arguments are placed
inside these parentheses, separated by commas. For example, in the following example, fDegrees is a
placeholder for the value being passed into the Celsius function for conversion.
Function Celsius(fDegrees)
 Celsius = (fDegrees - 32) * 5 / 9
End Function

To get data out of a procedure, you must use a Function. Remember, a Function procedure can
return a value; a Sub procedure cannot.

Using Sub and Function Procedures in Code

A Function in your code must always be used on the right side of a variable assignment or in an
expression. For example:
Temp = Celsius(fDegrees)

or
MsgBox "The Celsius temperature is " & Celsius(fDegrees) & " degrees."

To call a Sub procedure from another procedure, type the name of the procedure along with values
for any required arguments, each separated by a comma. The Call statement is not required, but if
you do use it, you must enclose any arguments in parentheses.

The following example shows two calls to the MyProc procedure. One uses the Call statement in the
code; the other doesn't. Both do exactly the same thing.
Call MyProc(firstarg, secondarg)

MyProc firstarg, secondarg

Notice that the parentheses are omitted in the call when the Call statement isn't used.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Creating Constants
A constant is a meaningful name that takes the place of a number or string and never changes.
VBScript defines a number of intrinsic constants.

You create user-defined constants in VBScript using the Const statement. Using the Const statement,
you can create string or numeric constants with meaningful names and assign them literal values. For
example:
Const MyString = "This is my string."
Const MyAge = 49

Note that the string literal is enclosed in quotation marks (" "). Quotation marks are the most
obvious way to differentiate string values from numeric values. You represent Date literals and time
literals by enclosing them in number signs (#). For example:
Const CutoffDate = #6-1-97#

You may want to adopt a naming scheme to differentiate constants from variables. This will prevent
you from trying to reassign constant values while your script is running. For example, you might want
to use a "vb" or "con" prefix on your constant names, or you might name your constants in all capital
letters. Differentiating constants from variables eliminates confusion as you develop more complex
scripts.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Declaring Variables
A variable is a convenient placeholder that refers to a computer memory location where you can
store program information that may change during the time your script is running. In VBScript,
variables are always of one fundamental data type, Variant.

You declare variables explicitly in your script using the Dim statement, the Public statement, and the
Private statement. For example:
Dim DegreesFahrenheit

You declare multiple variables by separating each variable name with a comma. For example:
Dim Top, Bottom, Left, Right

You can also declare a variable implicitly by simply using its name in your script. That is not generally
a good practice because you could misspell the variable name in one or more places, causing
unexpected results when your script is run. For that reason, the Option Explicit statement is
configured by default in the Global Procedures interface to require explicit declaration of all variables.
Unless you delete this statement, you need to declare all variables explicitly; otherwise, VBScript will
generate errors during runtime indicating that the variable does not exist.

An expression should have the variable on the left side and the value you want to assign to the
variable on the right. For example:
MyVar = 100

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Scope and Lifetime of Variables
A variable's scope is determined by where you declare it. When you declare a variable within a
procedure, only code within that procedure can access or change the value of that variable. It has
local scope and is a procedure-level variable. If you declare a variable outside a procedure, you make
it recognizable to all the procedures in your script. This is a script-level variable, and it has script-
level scope.

The lifetime of a variable depends on how long it exists. The lifetime of a script-level variable extends
from the time it is declared until the time the script is finished running. At procedure level, a variable
exists only as the procedure runs. When the procedure exits, the variable is destroyed. Local
variables are ideal as temporary storage space when a procedure is executing. You can have local
variables of the same name in several different procedures because each is recognized only by the
procedure in which it is declared.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Boolean Tags and Boolean Variables

By default, Boolean variables in VBScript are handled differently than Boolean tags are handled in
IWS. The Boolean states of FALSE and TRUE have the same meaning, but the numeric values of
TRUE are different, as shown in the table below.

Boolean State Numeric Value in…

Project Tag VBScript Variable

FALSE 0 0

TRUE 1 - 1

Note: In VBScript, False and True are also reserved as keywords.

This difference in how Booleans are handled can seriously affect runtime behavior if you use VBScript
in your project. Logical and arithmetic operations — especially the NOT operator — could change tag
values in unexpected ways.

You can change this behavior, if necessary, by changing your project's runtime settings.

Changing How VBScript Handles Boolean Tags

You can change the way VBScript handles Boolean tags by activating "VB Boolean" mode. To do this,
edit your project file (project_name.app) to change the following setting:

[Script]

VBBoolean=value

If VBBoolean is set to 0, then the project will behave as described above: all VBScript functions and
operations will read/write a value of -1 for TRUE to Boolean tags. This is the default setting for
projects created with InduSoft Web Studio v6.1+SP3 or earlier and then updated to v6.1+SP4, in
order to maintain backward compatibility.

If VBBoolean is set to 1, then VBScript — as it is implemented within IWS — will read/write a value of 1
for TRUE to Boolean tags. (This does not affect Integer or Real tags.) This is the default setting for
projects created with InduSoft Web Studio v6.1+SP4 or later.

Note: Be careful when defining a custom property on a Linked Symbol using the #Label:@Pointer

syntax. For example:
'The following statements are valid
If $MyBoolean = 1 Then
End If

If $MyBoolean = True Then
End If

If #Mne:@MyPointer = True Then
End If

'The following statement is invalid
If #Mne:@MyPointer = 1 Then
End If

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Writing Real Values to Integer Tags
By default, a Real (i.e., floating point) value is truncated at the decimal point when it is written to an
Integer tag. This behavior is the same in both the Built-in Scripting Language and in VBScript.

You can change this behavior in VBScript, however, by disabling the "TruncRealToInt" runtime
setting. To do this, edit your project file (project_name.app) to change the following line:

[Script]

TruncRealToInt=value

If TruncRealToInt is set to 1, then the project will behave as described above: Real values will be
truncated at the decimal point without rounding. (For example, a value of 5.56 will be written as 5 to
an Integer tag.) This is the default setting for projects created with InduSoft Web Studio v6.1+SP4 or
earlier and then updated to v6.1+SP5, in order to maintain backward compatibility.

If TruncRealToInt is set to 0, then VBScript functions and operations will round Real values to the
nearest integer. (For example, a value of 5.56 will be written as 6 to an Integer tag.) This is the
default setting for projects created with InduSoft Web Studio v6.1+SP5 or later.

Note: This setting only affects the behavior of VBScript in IWS. It does not affect the behavior of
the Built-in Scripting Language.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Precedence of VBScript Operators
VBScript has a full range of operators, including arithmetic operators, comparison operators,
concatenation operators, and logical operators.

When several operations occur in an expression, each part is evaluated and resolved in a
predetermined order called "operator precedence." You can use parentheses to override the order of
precedence and force some parts of an expression to be evaluated before others. Operations within
parentheses are always performed before those outside. Within parentheses, however, standard
operator precedence is maintained.

When expressions contain operators from more than one category, arithmetic operators are
evaluated first, comparison operators are evaluated next, and logical operators are evaluated last.
Comparison operators all have equal precedence; that is, they are evaluated in the left-to-right order
in which they appear. Arithmetic and logical operators are evaluated in the following order of
precedence.

Arithmetic Comparison Logical

Negation (-) Equality (=) Not

Exponentiation (^) Inequality (<>) And

Multiplication and division (*, /) Less than (<) Or

Integer division (\) Greater than (>) Xor

Modulus arithmetic (Mod) Less than or equal to (<=) Eqv

Addition and subtraction (+, -) Greater than or equal to (>=) Imp

String concatenation (&) Is &

When multiplication and division occur together in an expression, each operation is evaluated as it
occurs from left to right. Likewise, when addition and subtraction occur together in an expression,
each operation is evaluated in order of appearance from left to right.

The string concatenation (&) operator is not an arithmetic operator, but in precedence it falls after all
arithmetic operators and before all comparison operators. The Is operator is an object reference
comparison operator. It does not compare objects or their values; it checks only to determine if two
object references refer to the same object.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Logical Operator NOT
The logical operator NOT behaves differently in VBScript than it does in the built-in scripting
language.

NOT Operator in VBScript

In VBScript, the NOT operator inverts the bits of a given numeric value, producing its complement
number according to the "two's complement" system of signed numbers that is used by computers.
The table below illustrates the behavior of the NOT operator in VBScript for the syntax…

result = NOT expression

If expression is… Then result is…

- 3 2

- 2 1

- 1 0

0 - 1

1 - 2

2 - 3

3 - 4

Note: By default, when you attempt to write any numeric value other than 0 to a Boolean tag,
the tag automatically assumes a value of 1. Therefore, if VBScript's NOT operator is applied to a
Boolean tag with a value of 1, then the value of the tag does not change; the operator returns a
value of -2, but the tag cannot accept this value so it again assumes a value of 1.

You can configure IWS to treat Boolean tags like Boolean variables in VBScript, so that the NOT
operator in VBScript will work as expected. For more information, please see Boolean Tags and
Boolean Variables.

NOT Operator in Built-in Language

In contrast, the NOT operator in the Built-in Scripting Language toggles the given numeric value as if
it is a natural boolean. The table below illustrates the behavior of the NOT operator in the Built-in
Scripting Language for the syntax…

result = NOT expression

If expression is… Then result is…

0 1

 0 0

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Using Conditional Statements

You can control the flow of your script with conditional statements and looping statements. Using
conditional statements, you can write VBScript code that makes decisions and repeats actions. The
following conditional statements are available in VBScript:

If…Then…Else statement

Select Case statement

Making Decisions Using If…Then…Else

The If…Then…Else statement is used to evaluate whether a condition is True or False and, depending on
the result, to specify one or more statements to run. Usually the condition is an expression that uses
a comparison operator to compare one value or variable with another. For information about
comparison operators, see Comparison Operators.

If…Then…Else statements can be nested to as many levels as you need.

Running Statements if a Condition is True

To run only one statement when a condition is True, use the single-line syntax for the If…Then…Else
statement. The following example shows the single-line syntax. Notice that this example omits the
Else keyword:
Sub FixDate()
 Dim myDate
 myDate = #2/13/95#
 If myDate < Now Then myDate = Now
End Sub

To run more than one line of code, you must use the multiple-line (or block) syntax. This syntax
includes the End If statement, as shown in the following example:
Sub AlertUser(value)
 If value = 0 Then
 AlertLabel.ForeColor = vbRed
 AlertLabel.Font.Bold = True
 AlertLabel.Font.Italic = True
 End If
End Sub

Running Certain Statements if a Condition is True and Running Others if a Condition is
False

You can use an If…Then…Else statement to define two blocks of executable statements: one block to
run if the condition is True, and the other block to run if the condition is False:
Sub AlertUser(value)
 If value = 0 Then
 AlertLabel.ForeColor = vbRed

 AlertLabel.Font.Bold = True
 AlertLabel.Font.Italic = True
 Else
 AlertLabel.Forecolor = vbBlack
 AlertLabel.Font.Bold = False
 AlertLabel.Font.Italic = False
 End If
End Sub

Deciding Between Several Alternatives

A variation on the If…Then…Else statement allows you to choose from several alternatives. Adding
ElseIf clauses expands the functionality of the If…Then…Else statement, so you can control program
flow based on different possibilities. For example:
Sub ReportValue(value)
 If value = 0 Then
 MsgBox value
 ElseIf value = 1 Then
 MsgBox value
 ElseIf value = 2 then
 Msgbox value
 Else
 Msgbox "Value out of range!"
 End If
End Sub

You can add as many ElseIf clauses as you need to provide alternative choices, but extensive use of
the ElseIf clauses often becomes cumbersome. A better way to choose between several alternatives
is the Select Case statement.

Making Decisions with Select Case

The Select Case structure provides an alternative to If…Then…ElseIf for selectively executing one block
of statements from among multiple blocks of statements. A Select Case statement provides capability
similar to the If…Then…Else statement, but it makes code more efficient and readable.

A Select Case structure works with a single test expression that is evaluated once, at the top of the
structure. The result of the expression is then compared to the values for each Case in the structure.
If there is a match, the block of statements associated with that Case is executed, as in the following
example:
Select Case Document.Form1.CardType.Options(SelectedIndex).Text
 Case "MasterCard"
 DisplayMCLogo
 ValidateMCAccount
 Case "Visa"
 DisplayVisaLogo
 ValidateVisaAccount
 Case "American Express"
 DisplayAMEXCOLogo
 ValidateAMEXCOAccount
 Case Else

 DisplayUnknownImage
 PromptAgain
End Select

Notice that the Select Case structure evaluates an expression once at the top of the structure. In
contrast, the If…Then…ElseIf structure can evaluate a different expression for each ElseIf statement.
You can replace an If…Then…ElseIf structure with a Select Case structure only if each ElseIf statement
evaluates the same expression.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Looping Through Code
Looping allows you to run a group of statements repeatedly. Some loops repeat statements until a
condition is False; others repeat statements until a condition is True. There are also loops that repeat
statements a specific number of times.

The following looping statements are available in VBScript:

Do…Loop: Loops while or until a condition is True

While…Wend: Loops while a condition is True

For…Next: Uses a counter to run statements a specified number of times

Using Do Loops

You can use Do…Loop statements to run a block of statements an indefinite number of times. The
statements are repeated either while a condition is True or until a condition becomes True.

Repeating Statements While a Condition is True

Use the While keyword to check a condition in a Do…Loop statement. You can check the condition
before you enter the loop (as shown in the following ChkFirstWhile example), or you can check it after
the loop has run at least once (as shown in the ChkLastWhile example). In the ChkFirstWhile
procedure, if myNum is set to 9 instead of 20, the statements inside the loop will never run. In the
ChkLastWhile procedure, the statements inside the loop run only once because the condition is already
False.
Sub ChkFirstWhile()
 Dim counter, myNum
 counter = 0
 myNum = 20
 Do While myNum > 10
 myNum = myNum - 1
 counter = counter + 1
 Loop
 MsgBox "The loop made " & counter & " repetitions."
End Sub

Sub ChkLastWhile()
 Dim counter, myNum
 counter = 0
 myNum = 9
 Do
 myNum = myNum - 1
 counter = counter + 1
 Loop While myNum > 10
 MsgBox "The loop made " & counter & " repetitions."
End Sub

Repeating a Statement Until a Condition Becomes True

There are two ways to use the Until keyword to check a condition in a Do…Loop statement. You can
check the condition before you enter the loop (as shown in the following ChkFirstUntil example), or
you can check it after the loop has run at least once (as shown in the ChkLastUntil example). As long
as the condition is False, the looping occurs.
Sub ChkFirstUntil()
 Dim counter, myNum
 counter = 0
 myNum = 20
 Do Until myNum = 10
 myNum = myNum - 1
 counter = counter + 1
 Loop
 MsgBox "The loop made " & counter & " repetitions."
End Sub

Sub ChkLastUntil()
 Dim counter, myNum
 counter = 0
 myNum = 1
 Do
 myNum = myNum + 1
 counter = counter + 1
 Loop Until myNum = 10
 MsgBox "The loop made " & counter & " repetitions."
End Sub

Exiting a Do…Loop Statement from Inside the Loop

You can exit a Do…Loop by using the Exit Do statement. Because you usually want to exit only in
certain situations, such as to avoid an endless loop, you should use the Exit Do statement in the True
statement block of an If…Then…Else statement. If the condition is False, the loop runs as usual.

In the following example, myNum is assigned a value that creates an endless loop. The If…Then…Else
statement checks for this condition, preventing the endless repetition.
Sub ExitExample()
 Dim counter, myNum
 counter = 0
 myNum = 9
 Do Until myNum = 10
 myNum = myNum - 1
 counter = counter + 1
 If myNum < 10 Then Exit Do
 Loop
 MsgBox "The loop made " & counter & " repetitions."
End Sub

Using While…Wend

The While…Wend statement is provided in VBScript for those who are familiar with its usage. However,

because of the lack of flexibility in While…Wend, it is recommended that you use Do…Loop instead.

Using For…Next

You can use For…Next statements to run a block of statements a specific number of times. For loops,
use a counter variable whose value increases or decreases with each repetition of the loop.

The following example causes a procedure called MyProc to execute 50 times. The For statement
specifies the counter variable x and its start and end values. The Next statement increments the
counter variable by 1.
Sub DoMyProc50Times()
 Dim x
 For x = 1 To 50
 MyProc
 Next
End Sub

Using the Step keyword, you can increase or decrease the counter variable by the value you specify.
In the following example, the counter variable j is incremented by 2 each time the loop repeats.
When the loop is finished, the total is the sum of 2, 4, 6, 8, and 10.
Sub TwosTotal()
 Dim j, total
 For j = 2 To 10 Step 2
 total = total + j
 Next
 MsgBox "The total is " & total
End Sub

To decrease the counter variable, use a negative Step value. You must specify an end value that is
less than the start value. In the following example, the counter variable myNum is decreased by 2 each
time the loop repeats. When the loop is finished, the total is the sum of 16, 14, 12, 10, 8, 6, 4, and 2.
Sub NewTotal()
 Dim myNum, total
 For myNum = 16 To 2 Step -2
 total = total + myNum
 Next
 MsgBox "The total is " & total
End Sub

You can exit any For…Next statement before the counter reaches its end value by using the Exit For
statement. Because you usually want to exit only in certain situations, such as when an error occurs,
you should use the Exit For statement in the True statement block of an If…Then…Else statement. If
the condition is False, the loop runs as usual.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Support for ActiveX Controls
Using the VBScript interfaces for the Graphic module (Graphics Script, Screen Script, Command
animation, and ActiveX Events), you can use this syntax to access properties and methods directly
from any ActiveX Control object inserted in the screen where the object is configured.

IWS will assign a unique name to the object on the screen. You can use the Name property (in the
Object Properties dialog) to modify this name.

After inserting an ActiveX Control object on the screen, you can access properties and methods from
this object from any VBScript interface associated with this screen. Use the syntax
Object_Name.Properties_or_Method_Name. Examples:
//Access the value of the property Day from the CalendarControl1 ActiveX object
CalendarControl1.Day

//Triggers the method AboutBox from the CalendarControl1 ActiveX object
CalendarControl1.AboutBox

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

Windows Embedded Support
CEView also supports VBScript. The hardware manufacturer of the Microsoft Windows Embedded
device must enable the support for VBScript on it, so CEView will be able to execute the scripts
configured in VBScript language on the device.

The MsgBox() and InputBox() functions can be specifically enabled/disabled by the hardware
manufacturer when the image for the Windows Embedded device is created.

If you are not sure if the image loaded on your device supports VBScript, please consult the hardware
manufacturer.

InduSoft Web Studio v7.0 Technical Reference
Copyright © 2003–2010 Indusoft, Inc.

	Introduction
	Conventions used in this documentation
	About This Application
	Product Overview
	Product Features
	How the Software Works
	Internal Structure and Data Flow
	Executing/Switching Modules
	Executing/Switching the Background Task

	Installation
	System requirements
	Installing the Software
	Starting the Software
	Uninstalling the Software

	Licensing
	Protection Types
	License Settings
	Execution Modes
	Product Versions
	Installing a New Hardkey License
	Upgrading the Current Hardkey License
	Installing a Softkey License
	Invalid Licenses
	Installing or Upgrading a CEView License (Locally)
	Installing or Upgrading a CEView License (Remotely)

	The Development Environment
	Application button
	Recent Projects
	New
	Open Project
	Open
	Save
	Save As
	Save All
	Save All as HTML
	Save as HTML
	Save Screen Group as HMTL
	Print
	Print Preview
	Print Setup
	Close
	Close All
	Exit

	Quick Access Toolbar
	Ribbon
	Home tab
	View tab
	Insert tab
	Project tab
	Graphics tab
	Format tab
	Help tab

	Project Explorer
	Global tab
	Graphics tab
	Tasks tab
	Comm tab

	Screen/Worksheet Editor
	Database Spy
	Output (LogWin)
	Title Bar
	Status Bar

	Creating a New Project
	Creating a New Project
	Configuring additional project settings
	Information tab
	Options tab
	Alarm History and Events
	Default Database
	Database Configuration

	Viewer tab
	Communication tab
	Web tab
	Preferences tab

	Enabling mobile access to your project
	Configuring your project's default email settings
	Configuring your project's default FTP settings
	Starting Modules on the Target System
	Service Configuration

	Tags and the Project Database
	About Tags and the Project Database
	Project Tags Folder
	Extending the Project Tags datasheet

	Classes Folder
	Shared Database Folder
	System Tags Folder

	Designing a Tag
	Naming the Tag
	Choosing the Tag Type
	Choosing the Tag Data Type
	Choosing the Tag Scope

	Creating Database Tags
	Adding Tags to the Datasheet
	Creating Tags "On-the-Fly"
	Editing Tags

	Creating Classes
	Setting Tag Properties
	Understanding Tag Properties and Parameters
	Using Tag Properties: Alarms
	Using Tag Properties: History
	List of Tag Properties

	Using Tags in Your Project
	Deleting a tag from the project database
	Using the Tags Toolbar
	Global Replace
	Replace
	Remove unused tags
	Reset tags database
	Tag Name text box
	Object Finder
	Cross Reference
	Properties

	Importing an External Database
	Using the Import Wizard
	Importing from...
	...Other Studio Databases
	...OPC Server Databases
	...CSV Databases
	...ODBC Databases
	...PanelBuilder32 Databases
	...RSLogix 5000 CSV Databases
	...OMRON CX Programmer Databases
	...TwinCAT PLC Databases
	...PanelMate Plus Databases

	Integrating the project database with a TwinCAT PLC

	Screens and Graphics
	Working with Screens
	Screens folder
	Screen Attributes dialog
	Modifying a screen's background color or image

	Screen Group Folder
	Web Pages Folder
	Mobile Access
	Layout

	Using Screen Objects and Animations
	Editing
	Selection
	Disable Drag
	Replace
	Properties
	Grid Settings
	Undo
	Arrange

	Shapes
	Line object
	Open Polygon object
	Closed Polygon object
	Rectangle object
	Rounded Rectangle object
	Ellipse object

	Active Objects
	Text object
	Button object
	Pushbutton object
	Check Box object
	Radio Button object
	Combo Box object
	List Box object
	Smart Message object

	Libraries
	Symbols
	Saving your own project symbols

	ActiveX Control object
	.NET Control object
	Linked Picture

	Animations
	Command animation
	Hyperlink animation
	Bargraph animation
	Text Data Link animation
	Color animation
	Position animation
	Resize animation
	Rotation animation

	Formatting Screen Objects
	Move to Front and Move to Back
	Move Backward and Move Forward
	Group
	Align
	Rotate
	Flip Vertical
	Flip Horizontal

	Size
	Fill Color
	Line Color
	Fonts

	Data Logging and Display
	Alarms
	Alarm Worksheet Header
	Email Settings for Alarm Worksheet
	Advanced Settings for Alarm Worksheet

	Alarm Worksheet Body
	Setting the Alarm Database

	Events
	Setting the Event Database

	Alarm/Event Control object
	Trends
	Converting Trend History Files from Binary to Text
	Converting Trend History Files from Text to Binary
	Creating Batch History
	Setting the Trend Database

	Trend Control object
	Object Properties: Trend Control
	Points
	Pen Style
	Options

	Axes
	Toolbar
	Data Sources
	Legend
	Advanced

	Runtime Interface
	Using the Data Source Text File
	Using the Data Source Database

	Grid object
	Columns dialog
	Data dialog
	Advanced dialog

	Background Tasks
	Alarms
	Trends
	Recipes
	Reports
	ODBC
	Math
	Script
	Startup Script worksheet

	Scheduler
	Database/ERP worksheet

	Communication with Other Devices
	Drivers
	Main Driver Sheet
	Standard Driver Sheets

	OPC
	OPC UA
	OPC Xi
	TCP/IP
	DDE

	Project Security
	About security modes
	About security access levels
	Using the security system configuration wizard
	Configuring server settings for security modes
	Extending the LDAP schema to allow saving of security rights

	Creating and configuring groups
	Creating and configuring users
	Managing an existing security system
	Backing up the security system configuration
	Logging on/off
	Blocking or unblocking a user
	Password Protection of Project Files

	Automatic Translation
	Adding a language to the Translation Table
	Setting the project's language at startup
	Setting the project's language during runtime
	Disabling translation of selected screen objects

	Testing and Debugging
	Debugging from the Output Window
	Debugging from the Database Spy
	Using the LogWin Module
	Using Remote Tools
	Using Remote Database Spy
	Using Remote LogWin

	Deploying as a Web Application
	Introduction to Thin Clients
	Building a Simple Application
	The Underlying Technology
	ISSymbol Control Layer
	Examples of Client/Server Architecture
	Configuring the Data Server
	Configuring the Web server
	Configuring the Web Tunneling Gateway
	Configuring the Thin Client
	Implementing Security
	Port Usage
	Exercise: Viewing Your Project on the Web

	Downloading to a Remote Device
	Configuring the Target System
	Configuring the Development Station
	Automatically Running a Project

	Database Interface
	SQL Relational Databases
	Linking the Database Through a Remote DB Provider
	Studio Database Gateway
	Database Configuration
	Configuring a Default Database for All Task History
	Database Troubleshooting
	Appendices
	Using ODBC Databases
	Using Microsoft SQL Server
	Using ORACLE Databases
	Using Microsoft Access Databases
	Using SQL Server CE
	Using Sybase
	Using Microsoft Excel
	Using MySQL

	Troubleshooting
	General Troubleshooting
	Frequently Asked Questions
	Help Menu
	Technical Reference
	License Agreement
	Release Notes
	Home Page
	Communication Drivers
	Support Information
	About

	Appendix: Built-in Scripting Language
	Logic and arithmetic operators
	How to read function descriptions
	Log Message functions
	Trace

	Arithmetic functions
	Abs
	Div
	Format
	GetBit
	Mod
	Pow
	ResetBit
	Round
	SetBit
	Sqrt
	Swap16
	Swap32
	Trunc

	Statistical functions
	Avg
	Max
	Min
	Rand

	Logarithmic functions
	Exp
	Log
	Log10

	Logical functions
	False
	If
	Toggle
	True

	String functions
	Asc2Str
	CharToValue
	CharToValueW
	ClassMembersToStrVector
	NCopy
	Num
	Str
	Str2Asc
	StrCompare
	StrCompareNoCase
	StrFromInt
	StrFromReal
	StrFromTime
	StrGetElement
	StrLeft
	StrLen
	StrLower
	StrRChr
	StrRight
	StrSetElement
	StrStr
	StrStrPos
	StrTrim
	StrTrimAll
	StrUpper
	ValueToChar
	ValueWToChar

	Date & Time functions
	ClockGetDate
	ClockGetDayOfWeek
	ClockGetTime
	DateTime2Clock
	GetClock
	Hour2Clock
	SetSystemDate
	SetSystemTime

	Trigonometric functions
	ACos
	ASin
	ATan
	Cos
	Cot
	Pi
	Sin
	Tan

	Screen functions
	Close
	Open
	OpenPrevious
	ShowInplaceInput
	ShowMessageBox

	Security functions
	BlockUser
	CheckESign
	CreateUser
	ExportSecuritySystem
	GetUserFullName
	GetUserNames
	GetUserPwdAging
	GetUserState
	ImportSecuritySystem
	RemoveUser
	SetPassword
	UnblockUser

	Module Activity functions
	AppActivate
	AppIsRunning
	AppPostMessage
	AppSendKeys
	CleanReadQueue
	CloseSplashWindow
	DisableMath
	EnableMath
	EndTask
	ExitWindows
	IsScreenOpen
	IsTaskRunning
	IsViewerInFocus
	KeyPad
	LogOff
	LogOn
	Math
	PostKey
	Recipe
	Report
	RunGlobalProcedureOnServer
	RunVBScript
	SecureViewerReload
	SendKeyObject
	SetAppPath
	SetViewerInFocus
	SetViewerPos
	ShutDown
	StartTask
	ViewerPostMessage
	WinExec
	WinExecIsRunning

	File functions
	DeleteOlderFiles
	DirCreate
	DirDelete
	DirLength
	DirRename
	FileCopy
	FileDelete
	FileLength
	FileRename
	FileWrite
	FindFile
	FindPath
	GetFileAttributes
	GetFileTime
	GetHstInfo
	GetLine
	HST2TXT
	HST2TXTIsRunning
	LookupContains
	LookupGet
	LookupLoad
	PDFCreate
	Print
	RDFileN
	WebGetFile

	Graphic functions
	AutoFormat
	GetScrInfo
	PrintSetup
	PrintWindow
	ResetDecimalPointsTable
	RGBColor
	RGBComponent
	SaveScreenShot
	SetDecimalPoints
	SetDisplayUnit
	SetTagDisplayUnit

	Translation functions
	Ext
	SetLanguage
	SetTranslationFile

	Multimedia functions
	Play

	System Info functions
	DbVersion
	GetAppHorizontalResolution
	GetAppPath
	GetAppVerticalResolution
	GetComputerIP
	GetComputerName
	GetCursorX
	GetCursorY
	GetDisplayHorizontalResolution
	GetDisplayVerticalResolution
	GetFreeMemoryCE
	GetHardKeyModel
	GetHardKeySN
	GetIPAll
	GetMemoryCE
	GetNetMACID
	GetOS
	GetPrivateProfileString
	GetProductPath
	GetRegValue
	GetRegValueType
	GetServerHostName
	GetTickCount
	InfoAppAlrDir
	InfoAppHSTDir
	InfoDiskFree
	InfoResources
	IsActiveXReg
	IsAppChangedOnServer
	NoInputTime
	ProductVersion
	RegSaveCE
	ReloadAppFromServer
	SaveAlarmFile
	SetAppAlarmPath
	SetAppHSTPath
	SetDateFormat
	SetKeyboardLanguage
	SetRegValue
	SetWebConfig
	SNMPGet
	SNMPSet
	WritePrivateProfileString

	Tags Database functions
	ExecuteAlarmAck
	ForceTagChange
	GetTagValue
	RunGlobalProcedureOnFalse
	RunGlobalProcedureOnTrigger
	RunGlobalProcedureOnTrue
	SetTagValue

	Loop functions
	For … Next

	ODBC functions
	ODBCBeginTrans
	ODBCBindCol
	ODBCCanAppend
	ODBCCanTransact
	ODBCCanUpdate
	ODBCClose
	ODBCCommitTrans
	ODBCDelete
	ODBCExecuteSQL
	ODBCInsert
	ODBCIsBOF
	ODBCIsDeleted
	ODBCIsEOF
	ODBCIsFieldNULL
	ODBCIsFieldNullable
	ODBCMove
	ODBCMoveFirst
	ODBCMoveLast
	ODBCMoveNext
	ODBCMovePrev
	ODBCOpen
	ODBCQuery
	ODBCRollBack
	ODBCSetFieldNULL
	ODBCSetFilter
	ODBCSetSort
	ODBCUnbindCol
	ODBCUpdate

	Email functions
	CnfEmail
	GetStatusSendEmailExt
	SendEmail
	SendEmailExt

	Dial-up functions
	DialError
	DialGetClientIP
	DialGetServerIP
	DialStatus
	DialUp
	DialUpToCE
	FindAllDevices
	FindModem
	HangUp
	PhoneDialUp
	PhoneDisableListen
	PhoneEnableListen
	PhoneHangUp
	PhoneStatus

	ActiveX and .NET Control functions
	XGet
	XRun
	XSet

	Event Logger functions
	SendEvent

	FTP functions
	CnfFTP
	FTPGet
	FTPPut
	FTPStatus

	Database/ERP functions
	DBCursorClose
	DBCursorColumnCount
	DBCursorColumnInfo
	DBCursorCurrentRow
	DBCursorGetValue
	DBCursorMoveTo
	DBCursorNext
	DBCursorOpen
	DBCursorOpenSQL
	DBCursorPrevious
	DBCursorRowCount
	DBDelete
	DBExecute
	DBInsert
	DBSelect
	DBUpdate
	SyncAlarm
	SyncAlarmStatus
	SyncEvent
	SyncEventStatus
	SyncTrend
	SyncTrendStatus

	Appendix: VBScript
	Overview
	VBScript Interfaces in the Software
	Global Procedures
	Graphic Module
	Graphics Script
	Screen Script
	Command Animation
	ActiveX Events

	Background Task
	Startup Script worksheet
	Script worksheet

	Language Reference
	Operators
	Constants
	Objects and Collections
	Properties
	Statements
	Methods
	Functions
	Keywords
	Errors

	Tips & Tricks
	VBScript Editor IntelliSense
	VBScript Compared to VBA
	Screen Events
	MsgBox and InputBox Functions
	VBScript Procedures
	Creating Constants
	Declaring Variables
	Scope and Lifetime of Variables
	Boolean Tags and Boolean Variables
	Writing Real Values to Integer Tags
	Precedence of VBScript Operators
	Logical Operator NOT
	Using Conditional Statements
	Looping Through Code
	Support for ActiveX Controls
	Windows Embedded Support

